
Vol.:(0123456789)1 3

Environmental Chemistry Letters (2020) 18:1491–1507 
https://doi.org/10.1007/s10311-020-01020-x

REVIEW

Photocatalytic ozonation of wastewater: a review

Achisa C. Mecha1  · Martha N. Chollom2

Received: 9 December 2019 / Accepted: 1 June 2020 / Published online: 8 June 2020 
© Springer Nature Switzerland AG 2020

Abstract
Industrialization is inducing water pollution by pharmaceuticals, fertilizers and cosmetics. Many emerging pollutants are 
non-biodegradable, toxic and recalcitrant to conventional wastewater treatments, thus calling for improved remediation tech-
niques such as advanced oxidation processes which allow complete mineralization of pollutants. Here we review advanced 
oxidation processes with focus on ozonation and photocatalysis for the degradation of organic and microbial contaminants 
in wastewaters. Ozonation efficiency is limited by ozone-resistant pollutants, whereas photocatalysis is slow due to charge 
recombination, yet photocatalytic ozonation overcomes these limitations. Photocatalytic ozonation indeed shows synergy 
indices of up to 5.8 for treating wastewaters. This resulted in faster reaction kinetics, enhanced pollutant degradation with 
mineralization achieved in most cases, and reduction of toxicity up to 100%. We also discuss energy requirements.
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Introduction

The protection of natural water resources and development 
of new technologies for water and wastewater treatment 
for reuse are key priorities of the twenty-first century. The 
environmental degradation caused by emerging biorecalci-
trant organic compounds such as pharmaceuticals, cosmet-
ics, fertilizers and resistant microbial pollutants is a global 
concern resulting in scarcity of fresh water in various parts 
of the world (Valério et al. 2020). However, the current con-
ventional wastewater treatment technologies are often not 
effective in meeting the stringent effluent standards targeting 
the removal of emerging contaminants (Dewil et al. 2017). 
There is need to develop more effective treatment technolo-
gies that satisfy a range of requirements such as complete 
removal of biorecalcitrant organic pollutants, inactivation 
of resistant pathogens, less costly, energy efficient and envi-
ronmentally friendly (Singh 2012; Mecha et al. 2017a, b). In 
this regard, advanced oxidation processes, especially those 
driven by solar light, have great potential in wastewater 

remediation targeting emerging contaminants (Rizzo et al. 
2019; Rodríguez et al. 2019).

The advanced oxidation processes are destructive tech-
nologies which degrade contaminants. However, despite 
their overall high degradation efficiency, large-scale practi-
cal implementation has not been realized (Matafonova and 
Batoev 2018). This is partly due to high process costs since 
they are energy intensive. Also information regarding their 
performance is not standardized, for instance, a direct com-
parison of different advanced oxidation processes is difficult. 
In fact even the use of the electrical energy per order (EEO) 
concept for comparison is hampered by variation in influ-
encing factors (Miklos et al. 2018). The advanced oxidation 
processes break down complex organics into simpler, less 
harmful ones such as carbon dioxide and water, a process 
known as mineralization (Bethi et al. 2016). However, in 
cases where mineralization is not achieved, the intermediate 
products produced may be toxic, thus re-contaminating the 
treated water and thereby endangering humans, ecological 
systems and the environment (Wang et al. 2018). This makes 
it necessary therefore to study the toxicity of treated water 
before discharge or reuse.

Among the advanced oxidation processes, ozonation and 
photocatalysis have received wide attention and recently pho-
tocatalytic ozonation has come to the limelight. Thus, here 
in, we review the principles of operation of advanced oxida-
tion processes; performance of ozonation and its limitations; 
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performance of heterogeneous photocatalysis and its limita-
tions; combination of photocatalysis and ozonation to over-
come the challenges of the individual processes; application 
of photocatalytic ozonation in wastewater treatment. We also 
address pertinent aspects required for real application of photo-
catalytic ozonation such as synergy of the combined processes, 
toxicity of treated water, energy requirements and photocata-
lyst recovery and reuse. Figure 1 shows a laboratory scale pho-
tocatalytic ozonation system.

Advanced oxidation processes

Principles of advanced oxidation processes

The advanced oxidation processes are near-ambient tem-
perature and pressure processes that involve the generation of 
highly reactive radicals (Glaze et al. 1987; Miklos et al. 2018). 
Although advanced oxidation processes make use of different 
reaction systems, they are all characterized by the production 
of highly reactive hydroxyl (·OH) radicals. The standard redox 
potential of ·OH radicals (2.8 V) is much higher compared 
to that of common oxidants such as ozone (2.07 V), hydro-
gen peroxide (1.77 V) or even chlorine (1.36 V) (Pelaez et al. 
2012). The ·OH radicals are non-selective and therefore can 
virtually degrade any organic contaminant present in waste-
water including those that are biorecalcitrant (Andreozzi et al. 
1999; Valério et al. 2020). This is a useful attribute for an 
oxidant to be used in the treatment of wastewaters which nor-
mally contains a variety of pollutants. The ·OH radicals can 
react in aqueous solution through three possible mechanisms: 
(1) hydrogen abstraction (Eq. 1), (2) electron transfer (Eq. 2) 
and (3) radical addition (Eq. 3):

(1)OH⋅ + RH → H2O + R⋅

(2)OH⋅ + RH → RX+⋅ + OH−

The advanced oxidation processes when properly devel-
oped can provide a complete solution to the problem of pol-
lutant abatement (through mineralization) in contrast to the 
phase separation processes (such as membrane separation 
and adsorption), which produce sludge that requires final 
disposal and introduces secondary pollution.

