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Abstract
Recycling methods will be essential for the future circular economy in the context of declining natural resources. Nanoma-
terials are promising adsorbents to recover rare earth elements from wastewater, yet the practical application of nanomateri-
als is limited by spontaneous agglomeration, easy collapse of structures and the difficulty in collecting nanomaterials after 
adsorption. To solve these issues, we prepared a polyurethane sponge-supported titanium phosphate with graphene oxide, 
abbreviated as GO@TiP-Sponge, by in situ precipitation. GO@TiP-Sponge was characterized by X-ray diffraction, scanning 
electron microscope, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, and tested for the removal 
and recovery of trace dysprosium Dy(III), a rare-earth element, in water using batch experiments. Results show that the 
GO@TiP-Sponge showed an excellent affinity for dysprosium with theoretical capacity reaching 576.17 mg/g according to 
the Langmuir model. Half-equilibrium was reached in 2.5 min according to a pseudo-second-order model. GO@TiP-Sponge 
also displayed an adsorption ability for a wide range of pH and salinity. Such performance is explained by strong binding of 
phosphate with Dy(III), enhanced surface area induced by graphene oxide and less aggregation from the spongy structure. 
The main adsorption mechanism involves electrostatic interaction.
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Introduction

Water contamination is a rising global issue (Basheer 2018; 
Alharbi et al. 2018). Owing to the continuous exploitation 
of rare earth, a mass of rare earth elements wastewater was 
discarded to the environment, which caused serious pollu-
tion (Chao et al. 2016). Since the 1990s, the rare earth ele-
ments have been listed as major pollutants in China (Liu 
et al. 2015b). And the rare earth elements were widely used 
in merging clean energy technologies (Zaimes et al. 2015), 
national defense applications (Yang et al. 2013), medical 
application (Hernandez-Adame et  al. 2017), due to the 
unique physical and chemical properties. With the advent 
of advanced technologies, there is a rising demand for rare 
earth elements in the global markets (Dutta et al. 2016); 
however, the rare earth elements resource is facing serious 
shortage because of their low reserves and outputs from the 
natural minerals (Li et al. 2018). Therefore, many secondary 
resources with low concentrations of rare earth elements 
have attracted extensive attention. The enrichment and 
recovery of low-concentration rare earth elements on solid 
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waste have been greatly developed, but the rare earth recov-
ery in the wastewater is an overlooked point (Qin et al. 2019; 
Qiu et al. 2020). Less than 1% of the rare earth elements 
used today were actually recycled up (Jowitt et al. 2018), 
and it is still a challenge for recycling low-concentration 
rare earth elements.

Adsorption was regarded as an effective technology 
for treating wastewater due to its high extraction capac-
ity (Ali et al. 2019), inexpensive price (Ali 2018), simple 
operation (Zhou et al. 2018), wider applicability (Crini et al. 
2019), etc. Compared with other adsorbents, nanomateri-
als exhibit higher surface activity (Peng et al. 2019), higher 
porosity (Madhura et al. 2019) and more adsorption active 
sites (Madima et al. 2020), thereby gaining importance of 
researchers toward their applications in this area (Al-Shaalan 
et al. 2019; Nodeh et al. 2016). Nanomaterials which have 
been commonly used for the rare earth elements wastewa-
ter include titanium phosphate (Jia et al. 2008), graphene 
oxide (Ashour et al. 2017), metal–organic framework (MOF) 
structure materials (Lee et al. 2018), modified mesoporous 
carbon materials (Koochaki-Mohammadpour et al. 2014), 
etc. They showed advantages in extracting the rare earth 
elements of low concentrations. For instance, Zhang et al. 
recovered trace scandium from leachates of waste bauxite 
residue by titanium phosphate ion exchangers (Zhang et al. 
2017). Li et al. combined titanium phosphate with graphene 
oxide (recorded as GO@TiP) by in situ precipitation, which 
showed excellent adsorption capacity for Eu3+ from acidic 
solution (Li et al. 2014). However, it is an unavoidable prob-
lem that the nanomaterials including titanium phosphate and 
GO@TiP were spontaneous to agglomerated (Tian et al. 
2017) and difficult to be collected and reused (Song et al. 
2019), with the structures prone to collapse (Li et al. 2018). 
Moreover, it was also a possible risk that the release of nano-
particles into the environment impacted plant behavior (Dev 
et al. 2018) and human health ((Liu et al. 2019; Zhao et al. 
2011). These drawbacks limit its application despite the high 
adsorption capacities.

