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Abstract
The overuse of antibiotics has led to an increase in bacterial resistance and, in turn, to a decreasing efficiency of the rare 
available antibiotics. Alternatively, gold nanoparticles are promising antibacterials due to their high specific surface area, 
easy modification by functional groups and broad-spectrum antibacterial activity. Their antibacterial properties are closely 
related to particle size, dispersibility and surface modification, which can be tuned by adjusting reaction conditions. Here, 
we review the synthesis and antibacterial performance of gold nanoparticles in the raw form or modified with metal, organic 
compounds and carbon. We present the effect of reaction conditions on particle dispersibility and size. We compare the 
various synthesis methods. Antibacterial activities and their mechanisms are discussed.
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Abbreviations
AuNPs  Nanoscale gold particles
g-C3N4  Graphitic carbon nitride
MDR  Multi-drug resistant
MIC  Minimum inhibitory concentration
MRSA  Methicillin-resistant S. aureus
ROS  Reactive oxygen species

Introduction

Abuse of antibiotics has become a growing problem in 
recent years. When antibiotics enter the environment, they 
damage the ecosystem’s bacteria, aquatic organisms, soil 
organisms and plants. Of particular concern, bacteria eventu-
ally develop resistance or even multi-drug-resistant (MDR) 
“super bacteria.” They can produce inactivating enzymes 

and block drugs by altering cytomembrane permeability (Hu 
et al. 2019). Today, more than 70% of bacteria have become 
resistant to one or more antibiotics (Allahverdiyev et al. 
2011). That is forcing doctors to increase antibiotic doses, 
which can cause adverse reactions. And for some severe bac-
terial infections, there may be no medicine available.

It is urgent to find alternative materials instead of antibi-
otics to play an antibacterial role. One lead in this direction 
is that biomolecules immobilized on the surface of nanoscale 
particles have demonstrated significant antibacterial activity 
(Brown et al. 2012). The high specific surface area allows 
nanoscale particles to bind relatively high concentrations 
of functional ligands or act as carriers for other active sub-
stances, enhancing their interaction with target bacteria (Li 
et al. 2014a).

The nanoscale materials that have demonstrated anti-
bacterial activity include Ag, Cu and Zn ions and zinc and 
copper oxides (Zhao et al. 2018). Nanoscale gold particles 
(AuNPs) have shown uniquely advantageous antimicrobial 
activity. As the least active metal, gold has very stable chem-
ical properties, is non-toxic and has good biocompatibility 
(Hammer and Norskov 1995). And gold is multivalent; it can 
bind many types of ligands (Gupta et al. 2016), and AuNPs’ 
very large specific surface area provides abundant sites for 
binding with target bacteria (Dreaden et al. 2012; Nirmala 
Grace and Pandian 2007). The antibacterial spectrum is 
broad. AuNPs have shown antibacterial ability against both 
Gram-positive and Gram-negative bacteria (Slavin et al. 
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2017). Compared with normal antibiotics, AuNPs do not 
easily produce drug resistance (Zhao et al. 2018) because 
they target a variety of molecules (DNA and protein) in bac-
teria, making it difficult for bacteria to establish a system 
that can defend against all damage.

The preparation and antibacterial properties of AuNPs 
have been widely studied, but to date no comprehensive 
summary has been published. This article reviews the pro-
gress in recent years in the preparation and antibacterial 
action of nanoscale gold and its composites, as indicated in 
Fig. 1. The antibacterial effects of gold nanocomposites are 
reviewed along with possible mechanisms. Those antibac-
terial mechanisms mainly involve damaging the cytoderm 
and biofilms, producing reactive oxygen species and releas-
ing metal ions which induce damage in bacterial cells. The 
review’s aim is to provide a better basis for preparing AuNPs 
and to disseminate some up-to-date ideas for obtaining more 
effective antibacterial agents.

Preparation methods

Nanoscale gold particles

Gold has oxidation states between − 1 and + 5, but mainly 
+ 1 and + 3. Adding a reducing agent to reduce  Au3+ or  Au+ 
to  Au0 is the usual first step in the synthesis of nanoscale 
gold particles (AuNPs). In addition, the addition of poly-
mers, surfactants or sulfates can enhance the stable disper-
sion of the particles formed. A large number of incompletely 
coordinated atoms on the surface of the AuNPs can then 
bind with numerous ligands to form functionalized gold 

nanoparticles. Increasing the incidence of defects by grind-
ing allows the nanoparticles to absorb and bind more effec-
tively. And today the use of microwaves, electromagnetism 
or radiation to assist the functionalization of nanoscale gold 
particles is becoming more widespread. The size, morphol-
ogy and dispersibility of the gold nanoparticles required 
vary according to the application. Reaction temperature, 
reaction time, and the type and amounts of additives all 
affect the final state of gold nanoparticle synthesis.

An efficient preparation method is the key to obtaining 
high-quality AuNPs. Chloroauric acid is the raw material 
most commonly used, but it is very corrosive, requiring 
the use of plastic or glass equipment. Glassware should 
be soaked in aqua regia and washed with ultrapure water 
because foreign impurities may replace the stabilizer and 
cause aggregation of the nanoparticles. In addition, AuNPs 
should be stored in a brown bottle protected from light.

The seed growth method

In the seed growth method, chloroauric acid is reduced 
using sodium borohydride with a protective agent. AuNPs 
about 1–2 nm in diameter are used as seeds. Growth liquid 
is added to allow the seed crystals to continue to grow, and 
AuNPs 10–20 nm in diameter are obtained. The other com-
ponents of the growth solution are silver nitrate, ascorbic 
acid and cetyltrimethylammonium bromide. The detailed 
steps are shown in Fig. 2a. The cetyltrimethylammonium 
bromide is a stabilizer and a regulator which adjusts the 
growth rate of the gold crystals along different crystal 
planes.  HAuCI4 solution and sodium borohydride are suc-
cessively added to the brown-yellow seed solution stabilized 

Fig. 1  A brief diagram of the 
preparation of functionalized 
gold nanoparticles along with 
their antibacterial properties
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by cetyltrimethylammonium bromide with vigorous stirring 
over about 2 h. Sodium borohydride is a strong reducing 
agent which reduces  Au3+ directly to  Au0 to obtain the seed 
solution. The cetyltrimethylammonium bromide is stirred 
into a certain volume of  AgNO3 solution at room tempera-
ture, and then,  HAuCI4 solution is added. At this time, the 
solution appears bright yellow. Finally, a certain volume of 
ascorbic acid solution, a weak reducing agent, is added to 
prepare a colorless growth solution.  Au3+ is reduced to  Au+. 
Finally, the seed solution is poured into the growth solution 
and mixed well and left to grow steadily for about 16 h, 
during which time the solution turns soil red. At this point, 
 Au0 acts as a catalyst to reduce  Au+ to  Au0 in the presence 
of ascorbic acid, so that the auric nuclei continue to grow 
slowly (Li et al. 2017).