Classification of advanced oxidation processes

Advanced oxidation processes fall under two general catego-
ries. The first utilizes light energy such as ultraviolet (UV) 
light in conjunction with other chemical additives. Under 
this category are processes such as UV/H2O2, UV/ozone 
 (O3), UV/titanium dioxide  (TiO2) and UV/Fenton. When no 
light source is used, the technology can be termed as a dark 
oxidative process. Processes in this category include ozona-
tion, Fenton’s reagent, ultrasound and microwaves among 
others (Gilmour 2012). Thus, advanced oxidation processes 
include chemical oxidants  (H2O2, ozone, etc.), Fenton and 
photo-Fenton processes  (Fe2+/H2O2/UV), photocatalytic 
processes (semiconductor with UV/visible light), supercriti-
cal water oxidation, electron beams and ultrasounds (Rizzo 
2011; Khataee and Fathinia 2013). These processes are 
based on the in situ generation of highly reactive transitory 
species  (H2O2, ·OH,  O2 −,  O3) for mineralization of refrac-
tory organic compounds and inactivation of waterborne 
pathogens (Hoigne 1998; Esplugas et al. 2002; Tsydenova 
et al. 2015) simultaneously. Due to rapid oxidation reactions, 
advanced oxidation processes are characterized by high 
reaction rates and short treatment times, which make them 
promising in wastewater treatment (Hoigne 1998; Esplugas 
et al. 2002). A general classification of advanced oxidation 
processes is given in Table 1. 

(3)OH⋅ + PhX → HOPhX⋅

Fig. 1  Laboratory scale pho-
tocatalytic ozonation system 
showing an immersed lamp 
ultraviolet (UV) reactor with a 
cooling water circulation sys-
tem, magnetic stirrer, air supply 
and ozone generator



1493Environmental Chemistry Letters (2020) 18:1491–1507 

1 3

Advantages of advanced oxidation processes

The advanced oxidation processes have unique advantages 
over conventional treatment processes such as (1) opera-
tion under ambient conditions of temperature and pressure, 
(2) effectiveness in destroying biorecalcitrant organic com-
pounds, (3) mineralization of organic contaminants into car-
bon dioxide if desired, without any waste disposal problem, 
and (4) production of minimal harmful by-products (Zhou 
and Smith 2002; Parsons 2004). In most instances, advanced 
oxidation processes are used to supplement rather than to 
replace conventional systems and to enhance the treatment 
of organic micropollutants and pathogens. They are there-
fore used as pretreatment to convert recalcitrant pollutants 
into biodegradable compounds that can then be treated by 
conventional biological methods. They are also used for the 
degradation of recalcitrant pollutants as a post-treatment 
after the biological process to polish the effluent before 
discharge or reuse (Wang and Xu 2012). The main idea of 
the combination is the use of a more expensive technology 
only in the first or final step of the treatment to reduce costs 
(Černigoj 2007).

Disadvantages of advanced oxidation processes

The major disadvantage of these processes is their high cost 
resulting from the costly reagents and light energy sources 
like UV light (Esplugas et al. 2002). However, this can be 
addressed for instance by the development of visible light 
active catalysts (hence enable the use of natural sunlight) 
and improved reactor design to ensure optimal utilization 
of the oxidants. Recent research efforts have focused more 
on those photocatalytic processes, which can be driven by 
solar irradiation to reduce dependency on electrical energy 
and hence reduce costs (Mecha et al. 2016a, b). The use 
of renewable and free solar energy in such processes could 
substantially decrease treatment costs and be more environ-
mental friendly for wastewater decontamination. Among the 
many advanced oxidation processes that have been studied, 

ozonation and photocatalysis are prominent for wastewater 
treatment (Esplugas et al. 2002) and are explored further in 
this review.

Ozonation

Introduction to ozone

Ozone is a gas with a pungent smell that is generated on-
site from dry air or pure oxygen. The formation of ozone is 
endothermic, and ozone is thermodynamically unstable and 
thus readily reverts to oxygen ( 3O2 ↔ 2O3 ) (Zhou and Smith 
2002; Gardoni et al. 2012). Ozone is a strong oxidizing agent 
and is used as a chemical reagent in synthesis, water and 
wastewater treatment and bleaching agent. Its use in water 
and wastewater treatment is based on its effectiveness in (2) 
disinfection, (2) oxidation of biorecalcitrant pollutants, (3) 
removal of taste and odour and colour and (4) reduction of 
turbidity (Gray 2014; Mecha et al. 2018). Advantages of 
ozone include: (1) it can be easily produced from air or oxy-
gen by electric discharge; (2) it reacts readily with organic 
and inorganic compounds; (3) multiple applications such 
as disinfection, reduction of chemical oxygen demand, col-
our, odour and turbidity of the water treated; and (4) any 
excesses of ozone in water decompose readily to oxygen, 
without leaving any residue.

