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Abstract
Nonylphenol is a typical endocrine-disrupting chemical that has received considerable attention from government officials, 
scientists and the public due to its estrogenicity and ubiquitous occurrence in water environments. Here we review the cur-
rent knowledge on nonylphenol occurrence, distribution, toxic effects and water quality criteria related to the protection of 
freshwater organisms. Nonylphenol enters the water ecosystem mainly via wastewater treatment plant effluents, agricultural 
runoff, groundwater discharge from air, soil, water and agricultural sources. Toxic effects of nonylphenol on aquatic organ-
isms include acute toxic effects, growth and development effects, estrogenic effect and reproductive effects, neurotoxicity, 
liver toxicity and immunotoxicity.
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Abbreviations
PNEC  Predicted no-effect concentration
SWQC  Short-term water quality criteria
LWQC  Long-term water quality criteria
NOEC  No observable effects concentration
CCME  Canadian Council of Ministers of the 

Environment
USEPA  United States Environmental Protection Agency
LC50  50% of the lethal concentration
EC50  50% of the effective concentration

EC10  10% of the effective concentration
EE2  17 alpha-ethinyl estradiol
HC5  Hazardous concentration for 5% of species

Introduction

In recent years, one of the issues concerning the quality of 
drinking water is the presence of contaminants of emerging 
concern, including endocrine-disrupting chemicals, phar-
maceuticals and personal care products, microplastics, and 
other chemical products (Padhye et al. 2014; Tijani et al. 
2016; Kaur and Goyal 2019; Padervand et al. 2020), some 
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of which have adverse effects on the normal reproductive 
fitness functions of aquatic organisms and humans, by means 
of disrupting secretion of endogenous hormones, and thus 
have attracted considerable attention from environmen-
tal scientists and experts (Desbrow et al. 1998; Silva et al. 
2002; Huang et al. 2012a; Wang et al. 2016, 2018). The eco-
toxicological impact of endocrine-disrupting chemicals not 
only on vertebrates but also on invertebrates is a currently 
worldwide concern, particularly in terms of the impact of 
pollution on entire ecosystems (Hirano et al. 2009; Chang 
et al. 2007), including coatings and latex paint, adhesives, 
inks, detergents, emulsifiers, solubilizers, dispersing agents, 
petroleum recovery chemicals and personal care products 
(Ying et al. 2002; Soares et al. 2008). The most commonly 
used alkylphenol ethoxylates are nonylphenol ethoxylates, 
which account for 80% of the total use (Zgola-Grześkowiak 
et al. 2009). Nonylphenol ethoxylates are the incompletely 
biodegraded product in the environment and wastewater 
treatment plants, due to the stepwise loss of ethoxy groups, 
thereby forming nonylphenol monoethoxylate and nonylphe-
nol diethoxylate, and completely degraded to the deethoxy-
lated product, nonylphenol (Mann and Boddy 2000).

Nonylphenol, as an endocrine-disrupting chemical, has 
become a great concern in recent years and has been found 
to be persistent in environmental areas, bio-accumulative 
in biotas, and toxic to organisms (Ekelund et al. 1993; Cor-
vini et al. 2005; Riefer et al. 2011a, b; Dsikowitzky and 
Schwarzbauer 2014; Zhou et al. 2018). Nonylphenol has 
been found worldwide in wastewater discharge, wastewater 
treatment plant effluents, surface water, groundwater, and in 
sediments at ng/mL or ng/g levels (Ying et al. 2002; Fawell 
et al. 2001; Nowak et al. 2008; Vieira et al. 2020). A great 
number of studies have revealed that the frequent occur-
rence of cancerous tumors, obesity and impaired reproduc-
tive function in humans may be caused by drinking nonyl-
phenol contaminated water (Chen et al. 2013; Michałowicz 
2014). Additionally, it has been confirmed that the envi-
ronmental exposure level of nonylphenol is the most sig-
nificant factor of affecting the structural changes, species 
composition and quantity of ecosystems (Arnon et al. 2008; 
Nie et al. 2014). Due to endocrine-disrupting chemicals’ 
estrogenic activity, several compounds classified as alkyl-
phenols have been included among a list of priority contami-
nants. Notably, nonylphenol and nonylphenol monoethoxy-
late are well-known micro-pollutants with potential risks 
to the environment, as well as the health of animals and 
humans. These compounds have been identified as prior-
ity hazardous substances in the Water Framework Directive 
and the third draft of the Working Document on Sludge by 
the European Union (European Companian 2008; Soares 
et al. 2008), including the endocrine-disrupting chemicals 
Group. In Japan, nonylphenol is designated as a parameter 
in the environmental quality standard of water pollution. 