Li and his colleagues describe preparing gold nanorods 
using the seed growth method (Li et  al. 2017). Studies 
have shown that when the concentration of ascorbic acid is 
0.60 mM, the concentration of silver nitrate is 0.08 mM, a 

16 h reaction time generates the best gold nanorods with a 
large aspect ratio. A group led by Gonzalez-Rubio controlled 
the size and morphology of gold nanorods by optimizing the 
seed growth stage and improved the reproducibility of the 
preparation (Gonzalez-Rubio et al. 2019). One advantage of 
the seed growth method is that AuNPs of various sizes and 
morphologies can be obtained through appropriate regula-
tion of the proportions of seed crystals and silver nitrate, 
the ascorbic acid concentration, the reaction time and tem-
perature. The seed growth method is particularly suitable 
for systems that have strict particle size and morphology 
requirements.

Biological extract synthesis

Biological extract synthesis is a relatively green methodol-
ogy which has emerged in response to the toxicity of some of 
the compounds added in other syntheses. It uses biological 
extracts as stabilizers, reducing agents and capping agents 
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to synthesize highly dispersible and stable bioactive AuNPs. 
It has the advantages of safety, mild reaction conditions, 
simple operation and low cost and can be operated on a large 
scale without additional reducing agents and stabilizers. The 
detailed preparation steps of a biological extract synthesis 
are shown in Fig. 2b.

The biological extract is obtained through a series of 
treatments such as washing, water bath heating and paper 
filtration. Reducing substances such as vitamins, sugars and 
hydroxyl groups are extracted in this way from grapefruit 
skins and used as reducing agents and stabilizers (Yuan et al. 
2017). The biological extract is added dropwise to a solu-
tion of  HAuCI4 and mixed well. A change in color from 
light brown to dark brown indicates the formation of AuNPs. 
Yuan’s group successfully synthesized gold with particle 
size of 10 nm in this way. Their AuNPs showed bacterio-
static effectiveness with both E. coli and S. aureus, and the 
bacteriostatic effect increased with the AuNP concentration. 
AuNPs have also been prepared using extracts of Sueda fru-
ciotosa (Khan et al. 2017), longan juice (Khan et al. 2016) 
and mushroom (Lee et al. 2015).

Chemical reduction

The principle of the chemical reduction method is that a 
reducing agent gives electrons to  Au3+ so that it is reduced 
to  Au0. Common reducing agents are sodium borohydride, 
ascorbic acid, sodium citrate,  H2O2 and others. Some 
reducing agents can also act as stabilizers. Stabilizers 
and surfactants such as sulfates, phosphorus ligands and 
cetyltrimethylammonium bromide can effectively forestall 
agglomeration of the nanoparticles. Surfactants can also 
control their growth.

The most typical chemical reduction methods are sodium 
citrate reduction and the Brust–Schiffrin method. Sodium 
citrate reduction is the most convenient and the most com-
monly used. It can generate spherical gold particles between 
10 and 50 nm in diameter. However, it is difficult to pre-
pare smaller particles. As shown in Fig. 2c, sodium citrate 
is added dropwise to a boiling aqueous solution of chloro-
auric acid. After about 25 s, the solution turns pale blue, 
indicating that it has been nucleated. It becomes bright red 
after 70 s, and monodisperse spherical particles are formed. 
Frens’ experiments showing that the reduction of chloroauric 
acid is basically complete after boiling for 5 min. Longer 
heating or additional citrate produces no substantial change 
to the suspension (Frens 1973).

The advantage of the sodium citrate reduction method 
is that highly dispersed AuNPs of different particle sizes 
can be obtained simply by changing the amount of sodium 
citrate added. The disadvantage is that the nanogold 
interface obtained by this method is not clean due to the 

decomposition of sodium citrate during the synthesis (Pan-
ahi et al. 2017).

The Brust–Schiffrin method (Brust et al. 1955) is also 
known as the two-phase method. Chloroauric acid solu-
tion and p-mercaptophenol are dissolved in methanol. The 
addition of acetic acid prevents protonation of the p-mer-
captophenol. Tetraoctylammonium bromide is used as a 
phase transfer agent to transfer  HAuCl4 from the aqueous 
to the organic phase. Sodium borohydride, a strong reduc-
ing agent, is added in the presence of dodecyl mercaptan, 
and rapid browning of the solution marks the formation of 
gold clusters. The particle size varies with the ratio of gold 
to dodecyl mercaptan. Dodecyl mercaptan is a surfactant. 
It is amphiphilic and so can be adsorbed on the particles’ 
surface. Nanoparticles coated with surfactant can remain 
stable in a solid or liquid state for a long time. This method 
is diagrammed in Fig. 2d.

AuNPs obtained by the Brust–Schiffrin method are small 
and very stable. The isolated gold nanoparticles can be re-
dispersed in organic solvents. The disadvantage is that the 
preparation method is complicated.

Metal‑modified gold nanoparticles

In recent years, nanoscale particles of metals such as gold, 
silver, copper, palladium and platinum have been widely 
used in medical treatment (Annamalai et al. 2013; Ayaz 
Ahmed et al. 2016; Boomi et al. 2013; Li et al. 2014b; 
Valodkar et al. 2011; Wang et al. 2016a). However, along 
with their advantages, metal nanoparticles have shortcom-
ings which limit their practical application. For example, 
silver nanoparticles have diverse antibacterial mechanisms, 
but their cytotoxicity limits their application (Wang et al. 
2016b). Both platinum and gold nanoparticles are bacterio-
static (Ayaz Ahmed et al. 2016; Li et al. 2014b), but they 
are costly and material scarcity is a major problem. Com-
binations of metal nanoparticles can sometimes alleviate 
these shortcomings. For example, due to the action of strong 
electron ligands, combining silver and gold can increase the 
effective concentration range of silver ions (Wang et al. 
2016b), enhancing their antibacterial activity. Adding a third 
metal can sometimes offer further improvement.