Mechanism of ozone oxidation

In aqueous solution, ozone reacts with various constitu-
ents in two ways: (1) direct oxidation by molecular ozone 
which involves selective reactions, such as electrophilic, 
nucleophilic or dipolar addition reactions with low reaction 
rates (Hoigne 1998), and (2) indirect mechanism through 
the decomposition of ozone to produce ·OH radicals, which 
are non-selective and highly reactive (Miklos et al. 2018). 
Ozone and ·OH radicals are strong chemical oxidants and 
are involved in disinfection and oxidation of contaminants 

Table 1  Advanced oxidation processes showing the different processes, reagents and conditions

Process Reagents/conditions used References

Chemical oxidation Ozone  (O3), hydrogen peroxide  (H2O2) Postigo and Richardson (2014), Devatkal et al. (2016) and 
Mecha et al. (2016c)

Fenton processes Fe2+ and  H2O2;  Fe2+ and  H2O2 with UV light Rodríguez-Chueca et al. (2015), Ahmed et al. (2017) and Jain 
et al. (2018)

UV-based processes UV and  O3; UV and  H2O2
UV and  O3 and  H2O2

Ferro et al. (2016) and Mecha et al. (2016a)

Photocatalytic redox processes Semiconductor  (TiO2, ZnO) and UV light Kanakaraju et al. (2014) and Mecha et al. (2016b)
Supercritical water oxidation High temperature and pressure Busca et al. (2008), Malik et al. (2014) and Tembhekar et al. 

(2015)
Sonolysis Ultrasound Nam et al. (2015) and Rayaroth et al. (2016)
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(Gray 2014). The overall reaction for the production of ·OH 
from ozone is given as:

Limitations of ozonation

A major limitation of ozone is that it oxidizes refractory 
organic compounds, but only minimal mineralization is 
achieved (Bashiri and Rafiee 2014) due to the formation 
of ozone recalcitrant intermediate compounds (Chin and 
Berube 2005; Mecha et al. 2016c). When used for disinfec-
tion, regrowth of the microorganisms cannot be prevented 
because of the difficulty in maintaining residual ozone. This 
requires the use of a secondary disinfectant such as chlo-
rine to maintain a residual especially if the treated water is 
intended for consumption (Demir and Atguden 2016). Other 
disadvantages include: (1) the yield of ozone generator is 
low (6–12% from oxygen and 4–6% from air); (2) ozone is 
unstable and has to be generated on-site due to challenges 
with storage and transportation; and (3) limitations of mass 
transfer of ozone into water.

Heterogeneous photocatalysis

Overview of heterogeneous photocatalysis

Heterogeneous photocatalysis has become an increasingly 
viable technology in environmental remediation. A photo-
catalytic process usually requires the following elements: 
a semiconductor or photocatalyst, a light source, a reactor 
system, the pollutant and oxygen (Vamathevan et al. 2001). 
The oxidizing species either free holes or ·OH radicals are 
generated under ambient conditions. Heterogeneous photo-
catalytic technologies have advantages over other advanced 
oxidation processes such as operation under ambient condi-
tions of temperature and pressure, the use of oxygen from the 
air as oxidant, the possibility of using solar light to drive the 
process and the complete destruction of most contaminants 
without generating secondary waste (mineralization). These 
attributes are very important from the energy consumption 
and environmental impact perspectives (van Grieken et al. 
2009a; Zangeneh et al. 2015).

Properties of photocatalysts

Photocatalysts are materials that are activated by adsorb-
ing photons and are capable of accelerating reactions with-
out being consumed (Umar and Aziz 2013). Some basic 
requirements of a good photocatalyst include high photo-
activity, biological and chemical inertness, photostability 

(4)3O3 + OH− + H+
→ 2OH⋅ + 4O2

and non-selectivity in most cases (Pirkanniemi and Sillan-
pää 2002; Kumar and Bansal 2013). To reduce the electri-
cal energy requirements, it is desirable for the photocata-
lyst to be able to utilize not only UV light, but also visible 
light from solar energy. The photocatalyst also needs to be 
inexpensive. Based on these properties, the most popular 
photocatalyst for use in water treatment is titanium dioxide 
because it encompasses most of the above-mentioned prop-
erties (Andreozzi et al. 1999; Rizzo et al. 2019).