Therefore, many countries have restricted the use of these 
substances. However, some countries persist on using nonyl-
phenol due to their high capacity as chemical product. Previ-
ous investigations have indicated that nonylphenol produces 
multiple toxic effects, such as acute toxic effects, growth 
and development toxic effects, estrogen effect and reproduc-
tive toxic effects, through nuclear hormone receptors such 
as estrogen, androgen, and progesterone, both in vivo and 
vitro (Zha et al. 2008). Furthermore, recent studies have 
observed some other mechanisms such as functioning on 
membrane receptors, and enzymes in steroid biosynthesis 
pathways (Baravalle et al. 2018; Rosenfeld and Cooke 2019). 
More specifically, nonylphenol induces the production of 
the female-specific, egg-yolk precursor vitellogenin in the 
livers of males, and is related to testis-ova, and decreases 
fecundity and fertility (Zha et al. 2008), thus has aroused 
widespread concern among environmental scientists over 
the past decade (Kanaki et al. 2007; Huang et al. 2012a, b; 
Goeppert et al. 2014).

Water quality criteria are the threshold limits for contami-
nants in water environment which have harmful effects on 
human health, aquatic ecosystems and use functions (Feng 
et al. 2012a, 2013a; Yang et al. 2014a). Water quality criteria 
have been established for the protection of aquatic organ-
isms based on scientific experiments and extrapolations. The 
function of water quality criteria is to provide guidance and 
a scientific basis for formulating water quality standards. In 
addition, water quality criteria are an essential part of eco-
logical risk assessment; ecological restoration; environmen-
tal crisis management; environmental damage identifications 
and assessments; and related policies, laws, and regulations. 
Water quality criteria play a decisive role in environmental 
protection and management programs, including developed 
and developing countries (Wu et al. 2012; Feng et al. 2012a, 
b, 2019). Assessment factor and statistical extrapolation for 
species sensitivity distribution method are the two basic 
methods for derivation of water quality criteria (Jin et al. 
2015; Liu et al. 2016a). The predicted no-effect concentra-
tion (PNEC) is the most important step in ecological risk 
assessment to determine the short-term water quality crite-
ria (SWQC) and long-term water quality criteria (LWQC) 
of detecting contamination of substance to protect certain 
ecosystems (Jin et al. 2011, 2012; Wu et al. 2014; Jin et al. 
2014; Feng et al. 2013b, 2019). To date, some organiza-
tions at the national level and other governmental agencies 
have derived PNEC or no observable effects concentration 
(NOEC) for nonylphenol. For instance, the European Union 
had established a toxicity threshold of 0.33 μg/L with species 
sensitivity distribution based on the potential toxic effect of 
nonylphenol on freshwater fish (ECB 2001). The Canadian 
Council of Ministers of the Environment (CCME) issued 
the water quality guidelines of nonylphenol employing the 
assessment factor method to derive the value of 1.00 μg/L 
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in 2002 (CCME 2002). In addition, the United States Envi-
ronmental Protection Agency (USEPA) determined that the 
value of water quality criteria was 6.60 μg/L for nonylphenol 
using species sensitivity rank in 2005 (USEPA 2005).