It was an effective approach for overcoming the above 
problems by fabricating nanomaterials onto high-mechan-
ical-strength supporting materials (Tesh and Scott 2014; 
Zhao et al. 2011). The nanoparticle could be successfully 
uploaded on the supporting material by forming hydrogen 
bonds or through mechanical forces (Yu et al. 2008). The 
resultant nanocomposite not only retains the inherent proper-
ties of nanomaterials but also keeps the mechanical strength 
of supporting materials (Chen et al. 2016). The widely used 
supporting materials contained inorganic materials (Chen 
et al. 2017), some carbon materials (Li et al. 2018), etc. 
Polyurethane sponge (PU) was a kind of commercially avail-
able 3D porous material with porous structure (Mao et al. 
2018), high absorption ability (Zhou et al. 2016), good elas-
ticity, high mechanical durability (Zhu et al. 2013) and low 

cost for large-scale production (Liu et al. 2015a, b), which 
has attracted promising applications in fields of adsorption 
and separation, etc. It has been reported as a good support-
ing material for nanoparticles. For example, Zhao et al. 
(2015) prepared TiO2–graphene sponge for the adsorption 
of tetracycline antibiotics, which showed higher adsorption 
capacity than graphene oxide and graphene oxide–chitosan 
aerogel, meanwhile maintained the high-strength property 
of the sponge.

In this work, polyurethane sponge-supported titanium 
phosphate with graphene oxide (recorded as GO@TiP-
Sponge) was synthesized by in situ precipitation of graphene 
oxide, titanium phosphate and sponge. GO@TiP-Sponge 
was applied to remove and recover the low-concentration 
Dy(III) from wastewater. Batch experiments showed consid-
erable adsorption ability and fast adsorption rate of GO@
TiP-Sponge to Dy(III). Meanwhile, the material can be recy-
cled and showed the high-strength property in the acidic 
environment. And it is a promising method for the feasible 
application of GO@TiP-Sponge to remove and recover low-
concentration rare earth elements from wastewater.

Experimental section

Materials

The detailed information of materials is provided in sup-
porting information.

Preparation of titanium phosphate, graphene oxide, 
GO@TiP and GO@TiP‑Sponge

Titanium phosphate was synthesized by the same volume of 
0.6 mol/L H3PO4 and 0.3 mol/L Ti(SO4)2 solution, and syn-
thesis of graphene oxide from graphite powder was carried 
out by a modified Hummers method (Li et al. 2014). The 
specific methods are shown in the supporting information.

Sponge samples were cut into uniform blocks of 
2 cm × 1 cm × 1 cm in size, and the mass of each block was 
adjusted to around 80 mg. The sponge was treated ultrasoni-
cally with acetone for 1 h, then cleaned with deionized water 
for 1 h and dried in an oven at 65 °C. The sponge blocks 
were immersed in 1 mg/mL graphene oxide suspension 
by 30 min of ultrasonication. Then, with continuous stir-
ring, the same volume of 0.3 mol/L Ti(SO4)2 and 0.6 mol/L 
H3PO4 was added into the suspension containing sponges 
successively at 65 °C. After aging for 2 h, the wet sponges 
were freeze-dried for 48 h; then, GO@TiP-Sponge could 
be obtained. The synthesis process is illustrated in Scheme 
S1. If we do the same process without putting sponges into 
the suspension and take the deposit after aging to centrifuge 
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and dried, we could obtain GO@TiP powder (Li et al. 2014). 
The loading capacity (QL) of GO@TiP-Sponge is measured 
by Eq. 1 as follows:

where QL is the loading capacity of GO@TiP-Sponge (g/g), 
M1 (g) is the mass of synthesis GO@TiP-Sponge and M2 (g) 
is the mass of the original sponge.

Characterization

Detailed information on characterization is given in sup-
porting materials.

Batch adsorption experiments

The detailed information of batch adsorption experiments is 
given in supporting information.