Titanium dioxide as a potential photocatalyst

Titanium dioxide exists in three crystalline forms, namely, 
brookite, rutile and anatase. Among these, rutile and anatase 
are the commonly used forms; however, anatase is mostly 
used in photocatalytic treatment of wastewater. The com-
position of titanium dioxide is temperature dependent; for 
instance, rutile is more stable than anatase thermodynami-
cally, but at temperatures below 600 °C the formation of 
anatase is kinetically favoured (Carp et al. 2004). In most 
of the photocatalytic studies, anatase has been shown to be 
more photoactive as compared to rutile. This is attributed to 
the fact that anatase has a slightly higher Fermi level, higher 
capacity to adsorb oxygen and a higher degree of hydroxy-
lation of the surface. In terms of light absorption, rutile is 
able to absorb light with a wavelength of 415 nm, whereas 
anatase only absorbs at 385 nm (Fujishima et al. 2008). A 
commercially widely used titanium dioxide, Degussa P25, 
has been used in many studies due to its high photoactivity 
under UV light irradiation. It is non-porous, is composed 
of 70–90% anatase and 10–30% rutile, has a surface area 
of 55 ± 15 m2/g and crystallite sizes of 30 nm (Hoffmann 
et al. 1995; Valério et al. 2020). In most cases, mixed phase 
titanium dioxide photocatalysts are found to perform better 
(Carp et al. 2004).

Limitations of titanium dioxide photocatalysis

The efficiency of photocatalytic reactions is dependent on 
the degree of electron–hole recombination inherent in pro-
cesses and the light absorption capability of photocatalysts 
(Vamathevan et al. 2002). Consequently, the conspicuous 
drawback of titanium dioxide is that after excitation, the 
photogenerated charge carriers depict a high rate of recom-
bination. The electron–hole recombination declines the 
overall efficiency of the semiconductor by decreasing the 
quantum yield of the desired oxidation/reduction processes. 
This results in slow reaction kinetics resulting from charge 
recombination. Furthermore, titanium dioxide has a wide 
band gap (3.2 eV for anatase), which requires UV light 
to produce ·OH radicals during the photocatalytic process 
(Nahar et al. 2006; Ambrus et al. 2008). This constitutes a 
significant energy consumption problem, thereby increasing 
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the electricity requirements. Moreover, it limits the applica-
tion of solar radiation, which contains 4–6% UV irradiation. 
On the other hand, visible light constitutes a large portion 
of solar light spectrum (approximately 45%) (Castillo et al. 
2013), and to apply it in photocatalytic treatment of waste-
water, there is need to develop visible light-responsive pho-
tocatalysts. This can be achieved by catalyst modification 
processes to cause a red shift in the semiconductor’s light 
response to the visible spectrum.

The development of a new titanium dioxide photocat-
alysts with increased activities under visible light can be 
attained through various modification techniques such as 
bulk modification, surface modification and sensitization 
of titanium dioxide (Zaleska 2008; Mital and Manoj 2011; 
Lazar et al. 2012; Zangeneh et al. 2015). The major prac-
tices involve catalyst modification by doping using metal 
and non-metal ions, metal coating, surface sensitization and 
increase in surface area by design and development of sec-
ondary titania photocatalyst. Among these modifications, 
metal-ion doping is reported to be effective in improving 
the visible light activity of titanium dioxide (Silva 2008; 
Mecha et al. 2016b).

Modification of titanium dioxide using metal‑ion 
doping

Doping titanium dioxide with metal ions is an important 
approach in band gap engineering to change the optical 
response of titanium dioxide. The principle entails the intro-
duction of localized bands of orbitals within the titanium 
dioxide band gap (bathochromic shift). Consequently, this 
reduces the recombination of photogenerated electrons and 
holes and extends the light absorption of the photocatalyst 
into the visible region resulting from charge-transfer transi-
tion between the d electrons of the metals and the conduction 
band or valance band of titanium dioxide (Zangeneh et al. 
2015).

Transition metal doping species improve the trapping of 
electrons to inhibit electron–hole recombination during illu-
mination (Mital and Manoj 2011). However, not all transition 
metals can achieve this; only transition metals such as  Fe3+ 
and  Cu2+ inhibit electron–hole recombination (Vamathevan 
et al. 2001). They also increase the electron–hole pair sepa-
ration efficiency, thus inhibiting their recombination and 
hence improving the photocatalytic activity under visible 
light irradiation (Pham and Lee 2014). Noble metals such 
as platinum, gold and silver have high Schottky barriers and 
thus act as electron traps and facilitate electron–hole separa-
tion. There are different mechanisms for noble metal doping 
on titanium dioxide depending on the photoreaction condi-
tions. They may (1) enhance the electron–hole separation by 
acting as electron traps, (2) enable visible light absorption 
and enhance plasmon resonance surface electron excitation 

under visible light and (3) modify the surface properties of 
photocatalysts (Sobana et al. 2006).

Although visible light activity of metal-ion-doped tita-
nium dioxide leads to the reduction of the energy require-
ments, it still does not solve the challenge of slow reaction 
kinetics encountered in photocatalysis. Therefore, despite 
the great potential of heterogeneous photocatalysis for the 
removal of persistent non-biodegradable organic pollutants 
from wastewater, it suffers from the significant challenge of 
low oxidation rate (Augugliaro et al. 2006). This limitation 
may be addressed through the combination of photocatalysis 
with other oxidation processes such as ozonation, which is a 
better electron scavenger than oxygen.