Many studies have summarized the toxicity effects, fate 
and biodegradation of nonylphenol, yet few of the existing 
studies have reviewed the water quality criteria of nonylphe-
nol in freshwater and seldom focused on the water quality 
criteria difference considering different research methods 
and toxicity endpoints. Based on this, in order to protect 
aquatic organisms comprehensively, the occurrence, distri-
bution, toxic effects and water quality criteria of nonylphe-
nol in water environment are summarized. The review can 
improve the understanding of the mechanisms of nonylphe-
nol toxicity and its water quality criteria research methods. 
Moreover, this review could provide theory and data support 
for environmental risk assessment and management of these 
contaminants of emerging concern.

Occurrence and distribution of nonylphenol 
in the environment

Nonylphenol enters the water ecosystem via wastewater 
treatment plant effluents, agricultural runoff, groundwater 
discharge from air, soil, water and agricultural sources. 
Nonylphenol can both accumulate in sediments and in 
organisms. Municipal wastewater treatment plant effluents 
are considered as a main source of nonylphenol to surface 
waters (Söffker and Tyler 2012; Li et al. 2020; Xin et al. 

2019). The sources of nonylphenol exposure to the water 
ecosystem are shown in Fig. 1.

Previous studies have reported that nonylphenol has been 
detected in lakes, rivers, oceans, sediments, sludge, soil and 
even in drinking water, food and air (Cheng et al. 2017; 
Zhou et al. 2015), among which water ecosystem pollution 
is the most serious. The main forms of nonylphenol in water 
environmental include: dissolved in water, and adsorbed on 
suspended solid particles or sediments. The results show that 
the solubility of hydrophobic organic compounds in water 
is negatively correlated with adsorption, and nonylphenol 
with low solubility in water is easily absorbed by particles. 
In addition, due to the relatively weak degradation ability 
of microorganisms to nonylphenol under anaerobic condi-
tions, nonylphenol is continuously accumulated in the sedi-
ment, and there is a long-term risk of re-release to the water 
(Means et al. 1980). The distribution of dissolved nonylphe-
nol in the water environments of China and several other 
countries is shown in Table 1 and Fig. 2.

The concentration level of nonylphenol in China’s surface 
water was rather high, i.e., the mean concentration of non-
ylphenol in the Liao River is the highest, at 1094.05 ng/L. 
Meanwhile, the nonylphenol exposure concentration in some 
other countries is equivalent to China, while the concen-
tration level of nonylphenol in freshwater is higher than 
that in seawater, i.e., the Daliao River Estuary’s freshwater 
(430.50 ng/L), Daliao River Estuary seawater (350 ng/L), 
Sishili Bay and Taozi Bay freshwater (208 ng/L), Sishili 
Bay and Taozi Bay seawater (39.50 ng/L). The reason may 
be that the concentration of nonylphenol in the seawater 
is relatively low, and when a great quantity of freshwater 

Fig. 1  Sources of nonylphenol 
exposure in water ecosystems. 
Nonylphenol enters the water 
ecosystem via wastewater treat-
ment plant effluents, agricultural 
runoff, groundwater discharge 
from air, soil, water and agricul-
tural sources
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flows into the sea water, it is diluted again. Additionally, 
previous research documented that among 164 groundwa-
ter samples tested from throughout 23 European countries, 
11% contained nonylphenol, which was also the most abun-
dant industrial chemical in groundwater samples taken from 
Austria (Mao et al. 2012). Nevertheless, due to the fact that 
nonylphenol and nonylphenol ethoxylates have not been 
effectively limited in China, the usage of these compounds 
is greater than in other countries, and the exposure concen-
trations of nonylphenol detected in various water bodies of 
China were greater than other regions (Jin et al. 2014).

