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Abstract
Pharmaceutical and illicit drugs are emerging contaminants found in the environment globally. Many are chiral and ste-
reochemistry plays an important role on their environmental fate and effects. However, investigations at the enantiomeric 
level are limited, particularly for complex particulate matrices such as sediments. This is due to further sample processing 
requirements and a lack of suitable analytical methods. Therefore, here a new enantioselective methodology is proposed for 15 
drugs in sediment. Sample treatment by accelerated solvent extraction and solid phase extraction was critical for subsequent 
enantioselective separations. Using liquid chromatography–tandem mass spectrometry, a Chiral-V enantioselective column 
enabled multi-residue separations of anti-depressants, beta-blockers, beta-agonist, anti-histamine and stimulants. Method 
trueness for all enantiomers was 86–121% and method quantitation limits were below 3 ng g−1 dry weight. Application of 
the method revealed the enantiomeric composition of fluoxetine, amphetamine, propranolol, venlafaxine and citalopram in 
sediment for the first time. All drugs except venlafaxine were present in non-racemic form, i.e. unequal enantiomer concen-
trations. This is significant considering drug toxicity towards benthic organisms could be enantiospecific.
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Introduction

Pharmaceutical and illicit drugs are emerging contaminants 
as their fate and effects in the environment are not fully 
understood (Cizmas et al. 2015; Wilkinson et al. 2017). The 
main source of drugs in the environment is the discharge of 
effluent from centralised wastewater treatment plants. How-
ever, septic tanks can play a significant role with 20% of 
United States households served by a septic tank or similar 
system (Schaider et al. 2017). In Scotland, 7% of the popula-
tion is estimated to use a septic tank (Ramage et al. 2019). 
Nevertheless, little attention has been given to the impact 
of septic tanks to surrounding aquatic systems with respect 
to drugs.

Drug stereochemistry plays an essential role in the envi-
ronmental behaviour of a drug. Approximately, 50% of drugs 
are chiral and exist as two or more enantiomers (Kasprzyk-
Hordern 2010). Most drugs are dispensed in racemic form, 
i.e. equal concentration of all enantiomers, despite most 
of the pharmacological activity normally residing with 
one enantiomer. However, chiral drugs can be subject to 
enantiospecific metabolism in the human body and during 
wastewater treatment (Ribeiro et al. 2012). Therefore in the 
environment it is common to find chiral drugs enriched with 
one enantiomer. This is significant as enantiospecific toxic-
ity can occur in the environment (Stanley et al. 2007). For 
example, S( +)-fluoxetine is ~ 10 times more toxic towards 
the protozoa Tetrahymena thermophila than R(−)-fluoxetine 
(De Andrés et al. 2009). Despite this knowledge there is 
still a lack of studies undertaken in the environment at the 
enantiomeric level, particularly for particulate matrices such 
as sediments. A contributing factor is the lack of good ana-
lytical methodologies available for these complex matrices.

Multi-residue enantioselective methods exist for biosolids 
applied to farmland as fertiliser (Evans et al. 2015) and soils 
(Petrie et al. 2018). However, no such methods exist for river 
sediments. Previously developed methods for sediments are 
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limited to a single therapeutic drug group. For example, 
methods exist for the anti-inflammatories ibuprofen, keto-
profen and flurbiprofen (Yuan et al. 2018), the antibiotic 
flumequine and its metabolite 7-hydroxyflumequine (Xue 
et al. 2018) and the antifungals econazole, ketoconazole and 
miconazole (Huang et al. 2013). However, numerous other 
chiral drugs have been reported in sediments, (Vazquez-Roig 
et al. 2010; Silva et al. 2011; Bagnis et al. 2018) with no 
information on their enantiomeric composition. Therefore, 
the objectives of the study were (i) to establish a new meth-
odology for multi-residue enantioselective profiling of chiral 
drugs in sediments, and (ii) to determine the enantiomeric 
composition of chiral drugs present in sediments impacted 
by wastewater treatment plants and septic tanks.