(1)QL=
M1 −M2

M2

Results and discussion

Characterization of the prepared nanomaterials

According to Eq. 1, the loading capacity (QL) of GO@TiP-
Sponge was 0.98 g/g. And Fig S1 shows the X-ray diffraction 
(XRD) patterns of the prepared nanomaterials including of 
titanium phosphate, graphene oxide, GO@TiP and GO@
TiP-Sponge. A sharp diffraction peak of graphene oxide at 
11.6° could be well indexed to the (001) planes of graphene 
oxide, which confirmed the successful synthesis of graphene 
oxide (Chen et al. 2013). Titanium phosphate presented no 
sharp diffraction peaks, only a very broad one at 20°–30°, 
and the diffraction peaks of titanium phosphate displayed a 
similar XRD pattern as titanium phosphate in the previous 
studies, implying that the titanium phosphate particles were 
amorphous in nature (Jia et al. 2008; Zhang et al. 2017). 
Meanwhile, the XRD peaks of GO@TiP were close to those 
of titanium phosphate, suggesting that graphene oxide did 
not alter the lattice structure of titanium phosphate. How-
ever, peaks of graphene oxide were not shown in the XRD 

Fig. 1   Scanning electron 
microscopy (SEM) images of 
titanium phosphate (a), GO@
TiP (b), clean sponge (c, e), 
GO@TiP-Sponge (d, f). Note 
that graphene oxide and tita-
nium phosphate were uniformly 
loaded on the surface ruffle of 
the sponge, forming a cascade-
crisscross structure. GO@TiP: 
titanium phosphate combined 
with graphene oxide; GO@TiP-
Sponge: polyurethane sponge-
supported graphene oxide with 
titanium phosphate
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pattern of the GO@TiP and GO@TiP-Sponge. This implied 
that either all stacking of graphene layers was lost or any 
remaining stacking was disordered when it was composited 
with titanium phosphate (McAllister et al. 2007). Moreover, 
XRD patterns for GO@TiP-Sponge seem to have no rela-
tion with GO@TiP, implying that the structure of sponge is 
dominated in the composite material.

Morphologies of the titanium phosphate, GO@TiP and 
GO@TiP-Sponge were characterized by scanning electron 
microscopy (SEM). As shown in Fig. 1a, the native tita-
nium phosphate prone to form irregular aggregates within 
the size of no more than 100 nm. Compared with titanium 
phosphate, the aggregation of GO@TiP was largely reduced. 
It could be observed that smaller titanium phosphate aggre-
gated randomly deposit on the surface of graphene oxide 
lamellar (Fig. 1b). After the successive uploading of gra-
phene oxide and titanium phosphate on the sponge, the clean 
and smooth sponge surface changed to a rough structure 
(Fig. 1c, d). Further observation of the locally enlarged view 
revealed that the GO@TiP was uniformly loaded on the sur-
face ruffle of the sponge, forming a cascade-crisscross struc-
ture (Fig. 1e, f). The primary particles of such a hierarchical 
structure were lamellae with a thickness of ~ tens of nm and 
a width of ~ hundreds of nm. The energy-dispersive X-ray 
spectroscopy (EDS) analysis of the selected area in the SEM 
image of GO@TiP-Sponge proved the existence of Ti, C, P 
and O elements (Fig S2), suggesting the nanolamellae on 
the sponge surfaces were composed of titanium phosphate. 
Compared with the native titanium phosphate and GO@TiP, 
titanium phosphate particles were much more dispersed in 
the structure of GO@TiP-Sponge, which would be beneficial 
for the adsorption of the rare earth elements.