Toxicity mechanisms of nonylphenol 
to aquatic organisms

Extensive previous studies have demonstrated estrogen 
effect, biological toxicity and strong bioaccumulation 
effect that had been resulted from exposure to nonylphenol 
(Diamanti-Kandarakis et al. 2009; Wu et al. 2014) (Sup-
plementary Material S1). The toxic effect of nonylphenol 

is multifaceted and can produce a toxic effect through non-
estrogen pathways. Animal-based experiments have con-
firmed that nonylphenol bears different degrees of damage 
to the reproductive systems of animals (Sharma et al. 2009). 
It is necessary to further study the long-term chronic toxicity 
of nonylphenol at low concentrations. The toxic effects of 
nonylphenol on aquatic organisms were varied as observed 
by different scientists, but in general, it can be divided into 
the following aspects:

Acute toxic effects

The larval stage of an organism is the most sensitive in 
organism’s development, as the larval stage has weak resist-
ance to the outside world, and may suffer from growing 
slowly or even dying easily when poisoned by pollutants. 
Therefore, the larval stage is often used for acute toxicity 
research (Liney et al. 2005). Nonylphenol has strong acute 
toxicity to phytoplankton, zooplankton, amphibians, inver-
tebrates and fish.

Table 1  Distribution of nonylphenol in water environments

ND not detected

Country Site Sample type Concentration level of 
nonylphenol (ng/L)

Mean concentration 
of nonylphenol (ng/L)

References

China Yangtze River (Nanjing Section) River 1.4–858 429.70 Liu et al. (2017)
Yangtze River River 100.21–288.75 194.48 Jin et al. (2014)
Yellow River River 165.8–1187.6 676.70 Wang et al. (2012)
Liao River River 122.4–2065.7 1094.05 Wang et al. (2011)
Liao River Reservoir 30.05–54.27 42.16 Jin et al. (2014)
Pearl River River 117–685 401 Yang et al. (2014b)
Pearl River Reservoir 58.33–85.16 71.75 Jin et al. (2014)
Haihe River 106–561 333.50
Haihe Reservoir 96.85–121.59 109.22 Jin et al. (2014)
Daliao River Estuary Seawater 25–675 350 Li et al. (2013)
Daliao River Estuary Freshwater 84–777 430.50
Sishili Bay and Taozi Bay Seawater 3–76 39.50 Huang et al. (2012a, b)
Sishili Bay and Taozi Bay Freshwater 120–296 208
Taihu Lake Lake 0.36–1442.7 721.53 Zhou et al. (2014)
Chaohu Lake Lake 38.6–86.1 62.35 Liu et al. (2016b)

Japan Tokyo Bay Seawater ND–147 73.50 Ahrens et al. (2010)
Singapore Singapore’s coastal Seawater 20–2760 1390 Bayen et al. (2013)
Italy Tiber river River 0.5–1589 794.75 Pojana et al. (2007)
Canada St. Lawrence River River 13–920 203 Bennie et al. (1997)
Nigeria two major rivers in Lagos River 43.9–79.4 61.65 Oketola and Fagbemigun (2013)
Spain Ría de Arousa; Ría de Vigo; 

Ría de Pontevedra; Ría de A 
Coruña

Seawater 0.037–0.24 0.14 Salgueiro-González et al. (2015)

Greece Les Voss Seawater 12–210 111 Kanaki et al. (2007)
Korea Masan Bay Seawater 101–928 514.50 Li et al. (2008)
France Seine River River 57–153 105 Cladière et al. (2014)



2099Environmental Chemistry Letters (2020) 18:2095–2106 

1 3

The research results of Staples et al. (2004) have revealed 
that 50% of the lethal concentration  (LC50) or 50% of the 
effective concentration  (EC50) of nonylphenol on microalgae, 
invertebrates and fish were 27–2500 μg/L, 21–3000 μg/L, 
and 17–3000 μg/L, respectively. Teneyck and Markee (2007) 
introduced three phenolic compounds, nonylphenol, non-
ylphenol monoethoxylate and nonylphenol diethoxylate, to 
evaluate their toxicity on the freshwater species Pimephales 
promelas and Ceriodaphnia dubia, and found that the  LC50 
of 96 h for Pimephales promelas of nonylphenol and 48 h for 
Ceriodaphnia dubia of nonylphenol were 136 and 92.6 μg/L, 
respectively. Furthermore, the USEPA (2005) reported that 
the larvae of Cyprinodon variegates were more tolerant to 
nonylphenol, while those of Paralichthysolivaceus were 
less tolerant, with the 24 h  LC50 being 310 and 17 μg/L, 
respectively.