Experimental

Materials

Analytical reference and deuterated surrogate standards 
were purchased from Sigma Aldrich (Gillingham, UK) 
and Toronto Research Chemicals (North York, Canada). 
The standards were R/S( ±)-amphetamine, R/S( ±)-meth-
amphetamine, R/S( ±)-atenolol, R/S( ±)-chlorpheniramine, 
R/S( ±)-citalopram, R/S( ±)-desmethylcitalopram, 
R/S( ±)-fluoxetine, R/S( ±)-propranolol, R/S( ±)-salbuta-
mol, R/S( ±)-venlafaxine, R/S( ±)-desmethylvenlafaxine, 
R/S( ±)-bisoprolol, R/S( ±)-acebutolol, R/S( ±)-metoprolol 
and R/S( ±)-sotalol (Table S1). The deuterated surrogates 
were R/S( ±)-amphetamine-d11, R/S( ±)-methamphetamine-
d11, R/S( ±)-atenolol-d7, R/S( ±)-chlorpheniramine-d6, 
R/S( ±)-citalopram-d6, R/S( ±)-fluoxetine-d6, R/S( ±)-pro-
pranolol-d7, R/S( ±)-salbutamol-d3, R/S( ±)-venlafaxine-d6, 
R/S( ±)-bisoprolol-d5, R/S( ±)-acebutolol-d5, R/S( ±)-meto-
prolol-d7 and R/S( ±)-sotalol-d6. Mixed calibration standards 
were prepared in methanol at 0.01–250 ng mL−1 (includ-
ing 200 ng mL−1 of each deuterated surrogate). These were 
stored at − 20˚C and prepared weekly. HPLC grade metha-
nol, acetic acid and ammonium acetate were purchased from 
Fisher Scientific (Loughborough, UK). Ultrapure water was 
18.2 MΩ cm−1 quality. Sediment (~ 500 g) from the top 5 cm 
surface layer was collected for method development from the 
River Don, Aberdeenshire. This was frozen at −20 °C until 
further processing.

Sample extraction

Sediments were freeze dried and sieved (2 mm). Two grams 
of samples was spiked with a methanolic mixture of all deu-
terated surrogates at 50 ng g−1 and left for 1 h. Samples were 
mixed with 1 g diatomaceous earth and packed into 10 mL 
accelerated solvent extraction cells (Fisher Scientific). The 

remaining cell volume was filled with Ottawa sand and two 
2–4 µm Dionex glass fibre filters (Fisher Scientific) fitted at 
each end. Sample extraction was performed using a Dionex 
ASE 350 (California, USA) system. The final method uti-
lised an extraction solvent of 50:50 water:methanol at 
100 °C. Two extraction cycles were undertaken per cell with 
the following settings: 5 min pre-heat, 5 min heat, 5 min 
static extraction time, 60% solvent flush volume, 150 s 
nitrogen purge and 1500 psi pressure. During development 
the influence of sample mass, extraction temperature and 
solvent composition to enantiomer recovery were investi-
gated. Collected extracts (~ 22 mL) were diluted to 250 mL 
using water (< 10% methanol content). Samples were loaded 
(5 mL min−1) onto Oasis HLB solid phase extraction car-
tridges (3 mL, 60 mg, Waters, Manchester, UK) precondi-
tioned with 2 mL methanol and 2 mL water at 1 mL min−1. 
Enantiomer elution was in 4 mL methanol at 1 mL min−1. 
Extracts were dried at 40 °C under nitrogen and reconsti-
tuted in 0.5 mL mobile phase.

Enantioselective liquid chromatography–tandem 
mass spectrometry

Chromatographic analysis was undertaken using an Agi-
lent 1200 series liquid chromatography system (Cheshire, 
UK) using an InfinityLab Poroshell 120 Chiral-V column 
(150 × 2.1 mm; 2.7 µm particle size) fitted with a 0.2 µm 
pre-filter. A polar ionic mobile phase consisting of 2 mM 
ammonium acetate in methanol containing 0.01% acetic acid 
at a flow rate of 0.15 mL min−1 was used (McKenzie et al. 
2020). The column temperature was 15 °C whilst the injec-
tion volume was 10 µL. The detector was an Agilent 6420 
triple quadrupole in positive electrospray ionisation mode. 
The capillary voltage was 4,000 V with a desolvation tem-
perature of 350 °C and nitrogen gas flow of 12 L min−1. The 
nebulising pressure was 50 psi. Nebulising, desolvation and 
collision gases were nitrogen. Multiple reaction monitoring 
transitions and instrument performance data are compiled in 
Table S2 and Table S3.