The seed growth method

Nanoparticles grown from seed crystals tend to be small and 
controllable with good dispersibility. The particle size and 
its dispersion can be controlled by controlling reaction con-
ditions such as the concentration, pH and the temperature of 
the solution. Emam used Arabic gum as a biosynthetic agent 
to produce Ag–Au bimetallic nanoscale composite particles 
using seed-mediated growth techniques, as Fig. 3a shows 
(Emam 2019). Acacia gum can be used as both a reducing 
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agent for metal ions in producing nanoscale structures and 
as a crystal growth modifier for nanocomposites. Silver 
nitrate, gold chloride and sodium hydroxide are added to 
the prepared Arabic gum with stirring at room temperature 
or 70 °C. The order of addition of the alkali and metal salts, 
the concentration of the glue and the reaction temperature 
all affect the particle size generated. Increasing the reac-
tion temperature reduces the average size of the bimetallic 
particles from 6.5 to 3.1 nm. Adding alkali after the metal 
salt increases the size of Ag–Au composite particles from 
3.1 to 12.7 nm.

The precipitation–deposition method

A group led by Mishra reports (Mishra et al. 2016) synthe-
sizing Au/Fe2O3 composite particles 19–24 nm in diameter 
by co-precipitation using Fe(NO3)3·9H2O,  Na2CO3 and 
 HAuCl4 as raw materials. They mixed aqueous solutions 
of Fe(NO3)3·9H2O and  HAuCl4 with stirring at 80 °C. An 
aqueous  Na2CO3 solution was added dropwise until the 
precipitation was complete. After the formation of the pre-
cipitate, the solution was cooled to room temperature and 

aged overnight. After washing, drying and calcining the 
precipitate at 400 °C for 4 h, the preparation was complete.

Han’s laboratory synthesized mesoporous porous 
 TiO2 by a solvothermal method (Ye et al. 2011), and then 
deposited Au on the  TiO2 by the precipitation–deposi-
tion method (Elmoula et al. 2009; Zanella et al. 2002). 
The mesogenic porous  TiO2 anatase was prepared from 
tetrabutyl titanate. 0.2 mL of tetrabutyl titanate was added 
dropwise to 10 mL of acetic acid under continuous stir-
ring, which was placed in an autoclave and heated at 
200 °C for 24 h. Chloroauric acid was heated in an oil 
bath to 80 °C and 1 g of the mesoporous  TiO2 was added 
with continuous stirring. After stirring for 5 min, the pH 
of the suspension was adjusted to 8 with 1 M NaOH solu-
tion. After 4 h of vigorous stirring, the suspension was 
centrifuged, and the precipitate was washed with water and 
dried. It was then calcined at 300 °C for 4 h and ground 
for later use. That synthesis is diagrammed in Fig. 3b. 
Precipitation–deposition is the ideal method for loading 
gold. The target product can be adjusted by adjusting the 
concentration of chloroauric acid, the pH and the ratio of 
gold to the substrate (Moreau et al. 2005).
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Microwave‑assisted continuous chemical reduction

Adding a third metal can add new dimensions to the prop-
erties of bimetallic materials and offer additional scope 
for their optimization. Yadav and his colleagues success-
fully synthesized Au/Pt/Ag trimetallic nanoparticles by the 
microwave-assisted continuous chemical reduction shown 
in Fig. 3c (Yadav et al. 2018). The gold solution was pre-
pared by sodium citrate reduction.  H2PtCl6·xH2O solution 
and sodium citrate solution were added at room tempera-
ture; then, the mixture was heated in a microwave oven to 
yield a Au/Pt bimetallic nanocomposite. An aqueous solu-
tion of  AgNO3 was then added and the mixture was micro-
waved in a loop mode, yielding a black Au/Pt/Ag tri-metal 
nanocomposite.

Gold nanoparticles modified with organic 
compounds

Macromolecules can stabilize nanoscale gold particles 
(AuNPs) and also give them additional functionality. The 
physicochemical method for obtaining polymer-modified 
gold nanoparticles has been extensively studied (Dzhardima-
lieva et al. 2011; Feuz et al. 2012; Raula et al. 2003). There 
are three generic methods for preparing organic-coated gold 
nanoparticles.

The interface polymerization method

The interfacial polymerization method is a two-phase sys-
tem in which an aqueous solution of toluene and chloroauric 
acid is the oil phase and there is an aqueous phase. The size 
and morphology of the composite material can be adjusted 
by controlling the amount of the reactants and the reaction 
time. The specific preparation process is shown in Fig. 4a. 
The toluene organic phase is added to the aqueous chloro-
auric acid solution to form a two-phase interface. Aniline 
solution is added, and the reaction immediately occurs at 
the interface, producing a purple-red color which darkens 
subsequently. Eventually, a black substance appears at the 
bottom, an Au–polyaniline nanocomposite.

Experiments conducted by Jin’s group (Jin et al. 2016) 
show that when using interfacial polymerization to synthe-
size such materials, controlling the amount of chloroauric 
acid can change the morphology of the Au–polyaniline 
composite. With 5 mL of 10 mM chloroauric acid nano-
spheres formed. With 1 mL of 10 mM chloroauric acid 
lollipop-shaped particles formed. AuNPs modified with 
organic monomers can be used for monitoring plasma-
driven reactions using surface-enhanced Raman imaging. 
The interface polymerization method does not require 
adding any reducing agent. Organic monomers acting as 
ligands can also serve as reducing agents to directly reduce 

Fig. 4  Typical synthesis for 
gold nanoparticles (AuNPs) 
modified with an organic com-
pound. a Interface polymeriza-
tion; b one-step polymerization; 
c two-step polymerization
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metal ions to metal nanoparticles because the reduction 
potential of gold-containing compounds is higher than that 
of organic monomers.

One‑step polymerization

The one-step method is another common method for pre-
paring AuNPs modified with organics. Unlike the inter-
facial polymerization method, in the one-step method the 
organic compound and the chloroauric acid solution are 
mixed directly, and the reaction conditions are adjusted to 
obtain the target product. Li’s group ultrasonically mixed 
an ethanol solution of aniline with  HAuCl4 solution to 
obtain a wine-red suspension (Li et al. 2016a). Oxidative 
polymerization of the aniline formed polyaniline, while 
the chloroauric acid was reduced to metallic gold, as indi-
cated in Fig. 4b. After centrifugation and purification, an 
Au–polyaniline composite was obtained.