Growth and development toxic effects

Fish embryonic gonads are bidirectional and can develop 
into both testes and ovaries. Nonylphenol may interfere with 
the endocrine system and hinder the growth and develop-
ment of organisms, manifesting in ways such as shorter body 
size or lighter body weight. Nonylphenol can cause embry-
onic development of adverse toxic effects on the fish and 
amphibians (Chaube et al. 2013).

Willey and Krone (2001) found that nonylphenol could 
change the distribution of primordial germ cells along the 

anterior and posterior axis in 24 h embryos of Danio rerio, 
thereby changing the gonadal structure of juveniles and 
adults. Sone et al. (2004) reported that nonylphenol mainly 
affected the late development of Xenopus laevis embryos, 
thus resulting in short bodies, small heads, spinal curvature, 
abdominal enlargement and digestive tract coiling. In addi-
tion, it was also found that nonylphenol at a concentration of 
6.8 nmol/L significantly shortened the body length of Danio 
rerio embryos, and also shortened the tail length and head 
width of Danio rerio embryos (Kinch et al. 2016).

Estrogen effect and reproductive toxic effects

Nonylphenol has a similar chemical structure to that of 
estrogen, which has been proven to be a type of mimic-
estrogen substance that can affect the reproductive system of 
organisms. Nonylphenol can induce the formation of vitel-
logenin, testis degeneration, the formation of ovum and testis 
in amphoteric organs, the feminization of males, and the 
decline in hatching ability of fertilized eggs (Karen et al. 
2003; Kobayashi et al. 2005).

Nonylphenol has an estrogen effect and reproductive toxic 
effects on aquatic organisms’ reproductive cells, sexual dif-
ferentiation, gonadal tissue structure, endocrine system 
genotoxicity related to reproduction, and so on (Giesy et al. 
2010). Gray and Metcalfe (1997) found that Oryzias latipes 
exposed to 100 μg/L nonylphenol could increase the apop-
tosis of spermatocytes, Sertoli cells and stromal cells by six 
times as compared with that of the control group. Schwaiger 
et al. (2002) found that fibrosis was present in the testis, 
while 10 μg/L nonylphenol could induce mixed gonads in 
the offspring (both male and female) of the parents. After 
28 days of exposure to nonylphenol (80–1280 μg/L), the 
relative weight of gonads in male Xiphophorus helleri 
decreased with the increase in nonylphenol dose. Besides, 
the testicular tissue structure changed, as manifested in such 
ways as Sertoli cell hypertrophy, and there was a sign of 
transformation to output tubular cells (Kinnberg et al. 2000). 
Exposure to nonylphenol during the sensitive development 
of fish can mimic or block the secretion of endogenous hor-
mones and other chemicals, thereby affecting or destroy-
ing the sexual differentiation of fish. Yu et al. (2008) found 
that nonylphenol could induce the down-regulation of the 
Glutathione S-transferase-Mu gene in the gonads of Kryp-
tolebias marmoratus. In addition, at the concentrations of 
nonylphenol exposed from 1 to 10 μg/L, luciferase detection 
showed that the estrogen-related receptor gene of Chirono-
mus riparius was up-regulated (Park and Kwak 2010).

Other toxic effects

Nonylphenol also has additional toxic effects such as neu-
rotoxicity, liver toxicity, immunotoxicity (Matozzo et al. 

Fig. 2  Distribution of nonylphenol in water environment of China 
and other countries. NP: nonylphenol. (S1: Yangtze River (Nanjing 
Section), S2: Yangtze River, S3: Yellow River, S4: Liao River–River, 
S5: Liao River-Reservoir, S6: Pearl River–River, S7: Pearl River-
Reservoir, S8: Haihe-River, S9: Haihe-Reservoir, S10: Daliao River 
Estuary-Seawater, S11: Daliao River Estuary-Freshwater, S12: Sishili 
Bay and Taozi Bay-Seawater, S13: Sishili Bay and Taozi Bay-Fresh-
water, S14: Taihu Lake, S15: Chaohu Lake, S16: Japan, S17: Singa-
pore, S18: Italy, S19: Canada, S20: Nigeria, S21: Spain, S22: Greece, 
S23: Korea, S24: France)
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2008; Kitagawa et al. 2009). Nonylphenol exhibits many 
effects on the development of brain tissue, mainly by 
means of interfering with the ion channels of cells, affect-
ing the energy metabolism of cells, reducing the synthe-
sis and release of neurotransmitters, reducing the function 
of neurotransmitter receptor, and ultimately affecting the 
development and differentiation of neurons. However, at 
present, most studies have focused on mammals such as 
rats (Chitra et al. 2002; Mao et al. 2010).