The Brunauer–Emmett–Teller (BET) surface areas for 
titanium phosphate, GO@TiP and GO@TiP-Sponge were 

determined to be 150.65 m2/g and 173.68 m2/g and 1.52 
m2/g, as shown in Table S1. Since the high surface area 
of one layer graphene (theoretical value: 2630 m2/g) (Ning 
et al. 2011), the specific surface area of GO@TiP increased 
than titanium phosphate. On the other hand, the relative 
higher value of the specific surface area of GO@TiP could 
be ascribed to the intercalation of titanium phosphate par-
ticles onto the graphene oxide sheets, which avoided the 
aggregation of both graphene oxide and titanium phosphate 
(Montes-Navajas et al. 2013). However, the surface area of 
GO@TiP-Sponge was much smaller, because the surface 
area of the naked polyurethane sponge was extremely low 
(< 1 m2/g) (Lin and Chang 2015). After loading graphene 
oxide and titanium phosphate on the sponge, the result-
ant GO@TiP-Sponge exhibited higher surface areas than 
the polyurethane sponge. The N2 adsorption–desorption 
isotherms of titanium phosphate, GO@TiP and GO@TiP-
Sponge at 77 K is shown in Fig S3. With a clear hysteresis 
loop, the type IV isotherm curves indicated that all three 
materials possess typical mesoporous structures.

Adsorption experiments

Adsorption isotherms and kinetics

The Langmuir model gave a higher correlation coefficient 
(R2 > 0.99) than the Freundlich model and thus was more 
suitable to describe the adsorption of Dy(III) by four kinds of 
adsorbents that titanium phosphate, graphene oxide, GO@
TiP, GO@TiP-Sponge, indicating that monolayer adsorp-
tion was the basic mechanism (Fig. 2a, b). By applying the 
Langmuir model, the theoretical maximum capacity (Qm) of 
GO@TiP-Sponge on Dy(III) was 576.17 mg/g (Table S2), 
which was higher than graphene oxide (203.75 mg/g), tita-
nium phosphate (201.51 mg/g) and GO@TiP (316.75 mg/g). 
Such excellent adsorption property could be related to the 
dispersed structure of titanium phosphate on the sponge 
which permitted more active sites for adsorption.

Adsorption kinetic data showed that those adsorbents 
could reach equilibrium in 20 min (Fig. 2c). The kinetic 
adsorption of Dy(III) on these sorbents followed the pseudo-
second-order model (Fig. 2d, e and Table S3), which implied 
that the adsorption was a chemical process that involves 
valency due to electron sharing. Besides, the t1/2 values of 
GO@TiP-Sponge on Dy(III) was about 2.5 min (Table S4), 
indicating the quick removal rate of Dy(III) from solutions.

Effect of pH and ionic strength on adsorption property 
of adsorbent

In the reality of industrial production, wastewater contain-
ing the rare earth elements is slightly acidic. As shown in 
Fig. 2f, when pH ranges from 2.8 to 3.9, the adsorption 

Fig. 2   Adsorption experiments data: Langmuir (a) and Freundlich 
(b) isotherms for Dy(III) adsorption by titanium phosphate, graphene 
oxide, GO@TiP and GO@TiP-Sponge; adsorption kinetics of tita-
nium phosphate, graphene oxide, GO@TiP and GO@TiP-Sponge 
toward Dy(III) (c); pseudo-first-order kinetic (d) and pseudo-second-
order kinetic (e) model fitting for Dy(III) adsorption; the influence of 
the pH value (f) and the ionic strength (g) on the adsorption capacity 
of the GO@TiP-Sponge treatment toward Dy(III); the cyclic regen-
eration experiments of GO@TiP-Sponge adsorbing Dy(III) (h). Ionic 
strength conditions: T = 298  K, CDy = 50  mg/L, pHsediment = 7.88, 
the dosage of adsorbent was 0.06 mg/mL. Note that adsorption data 
obeyed the Langmuir model, the theoretical maximum capacity was 
576.17 mg/g and the kinetic adsorption of Dy(III) on these sorbents 
followed the pseudo-second-order model. The adsorption capacity of 
GO@TiP-Sponge to Dy(III) stayed high over a wide range of pH and 
in high ionic strength. The adsorption capacity of GO@TiP-Sponge 
remained unchanged in the second cycle, and the adsorption capac-
ity was still up to 100 mg/g after 4 cycles. GO: graphic oxide; TiP: 
titanium phosphate; GO@TiP: titanium phosphate combined with 
graphene oxide; GO@TiP-Sponge: polyurethane sponge-supported 
titanium phosphate with graphene oxide

◂
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capacity of Dy(III) by the GO@TiP-Sponge quickly 
increased with rising pH value. The adsorption capacity 
for Dy(III) stayed high (288.13 mg/g) over a large range 
of pH from 3.9 to 5.7, which indicated the effectiveness of 
these composite adsorbents in the direct uptake of Dy(III) 
from acidic solutions. The sudden increase in the capacity 
for Dy(III) when pH change from 6 to 7 may result from 
the hydrolysis of Dy(III).