Coupling photocatalysis and ozonation

Motivation for combining photocatalysis 
and ozonation

Ozone oxidation of organic pollutants is generally a fast 
process; however, a significant mineralization of the pol-
lutant rarely occurs because of the formation of ozone-
resistant and stable degradation by-products such as car-
boxylic acids (Hsu et al. 2007). These carboxylic acids are 
formed by opening the aromatic ring and are very resistant 
to oxidation by ozone, and hence, they limit the minerali-
zation potential (Kasprzyk-Hordern et al. 2003; Zou and 
Zhu 2008). On the other hand, photocatalysis presents the 
advantage of achieving complete contaminant mineraliza-
tion. However, long degradation time is required because of 
the low oxidation rates (Agustina et al. 2005). To improve 
the overall performance, heterogeneous photocatalysis has 
in recent times been combined with other processes, which 
affect the chemical kinetics and/or the overall efficiency. For 
instance, the efficiency of titanium dioxide photocatalytic 
process can be improved by adding oxidant species such as 
ozone (Rajeswari and Kanmani 2009a). When photocataly-
sis is coupled with ozonation, the combination influences 
the photocatalytic mechanisms by increasing the efficiency 
and decreasing the reaction time in respect of the individual 
processes (Augugliaro et al. 2006). It reduces the ozone dos-
age required (Silva et al. 2019), which further leads to low 
costs of water treatment and reduced formation of ozone dis-
infection by-products (Meunier et al. 2006). Photocatalytic 
ozonation has a superior performance than the individual 
processes (Shinpon et al. 2002; Rajeswari and Kanmani 
2009a). For instance, Müller et al. (1998) showed that the 
advantages of photocatalysis achieving a constant decline 
in dissolved organic carbon, and of ozonation preventing 
the accumulation of high intermediate concentrations, were 
beneficial during photocatalytic ozonation of 2,4-dichloro-
phenoxyacetic acid. Therefore, integrating ozonation and 
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photocatalysis enables the exploration of the advantages of 
both processes and synergies, while also overcoming their 
individual limitations. Moreover, the similarities between 
the mechanism of photocatalysis and ozonation and opera-
tion under some common process conditions point towards 
the synergy between these methods leading to better results 
as compared to individual techniques (Gogate and Pandit 
2004). Consequently, there is a growing shift from the use 
of individual processes to combined oxidation processes, 
which result in increased overall degradation of several pol-
lutants. This has been attributed to enhanced generation of 
·OH radicals, eventually increasing the oxidation rates, or 
improving the contacting of the generated free radicals with 
the pollutants and effective utilization of oxidants (Wang 
and Xu 2012).

Factors influencing photocatalysis and ozonation

To explore the combination of photocatalysis and ozone in 
wastewater treatment, it is necessary to understand the main 
factors affecting the performance of these processes. In addi-
tion, understanding the impact of various process parameters 
that govern photocatalytic and ozone degradation efficiency 
is paramount from the design and the operational points of 
view when choosing a sustainable technique for the treat-
ment of wastewater. Photocatalysis and ozonation reaction 
rates are affected by operating conditions such as reactor 
type, oxygen concentration, ozone concentration, solution 
pH, catalyst loading, substrate concentration and water 
matrix. The physical and chemical intrinsic properties of 
the photocatalyst such as the crystal composition, surface 
area and crystallite size are also important factors. These 
are described in detail in a previous study (Mecha 2017) and 
briefly summarized below.

Reactor design/type

Photocatalytic reactors for wastewater treatment can be cat-
egorized based on the following aspects: (1) the state of the 
catalyst in the reactor (slurry or immobilized catalyst pho-
toreactors), (2) the source of irradiation (natural, e.g. sun-
light, or artificial, e.g. UV lamp) and (3) the position of the 
light source (immersed or external) (Silva 2008). In slurry 
reactors, fine particles of the solid semiconductor material 
are dispersed in the liquid phase using either mechanical or 
magnetic stirrers. An air supply is usually provided to scav-
enge the electrons and prevent electron–hole charge recom-
bination; aeration also helps in catalyst dispersion. Slurry 
reactors are often used to study degradation kinetics since 
they are characterized by large catalytic surface area and low 
mass transfer limitations compared to immobilized catalyst 
systems (Choi et al. 2009). Regarding the source of light, 
artificial radiation sources include arc lamps, incandescent 

lamps, fluorescent lamps and lasers. Instead of artificial light 
sources, solar radiation can also be used and it is a more 
convenient and economical source of light, especially in 
places with high insolation levels. The source of light can 
be immersed (common in commercial UV reactors) in the 
reactor or be external (common in solar radiation reactors) to 
the reactor. Nevertheless, irrespective of the reactor design 
selected, the primary focus should be that uniform irradia-
tion of the entire catalyst surface is achieved at the incident 
light intensity. Photocatalytic ozonation reactors are essen-
tially similar to photocatalytic reactors except that instead of 
oxygen being the electron scavenger, ozone is used.