In summary, although the existing research data have 
fully shown that nonylphenol has certain toxic effects 
on aquatic organisms’ reproduction, the results have not 
been consistent with one another, and its toxic mecha-
nism requires further exploration. Substantial evidence has 
confirmed that the traditional endpoints, such as survival, 
development and growth, for the assessment of toxic-
ity effects cannot provide comprehensive protection for 
aquatic organisms, due to the fact that nonylphenol can 
affect the reproductive fitness of life at a concentration 
of 1 μg/L or even less (Ackermann et al. 2002; Caldwell 
et al. 2008). Furthermore, Jin et al. (2014) also indicated 
that the effect based on reproduction at concentrations was 
lower than those based on lethality, growth, biochemical 
and molecular biology from the species sensitivity distri-
bution curve. Similar results were observed by Li et al. 
(2019), Lei et al. (2012), and Gao et al. (2015), as shown 
in Fig. 3.

Water quality criteria research 
of nonylphenol for the protection of aquatic 
organisms

Water quality criteria for the protection of aquatic organ-
isms can be derived through the methodologies which 
are primarily used, namely assessment factor, species 
sensitivity rank and species sensitivity distribution. The 
commonly selected toxicity endpoints were traditional 
endpoints that generally lead to lethal effect or growth 
inhibition effect data for some conventional pollutants 
in the study progress of water quality criteria. The con-
taminants of emerging concern and endocrine-disrupting 
chemicals have lethal effects, but in addition also have 
some adverse effects on reproduction and development, 
and thus the endpoints were selected to differentiate the 
conventional pollutants to some extent. Therefore, more 
sensitive genotoxicity, aromatics receptor effects and 
endocrine interference effects should be selected to derive 
the water quality criteria of nonylphenol. Many countries, 
agencies and researchers have obtained the derivation of 
water quality criteria for nonylphenol based on different 
research methods and endpoints. The derivations of water 
quality criteria for nonylphenol from different countries 
and researchers are listed in Table 2. The derivation of 
water quality criteria for nonylphenol difference can be 
seen when considering different methodologies and toxic 
effects endpoints.

Difference of water quality criteria for nonylphenol 
based on different toxicological endpoints

The selection of different endpoints will affect the test spe-
cies determination, toxic data screening and criteria value 
derivation. In 2001 the European Union utilized the spe-
cies sensitivity distribution method to derive the predicted 
no-effect concentration (PNEC) of 0.33 μg/L nonylphenol 
for freshwater organisms based on the endocrine disrup-
tive toxic effect for freshwater fish (ECB 2001). This was 
much lower than the value derived by the USEPA for the 
nonylphenol freshwater criterion continuous concentra-
tion, namely 6.60 μg/L, using the species sensitivity rank 
method based on the traditional endpoint  (LC50 and  EC50) 
in 2005 (USEPA 2005). Lei et al. (2012), Jin et al. (2014) 
and Gao et al. (2015) established the different values of 
water quality criteria for nonylphenol based on traditional 
endpoints, such as death, survival, growth, which were 
2.21, 6.01 and 4.29 μg/L lower than the USEPA water 
quality criteria, but at the same order of magnitude, they 
were 6.70, 18 and 13 times higher than the European 
Union water quality criteria, respectively. Based on the 