There are many other cations in the rare earth elements 
wastewater. To find out the effect of ionic strength, we 
introduced NaCl into the adsorption system as a back-
ground electrolyte. The adsorption capacity decreased 
gradually as ionic strength increased (Fig. 2g). However, 

even the capacity decreased by 50%, the capacity was 
still high (203.8  mg/g). This result further supported 
that this material was practical with its tolerance to high 
ionic strength. This sensitivity to the change in concen-
tration of the background electrolyte suggests that elec-
trostatic attraction is an important mechanism for Dy(III) 
adsorption.

Regeneration and reusability of the adsorbent

The desorption rate of GO@TiP-Sponge is shown in Fig. 2h. 
The adsorption capacity of GO@TiP-Sponge toward Dy(III) 
remained unchanged in the second cycle, but started to 

Fig. 3   Fourier transform infrared (FT-IR) spectroscopy spectra of 
titanium phosphate (a), GO@TiP (b) and GO@TiP-Sponge (c) before 
and after adsorption. Note that the shift of the P–OH band from 1000 
to 1020  cm−1 was assigned to the electrostatic interactions between 
the orthophosphate group and Dy(III), implying the interaction 
mechanism could be regarded as an electrostatic interaction. TiP: tita-
nium phosphate; TiP-Dy: titanium phosphate after adsorbing Dy(III); 

GO@TiP: titanium phosphate combined with graphene oxide; GO@
TiP-Dy: titanium phosphate combined with graphene oxide after 
adsorbing Dy(III); GO@TiP-Sponge: polyurethane sponge-supported 
titanium phosphate with graphene oxide; GO@TiP-Sponge-Dy: pol-
yurethane sponge-supported titanium phosphate with graphene oxide 
after adsorbing Dy(III)
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Fig. 4   a X-ray photoelectron spectroscopy (XPS) survey spectra 
of GO@TiP-Sponge and GO@TiP-Sponge-Dy. b Dy 3d spectra of 
GO@TiP-Sponge-Dy. c, d Ti 2p and e, f p 2p spectra of GO@TiP-
Sponge before and after the interaction with Dy(III). Note that there 
were two binding energies of 133.4 eV and 134.2 eV of the high-res-
olution P 2P region in the GO@TiP-Sponge after adsorbing Dy(III), 

which was attributed to HPO4
2− or PO4

3−. Therefore, the adsorption 
mechanism could be indicative of electrostatic interactions. GO@
TiP-Sponge: polyurethane sponge-supported titanium phosphate 
with graphene oxide; GO@TiP-Sponge-Dy: polyurethane sponge-
supported titanium phosphate with graphene oxide after adsorbing 
Dy(III)
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decrease in the later cycles. Figure S4 shows the SEM 
images of fresh and regenerated 4 cycles GO@TiP-Sponge. 
The surface of regenerated GO@TiP-Sponge became more 
smooth than fresh GO@TiP-Sponge, suggesting that a little 
of GO@TiP dissolved or detached from the sponge during 
the process of reusability, which leads to the decrease in the 
adsorption capacity. Besides, the incomplete desorption of 
Dy(III) may also lead to a decrease in capacity. Although the 
adsorption capacity decreased, the regenerated GO@TiP-
Sponge still maintained its structure. In general, the adsorp-
tion capacity for Dy(III) was still up to 100 mg/g after 4 
cycles making regeneration and reuse possible in practical 
water treatment.