Zhao’s group used indole derivatives as reducing agents 
and ligands to synthesize indole derivative-modified gold 
nanoparticles in one step (Zhao et al. 2018). Tween was 
added to the chloroauric acid solution, stirred to uniform-
ity, and the reaction was continued by adding a indole 
solution to obtain indole derivative-modified gold nano-
particles. The synthesis of AuNPs modified with other 
indole derivatives such as tryptophan, 5-aminoindole was 
consistent with the basic indole derivative-modified gold 
nanoparticles method. The one-step method involves no 
complicated preparation steps, avoids material loss and 
damage and maximizes the original properties of the mate-
rial. However, the Au–polyaniline composite prepared by 
this method has a low molecular weight insufficient for 
some purposes and low conductivity.

Two‑step polymerization

There is also a two-step process. The first step is to pre-
pare a polyaniline solution with reducing properties. The 
second is to reduce the chloroauric acid to obtain Au–poly-
aniline nanocomposite. A group led by Ma first polym-
erized aniline; then,  HAuCl4 was reduced on polyaniline 
nanotubes to generate modified AuNPs on the nanotubes 
(Ma et al. 2016). This is sketched in Fig. 4c. The two-step 
method can also be used to prepare AuNPs in the first step. 
The second step is then to mix AuNPs and aniline to obtain 
Au–polyaniline nanocomposites by in situ polymerization. 
Compared with the one-step method, the two-step method 
can better regulate the product’s morphology and particle 
size. However, the force binding the gold nanoparticles 
and the polyaniline is weak, and the gold nanoparticles 
easily fall off.

Carbon‑modified gold nanoparticles

Little has been published about the idea of modifying gold 
nanoscale particles with inorganic carbon. There is, how-
ever, a sol–gel method and a one-step in situ growth method. 
Combining inorganic carbon with nanoscale gold particles 
gives it more applications by improving the dispersibility, 
fluorescence and biocompatibility of gold nanoparticles.

The sol–gel method

A group led by Wang has successfully synthesized the com-
posite Au@CdS/g-C3N4 (Wang et al. 2018). Au colloid was 
first prepared by the citrate reduction method. A suspen-
sion of cysteine-capped Au nanoparticles was prepared 
by mixing cystine into a suspension of the nanoparticles. 
Cysteine and Cd(NO3)2 were dissolved in deionized water 
to obtain a cysteine/Cd2+ solution. A certain amount of Au 
colloid was then added to the cysteine/Cd2+ solution with 
vigorous stirring. The protonated graphitic carbon nitride 
(g-C3N4) expanded body was added, stirred, and the mix-
ture was heated to 130 °C for 6 h for hydrothermal reaction. 
After washing and drying, Au@CdS/g-C3N4 composite was 
obtained.

The structure of the composite is regulated by controlling 
the mass ratio of the precursors. This method is suitable for 
the synthesis of various M@XS/N multi-component com-
plexes. The synthesis steps are shown in Fig. 5. In the figure, 
M stands for any noble metal nanoparticle, XS stands for 
sulfide, and N can be a compound with a lamellar structure 
(such as g-C3N4 or graphene). Note, however, that the pure 
M@XS product is obtained in only low yield, so the method 
may not be suitable for large-scale use.

A one‑step in situ growth method

Combination with inorganic carbon affects the cata-
lytic activity of nanoscale gold particles (AuNPs). The 
g-C3N4 is a polymeric semiconductor with good thermal 
and chemical stability. It has a wide absorption spectrum 
and can effectively activate oxygen molecules to produce 
superoxide radicals. Therefore, g-C3N4 has been widely 
used as visible light-activated catalyst. Fu and his col-
leagues report uniformly loading 2.8 nm AuNPs on the 
surface of g-C3N4 nanosheets using a one-step in  situ 
growth method (Fu et al. 2017). The g-C3N4 nanosheet is 
first prepared using an ultrasonic stripping technique. The 
chloroauric acid solution is then added to a dispersion of 
g-C3N4, and sodium borohydride solution is added with 
stirring to continue the reaction. After centrifugal dry-
ing, the Au/g-C3N4 product is obtained. The method is 
simple and can yield small AuNPs. Studies have shown 
that the photocatalytic activity of Au/g-C3N4 driven by 
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visible light is significantly improved compared with that 
of ordinary gold. This may be attributed to the interaction 
between gold and g-C3N4 causing charge transfer.

Green synthesis using biological extracts

Carbon quantum dots are highly dispersed carbon nano-
particles. They have useful optical properties and good 
biocompatibility. Very small gold clusters (< 2 nm) have 
enhanced fluorescence attributed to the oscillation of free 
electrons within them. Venkateswarlu’s group reports that 
the synthesis of Au/Carbon quantum dots nanocomposites 
is promoted by using onion leaf extract as a reducing agent 
(Venkateswarlu et al. 2019). Onions contain flavonoids 
and phenolic compounds that act as reducing agents, sta-
bilizers and carbon precursors. The specific preparation 
steps are as follows. The onion leaves are water-washed 
and filtered to obtain an extract. The extract is poured into 
a freshly prepared mixture of chloroauric acid and glu-
tathione and heated in a microwave oven. Freeze-drying 
then yields the target product. The addition of carbon pre-
cursors stabilizes the product for at least 300 days with 
excellent detection limits for  Hg2+.

Antibacterial properties of functionalized 
gold nanoparticles and the mechanisms 
involved

The different preparation methods lead to different nano-
particle sizes and size distributions. That in turn affects 
their antibacterial properties. Differences in surface modi-
fication can affect the antibacterial properties of nanoparti-
cles in two ways. One is to change the gold nanoparticles’ 
morphology, structure and dispersion. The second is to 
increase their antibacterial effectiveness. For example, 
the molecules with special optical, electrochemical or 
biological activity can be connected to the surface of gold 
nanoparticles by some synthetic methods (Liu and Lam-
merhofer 2019).