Fig. 3  The predicted no-effect concentration (PNEC) of nonylphenol 
based on different endpoints (μg/L). The “*” represents that the effect 
based on reproduction at concentrations was lower than those based 
on lethality, growth, biochemical and molecular biology from the spe-
cies sensitivity distribution curve. Here NP: nonylphenol. Data col-
lected from Jin et al. (2014), Li et al. (2019), Lei et al. (2012), Gao 
et al. (2015)
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reproductive endpoint, they were 1.34, 0.12 and 1.37 μg/L 
(Lei et al. 2012; Jin et al. 2014; Gao et al. 2015), respec-
tively, which were much lower than the USEPA water 
quality criteria of 4.90, 54.90 and 4.80 times, at the same 
order of magnitude with the value of European Union. 
However, some differences did exist, the reason for which 
may be the difference sensitive species selection between 
them, and the fact that the native species varied among dif-
ferent geographical distributions (Jin et al. 2015). Similar 
results were also reported by Caldwell et al. (2008) that 
the PNEC derived for a synthetic estrogen 17 alpha-ethi-
nyl estradiol  (EE2) based on a reproductive endpoint was 
100 times lower than that based on a traditional endpoint. 
Therefore, the nontraditional endpoint selection in the der-
ivation of the water quality criteria is equal to significance 
for the protection of aquatic organisms.

Difference of water quality criteria for nonylphenol 
based on different methodologies

Different research methodologies selected will affect the deri-
vation of water quality criteria. The assessment factor method 
used by Canada is based on the most sensitive species, and 
thus it shows a high degree of uncertainty, despite the fact 
that it is feasible when the toxicity data are not available. In 
brief, the assessment factor method is more protective, con-
servative and sometimes arbitrary (Chapman et al. 1998). 
The species sensitivity rank method adopted by USEPA may 

exhibit some uncertainty as the species sensitivity rank method 
is considered on four toxicity data, and the cumulative prob-
abilities are adjacent to 0.05. The species sensitivity distri-
bution method, which is employed by most researchers and 
increased sharply in the derivation of water quality criteria, 
offers more reliability, reasonability, certainty and adaptability, 
as the species sensitivity distribution method is based on an 
established distribution of a full set of toxicity data (Gao et al. 
2015; Lei et al. 2012). However, some limitations also existed 
when adopting the species sensitivity distribution method to 
derive the water quality criteria, since the value derived from 
the species sensitivity distribution method protects 5% of the 
species (hazardous concentration for 5% of species,  HC5), and 
if all of the organisms in a certain water body require protec-
tion, then it is not suitable. Furthermore, when and how to 
use the SWQC and LWQC derived from the species sensitiv-
ity distribution method must be determined more clearly. The 
endocrine and reproductive system differs drastically among 
different organisms, and the functional mechanism is varied 
among different individuals, and thus the water quality crite-
ria value derived based on reproductive endpoints also differs 
among researchers.

Table 2  Studies of water 
quality criteria for nonylphenol 
from different countries and 
researchers

Here EU European Union, SSD species sensitivity distribution, AF assessment factor, SSR species sensitiv-
ity rank, PMM population matrix model, PNEC predicted no-effect concentration

Country 
(researcher)

Methodology Endpoints PNEC or NOEC (μg/L) References

EU SSD EC10 0.33 ECB (2001)
Canada AF LC50 1.00 CCME (2002)
USA SSD LC50 5.90 Staples et al. (2004)

SSR LC50,  EC50 6.60 USEPA (2005)
SSD LC50 0.57 (base data sets) Hahn et al. (2014)
SSD LC50 0.93 (full data sets)

Japan PMM population growth rate 0.82–2.10 Lin et al. (2005)
China AF death 0.74 Lei et al. (2012)

AF reproductive 0.10
SSD death 2.21
SSD reproductive 1.34
SSD survival 6.01 Jin et al. (2014)
SSD growth 0.75
SSD biochemical and 

molecular biology
1.29

SSD reproductive 0.12
SSD traditional 4.29 Gao et al. (2015)
SSD reproductive 1.37
SSD LC50,  EC50 1.85 Zhang et al. (2017)
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Perspectives