Adsorption mechanism

Fourier transform infrared (FT-IR) spectroscopy analysis 
was performed to identify the evolution of the surface func-
tionalities of GO@TiP-Sponge before and after the adsorp-
tion of Dy(III). FT-IR showed little changes in the character-
istic peaks of adsorbents after Dy(III) adsorption (Fig. 3). As 
shown in the FT-IR spectra, the presence of external water 
within titanium phosphate and GO@TiP was confirmed by 
the sharp peaks at 3500 and 1650 cm−1 (Fig. 3a, b) (Kim 
et al. 1997; Varshney et al. 1998). And the peak of GO@
TiP-Sponge (Fig. 3c) at 1637 cm−1 attributed to the absorbed 
water or carbonyl groups. OH symmetrical stretching band 
was observed in the peak at 3357 cm−1 (Hummers Jr and 
Offeman 1958; Kim et al. 1997; Varshney et al. 1998). The 
weak band at 605–615 cm−1 meant the deformation vibra-
tion for the Ti–O bond (Bortun et al. 1997). The band from 
1000 to 1020 cm−1 implied the asymmetric stretching vibra-
tion of Ti–P–OH (Kawahara et al. 2000). After uptake of 
Dy(III), the shift of the P–OH band was assigned to the 
electrostatic interactions between the orthophosphate group 
and Dy(III). Therefore, the interaction mechanism could be 
regarded as an electrostatic interaction.

X-ray photoelectron spectroscopy (XPS) investi-
gated the valance states of the surface atoms for GO@
TiP-Sponge after the Dy(III) adsorption. The XPS sur-
vey spectrum of GO@TiP-Sponge before and after the 
adsorption is shown in Fig. 4a. Compared with the GO@
TiP-Sponge, the intense peaks of Dy 3d have been intro-
duced by the adsorption process (Fig. 4a). High-resolution 
Dy 3d XPS peaks were commonly observed at 1298.9 eV 
(Fig. 4b), which revealed that Dy existed in a tervalent 
state (Kang et al. 2015; Padalia et al. 1977) and there was 
no redox reaction in the adsorption process. The curve-
fitted Ti 2p spectra of the GO@TiP-Sponge and GO@
TiP-Sponge after adsorbing Dy(III) ( recorded as GO@

TiP-Sponge-Dy) are given in Fig. 4c, e. It can be seen 
that the Ti 2p distinct peaks of GO@TiP-Sponge-Dy were 
found at similar positions with the primary GO@TiP-
Sponge corresponding to the binding energy of 459.25 eV 
and 465.48 eV. It was attributed to Ti 2p3/2 and Ti 2p1/2, 
respectively, which implied that Ti existed in a tetrava-
lent state (Moulder et al. 1992). For GO@TiP-Sponge, the 
experimentally obtained XPS P 2p peak binding energy of 
134.0 eV (Fig. 4d) agreed with values obtained for P(V) 
in oxide (Barbaux et al. 1992). It was in good agreement 
with the elemental atomic ratio shown in Fig S2. Besides, 
after peak deconvolution of the high-resolution P 2P 
region (Fig. 4f), there were two contributions (133.4 and 
134.2 eV) in the GO@TiP-Sponge after adsorbing Dy(III), 
which exhibited differences with that in the primary GO@
TiP-Sponge. The binding energy of 133.4 eV and 134.2 eV 
was attributed to HPO4

2− or PO4
3− (Barbaux et al. 1992; 

Lo et al. 1994), which was assigned to combined with 
Dy(III); thus, the adsorption mechanism could be indica-
tive of electrostatic interactions. The conclusion is similar 
to the FT-IR analysis.

Conclusion

In summary, an efficient adsorption material has been suc-
cessfully synthesized by the co-precipitation method and 
was characterized by XRD, SEM, BET, FT-IR and XPS. 
GO@TiP-Sponge combined the advantage of graphene 
oxide and titanium phosphate, which led to high absorp-
tion ability and brilliant recycling potential. The meas-
ured isotherms showed that the Langmuir model simulated 
the process well with Qm of 576.17 mg/g for Dy(III). The 
half-equilibrium time of this material was 2.5 min, and 
this material was practical with its tolerance to high ionic 
strength. Meanwhile, it also shows considerable adsorption 
ability in a wide range of pH, leading to great application 
values in the industry. FT-IR and XPS results suggested 
that the adsorption mechanism was electrostatic interac-
tions between PO4

3− and Dy(III). This work provides an 
effective strategy by utilizing the promising adsorption 
material of GO@TiP-Sponge for the rare earth elements 
wastewater treatment.
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