Irradiation intensity

The extent of light absorption by the photocatalyst and the 
rate of electron–hole formation depend on the light intensity 
(Cassano and Alfano 2000). Although the form of the light 
does not affect the reaction pathway (Gaya and Abdullah 
2008), with increase in light intensity, the catalyst absorbs 
more photons, thus enhancing the production of elec-
tron–hole pairs, ·OH radicals and contaminant degradation 
(Zangeneh et al. 2015).

Oxygen and ozone concentration

Oxygen acts as an electron scavenger/acceptor in photocata-
lytic reactions to produce super oxide radical ions (O⋅−

2
) , 

and an optimal oxygen supply should be used (Kabra et al. 
2004). It has been reported that oxygen does not affect the 
adsorption on the titanium dioxide catalyst surface as the 
reduction reaction takes place at a different location from 
where oxidation occurs (Gaya and Abdullah 2008). Nev-
ertheless, the dissolved oxygen improves the separation of 
photogenerated electrons, thus preventing electron–hole 
recombination (Yamazaki et al. 2001). The absence of oxy-
gen suppresses photocatalytic activity because of the back-
electron transfer from charged species present on photocata-
lyst surface (Chatterjee and Dasgupta 2005). An increase in 
the ozone concentration increases the pollutants degradation 
efficiency due to the high oxidant/contaminant ratio (Beltrán 
et al. 1997). For photocatalytic ozonation, ozone being a bet-
ter electron scavenger than oxygen makes the oxidation pro-
cess to take place faster and more effectively. This is because 
 O3 is more electrophilic than  O2 towards electrons generated 
on the titanium dioxide surface (Hernández-Alonso et al. 
2002).

Contaminant concentration

The contaminant degradation rate increases with an increase 
in its initial concentration to a certain level beyond which 
leads to a decrease of the degradation rate (Umar and Aziz 
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2013). This is because of reduction in light penetration into 
the solution as well as complete catalyst coverage leading 
to fewer photons reaching the catalyst surface (Nam et al. 
2002). Photocatalysis occurs primarily on the surface of the 
catalyst; thus, the quantity of the contaminant adsorbed on 
the surface of the photocatalyst should be considered (Guet-
taï and Ait Amar 2005; Gaya and Abdullah 2008).

Photocatalyst concentration

The concentration of titanium dioxide particles affects the 
light penetration and the surface area for adsorption. As the 
catalyst concentration increases, the number of ·OH radicals 
generated increases (Mozia 2010). Beyond a certain catalyst 
concentration, solution turbidity impedes the penetration of 
the irradiation and the reaction rate decreases (Bahnemann 
et al. 2007).

Initial solution pH

The solution pH determines the surface charge of the 
photocatalyst and agglomeration of the catalyst particles. 
It also influences the production of ·OH radicals, since a 
higher concentration of hydroxyl ions  (OH−) results in 
a higher production of ·OH radicals. However, pH also 
affects the electrostatic interactions between the semicon-
ductor surface, solvent molecules, substrate and charged 
radicals formed (Ahmed et al. 2011). Titanium dioxide 
is amphoteric in nature, and it responds in different ways 
under acidic and alkaline conditions. Depending on the 
point of zero charge of the titanium dioxide, the surface 
of titanium dioxide will either be positively or negatively 
charged at different pH values (Bahnemann et al. 2007). 
The effectiveness of ozone is also pH dependent because 
pH affects ozone decomposition and chemical speciation. 
At high pH values, ozone reacts almost indiscriminately 

with all organic and inorganic compounds present in the 
reacting medium because of the formation of ·OH radi-
cals, which are non-selective. At low pH values, molecular 
ozone is the dominant oxidation species (Poznyak et al. 
2006); the concentration of dissolved ozone decreases with 
increase in pH (Sotelo et al. 1989).

Water matrix

The presence of natural organic matter in water and waste-
water even at low concentrations is detrimental because 
it exerts a strong influence on reaction mechanisms and 
competes with the target micropollutants and microbes 
for the oxidants. The fast reaction of reactive oxygen spe-
cies released during ozonation and photocatalysis with 
unsaturated bonds and aromatic rings present in organic 
matter molecules is demonstrated by a rapid decline of the 
 UV254 during ozonation and photocatalysis (Westerhoff 
et al. 1999).

Mechanism of photocatalytic ozonation

The mechanism consists of photocatalytic oxidation (Lang-
muir–Hinshelwood kinetics) and oxidation by ozonation 
(Beltrán et al. 2009; Mena et al. 2012) and is provided in 
the literature (Mecha et al. 2016a). The production of ·OH 
radicals significantly improves the oxidation rate of photo-
catalytic ozonation compared to photocatalytic oxidation. 
This is due to the production of more ·OH radicals because 
 O3 is more electrophilic than  O2 towards photogenerated 
electrons (Hernández-Alonso et al. 2002); thus resulting 
in high mineralization and faster reaction kinetics (Li et al. 
2003, 2005). Figure 2 illustrates the mechanism of photo-
catalytic ozonation.