Size, dispersibility and antibacterial activity

Gold’s stability and low toxicity and the high specific sur-
face area and easy functionalization of nanoparticles have 
meant that nanoscale gold particles (AuNPs) have been 
widely studied and applied as an effective antibacterial 

Fig. 5  Preparation of M@XS/N 
nanocomposite by the sol–gel 
method (Cys, cysteine)
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agent (Connor et al. 2005; Dizaj et al. 2014; Gupta et al. 
2016). The antibacterial properties of AuNPs are shown 
in Table 1. The size and dispersibility of nanoparticles 
are important for their antibacterial effectiveness. Gen-
erally speaking, smaller AuNPs 2–15 nm in diameter is 
more used in tissue immunology, biochemistry and high-
powered microscopy. In environmental testing, DNA test-
ing and drug delivery, medium-sized AuNPs with a diam-
eter of 20–60 nm are mostly used. Larger AuNPs with 
a diameter of 80–250 nm are used in medical, electrical 
and X-ray optics (Shah et al. 2015). With the morphology 
of gold nanoparticles changes from dispersed small parti-
cles to large aggregates, the color of a suspension of them 
changes from red to blue.

Silver nanoparticles follow the rule that the smaller the 
size, the better the antibacterial effect, and gold nanoparti-
cles also follow this pattern. Vanaraj’s group used a metha-
nol extract of C. ternatea leaves to prepare 100 nm AuNPs 
(Vanaraj et al. 2017). In an anti-biofilm activity experiment 

against Pseudomonas aeruginosa, the rate of biofilm for-
mation was inhibited 94.4%, but only after the concentra-
tion of AuNPs reached 100 μg/mL. Lanh and his colleagues 
used a seeding method to produce gold nanorods 10 nm in 
diameter (Lanh et al. 2015), and studies have shown that the 
minimum inhibitory concentrations of gold nanorods against 
E. coli, S. Typhimuriumm, S. aureus and L. monocytogenes 
are 0.05 μg/mL, 0.2 μg/mL, 0.008 μg/mL and 0.0002 μg/
mL, respectively.

Emam prepared Au–Ag bimetallic nanocomposites 
with different particle sizes. Studies have shown that 
smaller bimetallic nanocomposites exhibit better antibac-
terial activity. Bimetallic particles 3.1 nm in diameter 
were observed to eliminate 83.2–87% of bacteria after 
6 h. Under the same conditions, however, the bacterio-
static rate of bimetallic nanocomposites with an average 
particle size of 22.1 nm was only 60.9% (Emam 2019). 
In addition, small gold nanoclusters 1–2 nm in equiva-
lent diameter can be formed by controlling the reaction 

Table 1  Antibacterial properties of gold nanoparticles

AuNPs nanoscale gold particles, MIC minimum inhibitory concentration, MRSA methicillin-resistant S. aureus

Method Composition Size (nm) Additive concentration Bacteria types Assessment 
methods

Antibacterial 
effect

References

Green synthesis 
using plant 
extracts

AuNPs 16 – Conventional 
bacteria

Zone of inhibi-
tion

S. epidermidis: 
30 mm

E. coli: 26 mm

Boomi et al. 
(2020)

Bioreduction 
approach

AuNPs 22.8 – Conventional 
bacteria

– S. aureus, S. 
epidermidis, E. 
coli,

P. aerμginosa: 
strong inhibitory 
activity against 
all bacteria

Vanaraj et al. 
(2017)

Green synthesis 
using plant 
extracts

AuNPs – – Conventional 
bacteria

Zone of inhibi-
tion

E. coli: 14 mm
S. aureus: 16 mm
B. subtilis: 12 mm

Lee et al. (2015)

Seeded growth 
method

Au nanorods 10 2 × 10−4 − 50 μg mL−1 Conventional 
bacteria

MIC S. aureus: 
0.008 μg mL−1

L. monocytogenes: 
0.0002 μg mL−1

E. coli: 
0.05 μg mL−1

S. typhimurium: 
0.2 μg mL−1

Lanh et al. (2015)

Green synthesis 
using plant 
extracts

AuNPs 3.87–77.13 – Conventional 
bacteria

Zone of inhibi-
tion

E. coli: 17–16 mm
K. pneumoniae: 

17–16 mm
MRSA: 17–16 mm
S. aureus: 13 mm
P. aerμginosa: 

13 mm
Powder AuNPs 

(G. elongate)
E. coli: 13.5 mm
K. pneumoniae: 

13 mm

Abdel-Raouf 
et al. (2013)
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conditions. Bacteria can take in such small clusters with 
nutrients and they then interfere with the bacteria’s nor-
mal metabolism. Active oxygen species accumulate in 
the bacteria and the stability of their cytomembranes is 
reduced. Cell death is the likely result.

The effect of dispersibility on the antibacterial prop-
erties of AuNPs cannot be ignored. The antibacterial 
advantages of small nanoparticles are limited by their 
dispersibility. Generally, the proportion of surface atoms 
increases rapidly when the size of nanoparticles is below 
10 nm. The atoms concentrated on the particle’s surface 
are highly active and tend to stabilize by binding with 
other atoms. Any aggregation of nanoparticles reduces 
their contact area with bacteria, which weakens their anti-
bacterial properties. Other studies have shown that small 
gold nanoparticles can enter cells by binding to the pore 
proteins and changing the pathway of porin (Wigginton 
et al. 2010). Reducing the particle size and increasing 
the dispersibility therefore help to improve nanoparticles’ 
antibacterial properties.

Various surfactants, stabilizers and reducing agents are 
usually used in the preparation of AuNPs. The resulting 
particle size is related to the type and amount of reducing 
agent. Common reducing agents include sodium citrate, 
sodium borohydride, ascorbic acid, hydroxylamine hydro-
chloride, amino acids,  H2O2 and others (Liu and Lammer-
hofer 2019). White phosphorus or ascorbic acid is usually 
used to prepare AuNPs 5–12 nm in diameter. It is difficult 
for ascorbic acid to reduce trivalent gold particles to zero, 
but it can reduce the valence to one. Therefore, ascorbic 
acid is mainly used in the growth solutions of the seeded 
growth method. For the preparation of AuNPs with parti-
cle size larger than 12 nm, sodium citrate is used. Sodium 
citrate has weak reducing properties, so larger AuNPs 
can be prepared, and it acts as a stabilizer at the same 
time. Sodium borohydride is a strong reducing agent, 
which dissociates hydrogen ion during the reaction pro-
cess. Sodium borohydride will show obvious nucleation 
during the reduction process. It cannot be used together 
with a strong stabilizer, or no large nanoparticles will be 
obtained. The size of AuNPs is inversely proportional to 
the amount of reductant used (Panahi et al. 2017).