The toxic effects mechanisms involved in nonylphenol 
exposure have not been reported comprehensively and 
accurately, and the currently studies are no available rel-
evant research or standard to quantitatively assess the 
toxicity and environmental risk of nonylphenol. Besides, 
nonylphenol is different from conventional pollutants, such 
as heavy metals and nutrients. Nonylphenol has multiple 
toxic effect endpoints, including acute death, growth and 
development toxicity, estrogen effect, endocrine inter-
ference toxicity and other toxicity. The traditional end-
points such as survival, development and growth, for the 
assessment of toxicity effects cannot provide compre-
hensive protection for aquatic organisms, due to the fact 
that nonylphenol can affect the reproductive fitness of life 
at a concentration of 1 μg/L or even less. And previous 
researches have indicated that the effect based on repro-
duction at concentrations was lower than those based on 
lethality, growth, and development. When formulating the 
water quality criteria of traditional pollutants, only SWQC 
and LWQC should be considered, while the establishment 
of water quality criteria for nonylphenol needs to consider 
more about how to protect the function of fish reproduc-
tion effectively (Vandenberg et al. 2012). It may be a great 
challenge to derivation water quality criteria of nonylphe-
nol for protecting freshwater organisms.

Since endocrine-disrupting chemicals such as nonyl-
phenol are different from conventional pollutants, non-
ylphenol should be treated differently when formulating 
water quality criteria, to find a more suitable toxic effect 
dose relationship and toxic effect endpoint, and to select 
more suitable theoretical methodology of the water quality 
criteria for the formulation of endocrine-disrupting chemi-
cals such as nonylphenol. The basic modes of action of 
endocrine-disrupting chemicals are triaxial, gonad-repro-
ductive toxicity, thyroid, adrenal, and others interfere with 
exogenous metabolism, glucose metabolism, retinoic acid 
and have more modes of action. A general summary of 
nonylphenol and endocrine-disrupting chemicals may 
not be appropriate. Since nonylphenol is most related to 
reproductive toxicity, the water quality criteria for non-
ylphenol can be considered from the perspective of the 
gonadal axis.

In the process of deriving the water quality criteria of 
nonylphenol, the following suggestions should be con-
sidered: (1) Since plants and lower invertebrates have no 
endocrine system, in order to reduce unnecessary waste of 
experiments, fish reproductive toxicity test can be used, 
with other species as auxiliary; (2) since nonylphenol is a 
kind of substance with reproductive toxicity, it is prior to 
formulate the water quality criteria based on reproductive 

toxicity of nonylphenol; (3) considering the low-dose and 
nonlinear effects response of nonylphenol, in deriving the 
reproductive toxicity criteria of nonylphenol, there is no 
necessary to consider the SWQC, only use the LWQC; (4) 
the possible endpoints of hypothalamus–pituitary–gonadal 
axis in vertebrates including: biochemical indexes, such 
as vitellogenin, estradiol and testosterone, histopathologi-
cal indexes, such as the proportion of spermatogonia, the 
proportion of androgyny, the morphological indexes, such 
as the secondary sexual characteristics, and the behavioral 
indexes, and these toxicity endpoints can be used to derive 
the aquatic ecological criteria for nonylphenol.

Conclusion

In order to protect the freshwater aquatic organisms better 
and manage nonylphenol effectively, the following advice is 
given for future consideration: (1) More sensitive and explic-
itly toxic endpoints based on reproductive toxicity must be 
considered, i.e., spawning rate, fertilization rate, hatchability 
and multi-generation effect; (2) the toxicity effect mecha-
nism of nonylphenol on aquatic organisms’ hypothalamus-
pituitary–gonadal axes should be given more attention; and 
(3) native sensitive species and international common spe-
cies should be selected as much as possible. Additionally, 
a set of systematic theories and methodologies, considering 
a set of ecological factors as possible, is required for non-
ylphenol water quality criteria and standards. The theory 
and methodology of nonylphenol should be continuously 
explored, and the key scientific problems of the existing 
water quality criteria should continue to be systematically 
studied.
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