Fig. 2  Mechanism of photocata-
lytic ozonation. Electron–hole 
pairs are generated when the 
photocatalyst is illuminated 
by UV/solar light. Ozone 
scavenges the photogenerated 
charge carriers to form power-
ful hydroxyl and superoxide 
radicals on the photocatalyst 
surface which react with the 
pollutants and mineralize them 
to carbon dioxide and water. CB 
conduction band, VB valence 
band, hv irradiation energy,  h+ 
holes,  e− electrons

hv

CB

VB

UV/solar radiation

e-

h+

O3

O2
.

H2O

.OH

+ Organic pollutants 

O3

CO2 + H2O

Mineralization

+ Organic pollutants 

Mineralization

CO2 + H2O



1498 Environmental Chemistry Letters (2020) 18:1491–1507

1 3

Application of photocatalytic ozonation 
in wastewater treatment

Degradation of organic pollutants

Table 2 gives a summary on the use of photolytic and 
photocatalytic ozonation processes for the degradation of 
organic contaminants. Most studies have monitored the 
total organic carbon reduction because the ·OH radicals 
produced by advanced oxidation processes react non-selec-
tively, thus forming numerous intermediate compounds en 
route to complete mineralization. Because of this, total 
organic carbon is a better indicator of the treatment effi-
ciency instead of focusing only on the parent compound 
(Malato et al. 2016). Mineralization efficiencies of up to 
100% have been reported as shown in Table 2. The syn-
ergistic effect of photocatalytic ozonation obtained from 
various studies is also shown for cases where available. 
The synergy index (SI) was calculated using the equation:

where R is the percentage contaminant removal and the sub-
scripts represent ozonation (Oz) and photocatalysis (Phot) 
(Mecha et al. 2016a).

However, very few studies have calculated the synergistic 
effect of combining two or more advanced oxidation pro-
cesses. This information could be very useful in the practi-
cal implementation of these processes. The few that have 
calculated the synergy factors have reported values from 
1.2 to 5.8 despite treating different contaminants and using 
different experimental conditions. The mineralization of 
biorecalcitrant organics also improves the biodegradability 
of the wastewater as reported (Espejo et al. 2015; Van Aken 
et al. 2015) and is summarized in Table 3. Biodegradabil-
ity is evaluated using the ratios biological oxygen demand/
chemical oxygen demand, biological oxygen demand/dis-
solved oxygen demand and biological oxygen demand/
total oxygen demand (Alvares et al. 2001). An increase of 
the ratio indicates that the wastewater sample is becoming 

(5)Synergy index (SI) =
RPhot+Oz

RPhot + ROz

Table 2  Degradation of organic contaminants in various wastewaters using photocatalytic ozonation

NR-value not reported, SI synergy index, TOC total organic carbon, DOC dissolved organic carbon, COD chemical oxygen demand

Process Contaminants Concentration %Removal SI References

UV/TiO2/O3 Tetracycline 1–100 mg/L 90% TOC 1.20 Valério et al. (2020)
UVA/TiO2/O3 Acetamiprid and atrazine 100 μg/L 1.05–1.27 Silva et al. (2019)
O3/UVA/magnetite Pharmaceuticals and personal care products 100 μg/L 81% TOC NR Espejo et al. (2015)
O3/UV/Vis/TiO2 Amoxicillin and diclofenac 0.1 mM 68% TOC NR Moreira et al. (2015)
O3/UVA/TiO2 Diclofenac 30–80 mg/L 75% DOC NR Aguinaco et al. (2012)
O3/vis/WO3 Phenol 200 mg/L 100% TOC NR Mano et al. (2011)
TiO2/UV/O3 Carbendazim 40 mg/L 80% TOC 1.5–2.2 Rajeswari and Kanmani (2009b)
O3/UV/TiO2 2,4-Dichlorophenoxyacetic acid (2,4-D) 0.045 mM 100% TOC 1.2–5.8 Giri et al. (2007)
UV/TiO2/O3 Phenol in wastewater 5 mg/L >99% 4.31 Mecha et al. (2016a)
VUV/O3 Sodium n-butylxanthate 160 mg/L 88% COD 1.53 Fu et al. (2016)
ZnO/O3 Phenol 100 mg/L 90% phenol 1.24 Dong et al. (2011)
UV/Ag–TiO2/O3 Atenolol 20 mg/L 93% TOC 1.36 Ling et al. (2016)
O3/UV–vis/TiO2 Oxalic acid 10 mmol/L 100% TOC NR Mano et al. (2015)
O3/TiO2/UVA Diuron 80% TOC 1.83 Solís et al. (2016)
UVA/TiO2/O3 4-Chloro-2-methylphenoxyacetic acid 5 ppm 60% TOC NR Solís et al. (2015)
TiO2/O3/UV Polyvinylpyrrolidone 200 mg/L 90% TOC 1.2 Suave et al. (2014)

Table 3  Biodegradability of different types/sources of wastewater treated using advanced oxidation processes

Process Wastewater type Performance References

Fenton and  O3 Tannery wastewater Biodegradability index increased to 0.34 Sivagami et al. (2018)
O3/UVA/Fe(III) Synthetic secondary effluent Biodegradability increased by 75–100% Espejo et al. (2015)
Ozonation Primary wastewater Biodegradability increased by 140% Mecha et al. (2016c)
Ozonation 2,4-Dichlorophenol-containing waste-

water
Biodegradable fraction increased and the refrac-

tory COD decreased
Van Aken et al. (2015)
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increasingly easier to treat by biological methods and thus 
the non-biodegradable compounds have been degraded to 
more biodegradable forms.