In order to maintain stable nanoparticle dispersion, 
physical and chemical dispersion methods are employed. 
Chemical dispersion requires selection of an appropriate 
dispersant, normally a surfactants or polymer, to control 
particle interactions. Surfactants are mainly used as sta-
bilizers, but they can also control the size and morphol-
ogy of nanoparticles. Physical dispersion mainly depends 
on mechanical and ultrasonic dispersion. In addition, the 
electrostatic repulsion effect of the charged ligand can 
also achieve the purpose of dispersion (Shah et al. 2015).

Surface functionalization and antibacterial activity

Single nanomaterials cannot meet the growing functional 
needs of practical applications. Compounding multiple 
materials can realize better regulation of the material’s struc-
ture and function. Nanoscale gold itself is expensive and rel-
atively scarce. Combining it with metals, organic compounds 
or inorganic carbon can both reduce the cost and increase 
its functionality. In recent years, bimetallic and trimetallic 
nanoparticles have been widely used for their unique prop-
erties (Karthikeyan and Loganathan 2012; Li et al. 2016b; 
Luo et al. 2017; Pandey and Pandey 2016; Rao and Paria 
2015; Venkatesan and Santhanalakshmi 2010; Wang and 
Yamauchi 2011; Wang et al. 2016b; Yang et al. 2017). The 
antibacterial properties of metal-modified nanoscale gold 
particles (AuNPs) are shown in Table 2. Some organic com-
pounds also exhibit good antibacterial activity. And using 
inorganic carbon as a supporting material in synthesizing 
AuNPs can effectively prevent the particles’ agglomeration. 
The antibacterial properties of AuNPs modified with organic 
compounds and inorganic carbon are shown in Table 3.

Metal‑modified gold nanoparticles

The antibacterial properties of AuNPs can be improved by 
combining them with other metals, metal oxides or metal 
hydroxides. Au and Ag at low concentrations are less toxic 
to normal cells, but more lethal to bacteria. Therefore, silver 
and gold composites have been widely studied as antimi-
crobial agents. The diameter of the inhibition zone of the 
10 nm Au–Ag nanocomposite prepared by Bankura was 
24 nm against B. subtilis, 21 nm against B. cereus, 17 nm 
against E. coli and 20 nm against P. aeruginosa. And the 
antibacterial action was superior to that of gold nanoparti-
cles alone (Bankura et al. 2014). Another study showed that 
Au–Pt nanoaggregates have enhanced antibacterial potential 
compared to Au and Pt single metal nanoparticles (Britto 
Hurtado et al. 2020).

Ding’s experiments showed that Au@AgNPs had strong 
antibacterial activity against S. aureus, with a minimum 
inhibitory concentration (MIC) of 7.5 pM (Ding et al. 2017). 
This is because positively charged Au@Ag NPs can aggre-
gate with the surface of negatively charged bacteria, produc-
ing strong two-photon photoluminescence. That has a strong 
photothermal effect, so Au@AgNPs can effectively remove 
85% of a bacterial biofilm in 4 min under near-infrared radi-
ation (Ding et al. 2017). Nanostructures with a photother-
mal effect convert light energy into heat and kill bacteria by 
local heating. Common photocatalytic nanomaterials include 
ZnO,  TiO2,  Fe2O3 and others.

Gholap’s group used a hydrothermal method to prepare 
Au@ZnO composite at a concentration of 20 μg/mL which 
reduced the growth of Bacillus subtilis by 99.9% (Gholap 
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et al. 2016). The experiment also found that the antibacte-
rial mechanism of Au@ZnO is the generation of superoxide 
anion radicals under irradiation.

In addition to bimetallic nanocomposites, trimetallics 
have also been widely studied and applied. The addition 
of a third metal can add new dimensions and improve the 
properties of the materials. A group led by Yadava prepared 
a Au–Pt–Ag nanoscale fluid by green, microwave-assisted, 
continuous chemical reduction (Yadav et al. 2018). Trimetal-
lic nanofluids show good antimicrobial activity. When the 
concentration of the composite was 15.625 mg/mL, the MIC 
for Gram-positive S. aureus was 31.25 mg/mL and that for 
E. faecalis was 15.625 mg/mL. For Gram-negative E. coli, 
Salmonella typhi and Klebsiella the MIC was 15.625 mg/
mL. That was better antibacterial activity than bimetal and 
single metal nanofluids at lower concentration.

Gold nanoparticles modified with organic compounds

Given the antibacterial activity of some organic compounds, 
researchers have combined them with AuNPs seeking better 
antibacterial effects than those of gold nanoparticles alone. 
Indole derivatives, for example, can produce antibacterial 
compounds after certain chemical reaction, which confirms 
that they have antibacterial potential.

Zhao’s experiments have shown that when AuNPs are 
modified with tryptophan and 5-aminopurine, the resulting 
Au–tryptophan and Au-5-aminopurine composites have 
excellent antibacterial activity against both bacteria and 
multi-drug-resistant (MDR) bacteria (Zhao et al. 2018). 
After 0.5 h of contact with either composite nanoparticle the 
elimination of viable MDR E. coli and polymyxin-resistant 
K. pneumoniae reached 99.9%. Even at the high bacterial 
concentration of 5 × 108 CFU/mL, more than 99.99% of pol-
ymyxin-resistant K. pneumoniae was inactivated after 4 h. 
Hareesh and his colleagues prepared a hexagonal gold–poly-
carbonate matrix of 110 nm particles by a radiation-assisted 
method (Hareesh et al. 2015). Their experiments showed 
good antibacterial action against Gram-positive and Gram-
negative bacteria and showed the inhibitory effect of a dose 
of gamma radiation on the overall growth of bacteria. Two of 
the nanocomposites synthesized by Boomi’s group through 
chemical methods were polyaniline/Ag–Au and polyaniline/
Au–Pd (Boomi and Prabu. 2013; Boomi et al. 2014). Gold 
colloids did not show any inhibition zone for the four patho-
gens they studied, but when modified by polyaniline they 
showed inhibitory effects on all of the pathogens. They were 
also stable for several months.

Gold nanoparticles modified with carbon

One way to improve the antibacterial properties of nanoma-
terials is to synthesize gold nanoparticles on a supporting 

material. This can effectively solve the problem of nanopar-
ticle agglomeration. A group led by Gao synthesized a sta-
ble and dispersed Au/C shell-nucleus composite by a redox 
method (Gao et al. 2010). Au deposited on the surface of 
carbon spheres formed a gold shell 10 nm thick. Gold nano-
particles can inhibit microorganisms’ growth better when 
dispersed on the surface of carbon spheres because they have 
more opportunities to contact bacteria.