Study site

A sub-catchment of the River Don, Aberdeenshire known to 
be impacted by septic tank discharge and not any centralised 
wastewater treatment plants was focused upon (Ramage et al. 
2019). Five sampling locations were selected and ~ 100 g 
of sediment from the top 5 cm surface layer was collected. 
Samples were transported to the laboratory on ice and fro-
zen at − 20 °C in aluminium foil until further processing (as 
described in Sect. 2.2). Sediment was also collected from 
the River Don itself, approximately 7 km downstream of 
the nearest centralised wastewater treatment plant. Samples 
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were collected during October 2019 and all analysis was in 
triplicate.

Results and discussion

Method development

Vancomycin chiral selectors are popular due to their multi-
residue separation capabilities (Ribeiro et al. 2013; Evans 
et al. 2015; Petrie et al. 2018). A Poroshell 120 Chiral-V 
column was used due to the comparatively short run time 
(30 min) achievable for multi-residue analysis over other 
commercially available vancomycin columns (McKen-
zie et  al. 2020). Operation in polar ionic mode using a 
mobile phase of 2 mM ammonium acetate in methanol 
containing 0.01% acetic acid facilitated simultaneous 

enantioseparations (Fig. 1). In total, 12 of 15 drugs achieved 
the minimum enantiomer resolution  (RS) threshold of 1 for 
quantitative purposes (Evans et al. 2015). The remaining 
drugs had enantiomer  RS of 0.5–0.8 and the valley drop 
method was used for integration (Camacho-Muñoz and 
Kasprzyk-Hordern 2017). The inclusion of R/S( ±)-des-
methylcitalopram required a run time of 40 min (Fig. 1). 
Nevertheless, this remains shorter than previous enanti-
oselective methods for R/S( ±)-desmethylcitalopram which 
require ≥ 80 min (Evans et al. 2015).

Accelerated solvent extraction was used due to its previ-
ous success for extraction of drugs from soil followed by 
enantioselective analysis (Petrie et al. 2018). However, it 
was not possible to directly apply this extraction method 
to sediments. Extraction of 5 g (freeze dried) organic rich 
sediment resulted in loss of chiral recognition for most drugs 
in subsequent enantioselective analysis. Therefore, a new 
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Fig. 1  Enantioselective liquid chromatography–tandem mass spec-
trometry chromatograms of studied drugs at 100 ng mL−1. Each chro-
matogram shows the monitored MS/MS transition and enantiomer 
resolution. Key: E1, enantiomer 1;  E2, enantiomer 2 (where order 

of enantiomer elution is not known). S(−), S(−)-enantiomer; R( +), 
R( +)-enantiomer; S( +), S( +)-enantiomer; R(−), R(−)-enantiomer 
(where order of enantiomer elution is known)
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extraction protocol was needed. The maximum sample mass 
extractable which ensured no loss of chiral recognition was 
2 g. Due to the low ng  g−1 drug concentrations in sediments 
(Vazquez-Roig et al. 2010; Silva et al. 2011), further devel-
opment work was undertaken to ensure maximum recover-
ies were achieved. Both solvent extraction temperature and 
solvent composition were studied as they have considerable 
influence on drug recovery (Petrie et al. 2018).

Enantiomer recovery was investigated at extraction 
temperatures of 40, 60, 80, 100 and 120  °C. Findings 
showed ≥ 80 °C was required to achieve the greatest recov-
ery of the more hydrophobic drugs fluoxetine, venlafaxine, 
chlorpheniramine and citalopram (log  KOW > 3 Table S1). 
Recovery of 40% (12/30) of the studied enantiomers was 
significantly greater at 100 °C than any other temperature 
(Fig. 2). However, significantly higher recovery was achieved 
for some enantiomers at a different temperature (e.g. R(-)-
chlorpheniramine at 120 °C). Nevertheless, the best overall 
recovery for the suite of drugs investigated was at 100 °C. 
Analyte losses can be from the extraction processes but also 
by signal suppression during electro-spray ionisation (Petrie 
et al. 2018). Therefore, improved extraction at higher tem-
perature can be compensated by increased signal suppression. 
This could be the case at 120 °C as sample extracts were vis-
ibly ‘dirtier’ than other extraction temperatures.