Antibacterial mechanisms

As the problem of clinical bacteria resistance becomes more 
and more serious, single antibiotics have begun to lose bac-
teriostatic effectiveness. The hydrophilicity of some antibiot-
ics causes them to cross through the water-filled channels of 
bacteria’s membrane pore proteins. That leads to short resi-
dence time in the cells and weakens the bactericidal effect. 
The combination of nanogold and antibiotics has signifi-
cantly improved antibacterial ability.

Gold nanoparticles sometimes break down cell walls in 
entering cells. They can thus help some antibiotics that can-
not penetrate the cell wall barrier. The Au/AgNPs@Vanco-
mycin synthesized by Lu’s group in one step showed better 
antibacterial activity and weaker bacterial resistance than 
free vancomycin (Lu et al. 2017). The effect of vancomycin 
is to increase the adsorption of bacteria on Au/AgNPs@Van-
comycin particles. Au/AgNPs@Vancomycin showed high 
antibacterial activity against Gram-positive (S. aureus) and 
Gram-negative (E. coli) bacteria, with minimum inhibitory 
concentration (MIC) as low as 30 nmol mL−1. 99% of the 
bacteria were killed within 5 h. Ag/AuNPs@Van2’s cytotox-
icity was lower. A group led by Khandelwal has synthesized 
nanoscale gold particles (AuNPs) labeled with cefradine 
(an antibiotic) (Khandelwal et al. 2015). A small amount of 
gentamycin sulfate combined with AuNPs can obtain more 
significant antibacterial properties than a single antibiotic 
(Fiori-Duarte et al. 2020; Zhou et al. 2020; Zou et al. 2020).

Experiments have shown that inhibition by AuNPs results 
from direct contact which induces cell wall rupture rather 
than by generating reactive oxygen species (ROS). Wang’s 
laboratory synthesized Au@Ag-loaded  Fe3O4 magnetic nan-
oparticles using a polyethyleneimine-assisted ligation 
method (Wang et al. 2016c). They showed good antibacterial 
activity against Gram-negative E. coli and Gram-positive 
bacteria S. aureus. In addition, streptomycin modifica-
tion can significantly improve the antibacterial activity of 
 Fe3O4–Au@Ag nanoparticles. Streptomycin modification 
decreased the MIC by 25% for E. coli and 40% for S. aureus, 
indicating synergy between  Fe3O4–Au@Ag and antibiotics.

A group led by Coradeghini has tested the idea that 
AuNPs’ uptake into cells increases with smaller particle size 
(Coradeghini et al. 2013). They found some effect of particle 
size on antibacterial mechanisms. Smaller nanoparticles can 
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enter cells. Larger ones cause cell lysis and death by acting 
on the surface. However, there is as yet no complete descrip-
tion of these mechanisms. The contact area of highly dis-
persed nanoparticles is larger, and their antibacterial activity 
is obvious.

Differences in surface modification also make a differ-
ence. The action modes of nanoparticles mainly include 
damaging the cytoderm, damaging cytomembranes and 
modifying the interior of bacterial cells. Alternatively, some 
nanoparticles modified with a photocatalytic metal rely on 
light excitation to generate free radicals for antibacterial pur-
poses. The main antibacterial mechanisms of AuNPs are 
shown in Fig. 6.

Cytoderm damage

Cytoderm damage is results from the electrostatic attraction 
between positively charged nanoparticles and the negatively 
charged cytoderm, as indicated in Fig. 6a. Nanoparticles 
attached to the cytoderm can penetrate the cell by releasing 
copious ions to produce toxicity. Scanning electron micros-
copy has shown that AuNPs labeled with cefradine cause 
cell wall damage through direct physical contact. Moreover, 
the measurement of ROS through fluorescent probes ruled 
out the possibility of ROS leading to the observed loss of 
cell viability (Khandelwal et al. 2015). Experiments have 
shown that gold nanorods causes membrane damage through 

electrostatic attraction between the gold and the cytoderm, 
which eventually leading to cell death (Arockia Jency et al. 
2020; Lanh et al. 2015).

Interestingly, many studies have found that gold nano-
particles have different effects on Gram-negative and Gram-
positive bacteria. Gao’s group dispersed gold nanoparticles 
uniformly on the surface of carbon spheres. Such Au/C 
core–shell nanomaterials proved more effective in killing 
Gram-negative than Gram-positive bacteria. The MIC for E. 
coli was 3200 μg/mL. Only when the concentration of the 
composite reached 5000 μg/mL did it show good antibacte-
rial ability against Gram-positive bacteria (Gao et al. 2010). 
This may be due to differences in the cytoderms. Gram-pos-
itive bacteria contain a large amount of peptidoglycan and 
have a thick cytoderm (20–80 nm). Gram-negative bacteria 
only have a thin layer of peptidoglycan, and the cytoderm 
is thin (10 nm). The metal ions released by the nanoparti-
cles can more easily invade the thin-walled Gram-negative 
bacteria. But not all the research results agree. Therefore, in 
addition to the influence of the cell wall structure, there are 
other factors.

Cytomembrane damage

Biofilms are extracellular molecules wrapped around the 
surface of bacteria. Their high resistance is one thing that 
makes bacterial diseases difficult to cure. Bacteria produce 

Fig. 6  Possible antibacterial 
mechanisms of gold nanopar-
ticles (AuNPs). a Positively-
charged nanoparticles elec-
trostatically adsorbed to the 
negatively-charged cytoderm; 
b the accumulation of nanopar-
ticles disrupts the intra-cellular 
balance, resulting in reactive 
oxygen species (ROS) oxidation 
of biofilms and oxidative stress; 
c the combination of gold 
ions and proteins destroys the 
microbes’ respiratory systems 
and electron transport chains; 
d the ROS damage cellular 
DNA and proteins; e metal ions 
react with sulfhydryl groups 
to destroy cellular synthetase 
activity
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ROS when exposed to gold nanoparticles. Because the cell 
membrane is negatively charged, it is not easily penetrated 
by negatively charged reactive oxygen species. However, 
 H2O2 can penetrate the cell membrane and induce cell 
membrane damage (Padmavathy and Vijayaraghavan 
2008).

Another way for nanoparticles to play an antibacterial role 
is to break up the cytomembrane and let the cell contents 
flow out. The adsorption of gold nanoparticles on the mem-
brane can cause the necessary membrane damage (Liu et al. 
2006) as indicated in Fig. 6b. The TEM results published by 
Zhao show that the cytomembranes of bacteria treated with 
Au–tryptophan and Au-5-aminopurine nanocomposites were 
broken, while the cytomembranes of untreated bacteria were 
intact (Zhao et al. 2018). This suggests that the antibacterial 
mechanism of gold nanocomposites is the destruction of cell 
membrane.

Photothermal therapy uses near-infrared radiation to 
induce AuNPs to produce surface plasmon resonance, which 
destroys the cytomembrane structure and kills bacteria by 
local heating (Aksoy et al. 2020; Hsiao et al. 2015). Zhang’s 
group synthesized a series of gold composites with modified 
titanium oxide using a hot sol method (Zhang et al. 2016). 
Experiments show that surface plasmon resonance produced 
by AuNPs can significantly improve the visible light absorp-
tion characteristics of  TiO2. The 1% Au–TiO2 composite was 
able to kill E. coli in the dark. After 5 h of treatment, the 
survival rate of E. coli was 73.3%. The cell death may have 
been due to electrons generated by the Au nanoparticles on 
the cytomembrane (Li et al. 2014c).

Gold ion release

The antibacterial activity of gold nanoparticles is partly due 
to the release of gold ions (Wang et al. 2014). The higher 
the added concentration of gold nanoparticles, the more gold 
ions will be released, and the better the antibacterial effect 
will be (Tamayo et al. 2014). Smaller nanoparticles release 
 Au+ faster due to their greater specific surface area. When 
bacteria are exposed to the nanoparticles, the  Au+ released 
is evenly distributed around the bacteria. They penetrate cell 
walls and enter the cells where they can react with thiol 
groups to form Au-thiol groups. Thiol groups on cysteine 
can cause protein coagulation. Disulfide bridging between 
cysteine residues is involved in protein folding (Slavin et al. 
2017). The combination of gold ions and cysteine also 
disrupts the microbes’ respiration and electron transport 
systems, as indicated in Fig. 6c. There are also mercaptan 
groups in the cell wall synthetase pathway. Binding sulfhy-
dryl groups destroys synthase activity, halting cell division 
and proliferation and causing cell death. The process is rep-
resented in Fig. 6e.

Internal effects on bacterial cells

Active oxygen cane be oxygen-containing free radicals or 
forms of peroxide without free radicals. It is formed in basic 
metabolism. Reactive oxygen maintained at an appropriate 
level has a positive effect on cells. However, the level of 
reactive oxygen species rises significantly when cells face 
external stimuli. Excess reactive oxygen species can then 
have negative effects. AuNPs in contact with bacteria gener-
ate  O2

−,  H2O2,  HO2· and ·OH. These ROS cause oxidative 
stress which leads to lipid peroxidation in the cytomem-
brane. That is, ROS react with macromolecular substances 
such as phospholipids, enzymes and nucleic acids of the 
cytomembrane to form lipid peroxidation products. That 
increases the cytomembrane’s permeability, which eventu-
ally leads to changes in cell structure and function.

In addition, AuNPs can cause bacterial death by causing 
ROS production within cells, resulting in protein aggrega-
tion and DNA destruction as Fig. 6d illustrates (Wang et al. 
2016b). The mechanisms of action of ROS are shown in 
Fig. 7 (Slavin et al. 2017). He and his colleagues synthe-
sized ZnO/Au hybrid nanostructures using a photoreduction 
method and used electrons photoinduced by ZnO to reduce 
 Au3+ on the ZnO surface (He et al. 2014). Gold was depos-
ited on the ZnO surface, which caused ·OH,  O2

− and  H2O2 
to be generated by light excitation. This is the main mecha-
nism of its antibacterial ability. The antibacterial efficiency 
of ZnO/Au composite nanomaterials against E. coli is three 
times that of ZnO alone. In addition to lipid peroxidation, 
oxidative stress can also cause damage in the form of DNA 
strand breaks and base modifications, as indicated in Fig. 6d. 
Gold nanoparticles that enter the cell affect protein synthesis 
by inhibiting the binding of ribosomal subunits to tRNA.

In practical applications, gold nanoparticles must not only 
have excellent antibacterial ability, but also maintain low 
toxicity to normal cells. AuNPs have good biocompatibil-
ity (Norouzi 2020). Small AuNPs may enter normal cells 
with nutrients. It is worth noting that the decomposition of 
foreign substances in the lysosomes of normal cells can par-
tially antagonize the adverse effects of AuNPs. Lysosomes 
are not found in bacteria. In other words, AuNPs can exert 
their antibacterial effect without damaging normal cells.

Conclusion

There are two main approaches useful for preparing func-
tionalized nanoscale gold composites. One is to optimize 
the material’s particle size, morphology and dispersibility 
by controlling the reaction conditions for the best perfor-
mance. The other is to bolster the nanomaterial’s proper-
ties with ligands. The preparation of nanoscale gold mainly 
relies on the seeded growth method, green synthesis with 
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plant extracts or chemical reduction. The resulting material 
can then be functionalized. The antibacterial properties of 
nanoscale gold particles (AuNPs) are closely related to the 
particle size, dispersibility and surface modification of the 
nanoparticles. AuNPs mainly cause cell lysis and death by 
electrostatic adsorption on the bacterial surface, membrane 
damage and reactive oxygen species (ROS) damage to pro-
teins and DNA. AuNPs have good biocompatibility and no 
cytotoxicity.

At present, most of the antibacterial studies with AuNPs 
have been with conventional bacteria. There have been rela-
tively few studies with multi-drug-resistant bacteria. That is 
an essential direction for future research. Antibacterial activ-
ity is expressed in terms of minimum inhibitory concentra-
tion (MIC), zone of inhibition, bacteria reduction, survival 
percentage and the rate of bacteria inactivation. Because of 
the different units, it is difficult to make objective compari-
sons among different studies. This is one of many aspects 
of nanoscience that need to be standardized. In addition, 
combining theoretical research findings with clinical appli-
cation is a difficult point. There are still no firm conclusions 
for many issues. Among them are the site and specificity of 
nanoparticles’ action on the cytomembrane and their trans-
membrane action. Whether AuNPs still have good long-term 
biocompatibility in vivo also requires further verification.
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