The different water:methanol extraction solvent com-
positions investigated were 100:0, 75:25, 50:50, 25:75 and 
0:100. Methanol was selected as the organic solvent due to 
the greater performance over other solvents such as acetoni-
trile (Nieto et al. 2010). Greatest simultaneous recoveries 
were achieved using 50:50 water:methanol (Fig. 2). Under 
such extraction conditions (2 g sediment extracted at 100 °C 
using 50:50 water:methanol) enantiomer recoveries ranged 
from 22 ± 3% for R(−)-chlorpheniramine to 93 ± 5% for 
acebutolol-E1. This range of recoveries is comparable to 
multi-residue achiral methods for sediments (Vazquez-Roig 
et al. 2010).

Method performance

Performance of the methodology was assessed in terms 
of trueness, signal suppression and sensitivity. Method 

trueness (accounting for deuterated surrogate response) 
was determined at enantiomer concentrations of 10, 50 and 
100 ng g−1. All drug enantiomers displayed method trueness 
in the range 86–121% (Table 1). Both desmethylvenlafax-
ine and desmethylcitalopram had greatest deviation from 
100% as they did not have their own deuterated surrogate. 
Instead they were quantified using the corresponding enan-
tiomer of venlafaxine-d6 or citalopram-d6, respectively, and 
can only be considered semi-quantitative. Method precision 
was ≤ 20% for all enantiomers (Table 1).

Signal suppression during electrospray ionisation (i.e. 
loss of response due to co-extracted matrix quenching ana-
lyte signal) ranged from − 28% (i.e. signal enhancement) for 
salbutamol-E2 to 42% for R(-)-citalopram (Table 1). Such 
losses are low considering it is not uncommon to encoun-
ter > 50% suppression (Vazquez-Roig et al. 2010; Petrie 
et al. 2018). However, several drugs including citalopram, 
salbutamol, acebutolol, metoprolol, atenolol and ateno-
lol demonstrated enantiospecific suppression (e.g. > 10% 
between enantiomers). To demonstrate, signal suppression 
of acebutolol-E1 and acebutolol-E2 were − 4% and 34%, 
respectively (Table 1). Such observations demonstrate the 
necessity of using deuterated surrogates for enantioselective 
analysis of sediments.

Method sensitivity was assessed by determining the 
method detection and quantitation limits. Method quanti-
tation limits were ≤ 3 ng g−1 for all enantiomers with the 
majority being < 1 ng g−1 (Table 1). Such limits enable the 
determination of drugs at the enantiomeric level consider-
ing the concentrations previously reported in sediments 
(Vazquez-Roig et al. 2010; Silva et al. 2011). Furthermore, 
the method detection and quantitation limits are similar to 
previously published achiral methodologies for sediments 
(Vazquez-Roig et al. 2010; Al-Khazrajy and Boxall 2017).

Enantiomeric profiling of chiral drugs in sediments

The new methodology was applied to freshwater sedi-
ments collected in North-East Scotland (Fig. 3). Sampling 
focused on a small stream impacted by septic tank discharge 
(Ramage et al. 2019). The receiving river impacted by both 
wastewater treatment plant effluent and septic tanks was also 
sampled. Within the small stream, sediment was collected 
from a control site with no upstream households. Here, the 
surrounding land use was arable crop with no biosolids or 
animal slurry applications within the last two years. No drug 
enantiomers were detected at this location (Fig. 3).

Samples 1–3 were collected downstream of a sus-
pected septic tank effluent discharge point (without dis-
sipation though a soak away) (Ramage et al. 2019). Both 
fluoxetine and amphetamine were present. Concentra-
tions of S( +)-fluoxetine ranged from 1.6 to 5.0 ng g−1 and 

Fig. 2  Influence of extraction temperature (a) and water:methanol 
extraction solvent composition (b) on enantiomer recovery. Note: at 
varying extraction temperature the solvent composition was 50:50 
water:methanol (a), and under varying water:methanol extraction sol-
vent compositions the temperature was 100 °C (b). The spiking con-
centration was 50 ng g−1 and all analysis was performed in triplicate. 

Key: aRecovery(% ) =
(PAS−PAU)

PASTD

. where  PAS is peak area of the 
extracted spiked sample,  PAUis the peak area of the unspiked sample 
and  PASTD is the peak area of a corresponding standard solution 
assuming 100% recovery through the extraction process

◂
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R(−)-fluoxetine from 1.0 to 3.4 ng g−1 (Fig. 3). Chiral drug 
composition was described using enantiomeric fraction:

(1)Enantiomeric fraction =
(+)

[(+) + (−)]

Here ( +) is the concentration of the ( +)-enantiomer and (-) 
is the concentration of the (−)-enantiomer. In each sediment 
an enrichment of S( +)-fluoxetine resulted in enantiomeric 
fractions of 0.59–0.61.. The enantiomeric composition of 

Table 1  Performance data of the accelerated solvent extraction-solid phase extraction-enantioselective liquid chromatography–tandem mass 
spectrometry methodology

SD, standard deviation; MDL, method detection limit; MQL, method quantitation limit
a Trueness(%) = (ConcS−ConcU)

Spike
× 100 where  ConcS is the determined concentration of the spiked sample,  ConcUis the concentration of the 

unspiked sample and Spike is the spiked concentration.
b Signal suppression(%) = 100 −

(

SlopeM

SlopeS
× 100

)

 where  SlopeMM is the slope of the external calibration prepared in matrix and  SlopeS is the slope 
of the external calibration prepared in methanol.

c MDL (ng g−1) =
(S.IDL×100)

(Rec× CF)

d MQL (ng g−1) =
(S.IQL×100)

(Rec ×CF)
 where S is the volume of sample used for extraction divided by the mass of sample extracted (mL  g−1), IDL and IQL 

are the instrument detection and quantitation limits, respectively (ng  mL−1), Rec is the absolute recovery (%, not accounting for the deuterated 
surrogate response) and CF is the concentration factor.

Drug group Enantiomer Method trueness (% ± SD)a Signal sup-
pression (%)b

MDL (ng  g−1)c MQL (ng  g−1)d

10 ng g−1 50 ng g−1 100 ng g−1

Beta-blocker Metoprolol-E1 96 ± 12 99 ± 4 87 ± 3 3 0.26 0.81
Metoprolol-E2 96 ± 15 100 ± 5 95 ± 4 13 0.28 0.87
Bisoprolol-E1 104 ± 11 101 ± 5 90 ± 2 14 0.03 0.13
Bisoprolol-E2 106 ± 12 97 ± 4 99 ± 3 21 0.03 0.13
S(−)-propranolol 101 ± 15 102 ± 4 95 ± 1 17 0.10 0.32
R( +)-propranolol 94 ± 2 100 ± 4 102 ± 3 18 0.10 0.34
Acebutolol-E1 102 ± 8 95 ± 5 91 ± 4 -4 0.03 0.11
Acebutolol-E2 104 ± 18 99 ± 2 101 ± 3 34 0.05 0.19
S(−)-atenolol 107 ± 9 102 ± 1 95 ± 4 19 0.91 3.05
R( +)-atenolol 100 ± 7 102 ± 1 101 ± 3 2 0.85 2.84
Sotalol- E1 96 ± 5 102 ± 3 90 ± 2 2 0.38 1.24
Sotalol-E2 95 ± 9 98 ± 4 96 ± 6 29 0.55 1.78

Beta-agonist Salbutamol-E1 106 ± 1 103 ± 3 92 ± 2 − 15 0.08 0.24
Salbutamol-E2 102 ± 3 98 ± 2 101 ± 3 − 28 0.08 0.24

Stimulant S( +)-amphetamine 104 ± 13 98 ± 2 88 ± 4 17 0.07 0.26
R(−)-amphetamine 103 ± 1 101 ± 2 98 ± 3 11 0.06 0.24
S( +)-methamphetamine 104 ± 16 100 ± 3 93 ± 3 26 0.05 0.15
R(−)-methamphetamine 99 ± 17 95 ± 3 99 ± 6 28 0.07 0.20

Anti-histamine S( +)-chlorpheniramine 103 ± 7 86 ± 4 95 ± 13 21 0.19 0.64
R(−)-chlorpheniramine 103 ± 12 91 ± 6 96 ± 9 22 0.34 1.14

Anti-depressant S( +)-fluoxetine 102 ± 11 98 ± 6 93 ± 4 27 0.42 1.33
R(−)-fluoxetine 99 ± 7 94 ± 5 99 ± 6 20 0.31 1.00
Venlafaxine-E1 90 ± 17 99 ± 4 94 ± 7 11 0.03 0.14
Venlafaxine-E2 100 ± 20 103 ± 3 101 ± 5 13 0.04 0.17
Desmethylvenlafaxine-E1 113 ± 13 109 ± 7 109 ± 11 24 0.14 0.47
Desmethylvenlafaxine-E2 112 ± 17 121 ± 5 115 ± 14 22 0.12 0.43
R(−)-citalopram 103 ± 16 102 ± 7 103 ± 11 42 0.29 0.99
S( +)-citalopram 104 ± 11 102 ± 10 105 ± 8 30 0.30 1.04
Desmethylcitalopram-E1 120 ± 13 112 ± 11 105 ± 3 32 0.28 0.94
Desmethylcitalopram-E2 112 ± 8 104 ± 16 108 ± 17 37 0.31 1.06
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fluoxetine in sediments agrees with other environmental 
matrices such as wastewater effluent (Evans et al. 2015). 
All amphetamine enantiomers were present at concentra-
tions in the range 2.1–5.4 ng g−1 (Fig. 3). An enrichment 
of R(−)-amphetamine resulted in enantiomeric fractions of 
0.39–0.44. This corresponds with previous research whereby 
amphetamine in this stream water was 470 ng  L−1 with an 
enantiomeric fraction of 0.43 (Ramage et al. 2019). Interest-
ingly, < 1 km downstream (prior to the stream discharge into 
the receiving river), no drug enantiomers were found. This 
indicates a localised impact of septic tanks to sediments. 
However, differences in the composition of sediments could 
play a role (Al-Khazrajy and Boxall 2016), and requires fur-
ther investigation for this catchment.

In the sediment sample collected from the receiving 
river, enantiomers of seven drugs were present. Enan-
tiomer concentrations of the beta-blockers acebutolol, 
bisoprolol and metoprolol were below quantitation lim-
its (Fig. 3). S(-)-propranolol and R( +)-propranolol were 
present at 4.1 ± 1.4 ng g−1 and 3.5 ± 1.0 ng g−1, respec-
tively. This is in agreement with other environmental stud-
ies whereby enrichment of S(−)-propranolol is typically 
observed (Fono and Sedlak 2005). Enantiomers of the 
antidepressants venlafaxine, fluoxetine and citalopram 
were at low ng  g−1 concentrations and enantiomeric frac-
tions of 0.50, 0.60 and 0.40, respectively (Fig. 3). The 
study showed that the most drugs in freshwater sediments 

were non-racemic (enantiomeric fraction ≠ 0.50). There-
fore, further investigation is needed on the enantiospecific 
fate and effects of chiral drugs in freshwater sediments.

Conclusion

Reported here is the first analytical method for the multi-
residue enantioselective profiling of chiral drugs in river 
sediment. Application of the methodology revealed the 
enantiomeric composition of several drug in sediment for 
the first time including fluoxetine, amphetamine, proprano-
lol, venlafaxine and citalopram. Most of the drugs were 
present in non-racemic form demonstrating further enan-
tiospecific investigations are needed in sediments. Such 
studies can be facilitated using this new multi-residue 
methodology.
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R(+)-propranolol 3.5± ng g-
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Fig. 3  Enantiomer concentrations and enantiomeric fractions of those 
drugs detected in sediments collected from a small stream (< 0.1 
 m3 s−1) impacted by septic tank discharge and a receiving river (9.5 

 m3  s−1) impacted by wastewater treatment plants and septic tanks. 
Key: EF, enantiomeric fraction, < MQL, below method quantitation 
limit
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