Disinfection of wastewater

Table 4 gives a summary on the use of photolytic and pho-
tocatalytic ozonation processes for disinfection of water and 
wastewater targeting a variety of microorganisms. Notably 
few studies have determined the synergistic effect of com-
bining two or more advanced oxidation processes. However, 
the reported cases depict considerable synergy.

Evaluation of toxicity of treated wastewater

The degradation of contaminants into less harmful pollutants 
using highly reactive hydroxyl radicals distinguishes advanced 
oxidation processes from other wastewater treatment processes 
such as adsorption and membrane separation which transfer 
contaminants from the liquid phase (treated water) to the solid 
phase (sludge) (Sievers 2011). Photocatalytic ozonation is 
capable of breaking down organic pollutants and transforming 
them to mineral acids and carbon dioxide. Although destruc-
tion of contaminants is generally beneficial, the formation of 
by-products or transformation products that retain harmful 
biological activity is a possibility. Therefore, there is need to 
assess the toxicity evolution during this process to determine 
the safety of the treated wastewater and also to inform the 
implementation of suitable technologies (Linden and Mohseni 
2014). Evaluation of toxicity is mainly done using biological 
tests (Žegura et al. 2009). Studies have demonstrated a reduc-
tion or even elimination of toxicity from wastewater treated by 
advanced oxidation processes. For instance, the acute toxicity 
of phenol and the intermediate compounds was reduced sig-
nificantly after treatment using catalytic ozonation (Farzadkia 
et al. 2014); this was because of the degradation of phenol to 
aliphatic and low chain carboxylic acid products. Also, there 
were no compounds with oestrogenic effects observed after 
photocatalytic ozonation of wastewater (Moreira et al. 2016). 

The reduction of toxicity is attributed to the production of final 
oxidation products that are more hydrophilic, thus reducing 
their ability to penetrate cell membranes and cause damage 
to the cells (Huber et al. 2003; Escher et al. 2009). The attain-
ment of a higher biodegradability and/or lower toxicity of 
the intermediate and final products compared with the parent 
compounds, is desirable benefits of applying photocatalytic 
ozonation for wastewater treatment. Table 5 shows the findings 
of toxicity assessment of wastewater treated using advanced 
oxidation processes including ozonation and photocatalysis.

Energy requirements

The efficiency of advanced oxidation processes mainly 
depends on factors such as contaminant type and concentra-
tion, water matrix and constituents, and reactor configuration 
and design (Linden and Mohseni 2014). Since these factors 
may vary widely and are difficult to control, meaningful com-
parison cannot be done based on them. Therefore, compari-
sons of advanced oxidation processes can be done based on the 
energy requirements. The advanced oxidation processes utilize 
a lot of electrical energy (Esplugas et al. 2002), electricity cost 
is a major operating cost (Bolton et al. 2001). To enable the 
estimation of energy consumed by different advanced oxida-
tion processes, the International Union of Pure and Applied 
Chemistry proposed the use of figures of merit (Bolton et al. 
2001; Miklos et al. 2018). Thus, for advanced oxidation pro-
cesses based on electrical energy consumption, the electrical 
energy per order (EEO) is used, while for the solar-driven sys-
tems, the collector area per order (ACO) is used. The EEO is 
calculated as follows (Bolton et al. 2001):

where P is the power input, t is the treatment time, V is the 
volume of water treated, Ci and Cf are the initial and final 
concentrations of contaminant, respectively, and the factor 
1000 converts g to kg (Cardoso et al. 2016).

(6)
EEO=

Pt×1000

V log

⎛
⎜
⎜
⎝

Ci∕Cf

⎞
⎟
⎟
⎠

Table 4  Disinfection of wastewater using photocatalytic/photolytic ozonation

The initial microbial concentration, disinfection efficiency, synergy index (SI) are shown (NR-value not reported)

Process Contaminants Concentration %Removal SI References

UV and  O3 Antibiotic-resistant bacteria 103 CFU/mL 3–4 log NR Sousa et al. (2016)
UV/O3 Faecal coliforms 106 CFU/mL 72% NR Bustos et al. (2014)

Total coliforms 5 × 106 CFU/mL 78%
UV/O3 E. coli ATCC 25922 7 × 103 CFU/mL 3 log NR Magbanua et al. (2006)
UV/TiO2/O3 E. coli, S. enterica, V. cholerae 103 CFU/mL 3 log 1.86 Mecha et al. (2017a)
UV/O3 P. aeruginosa 105 CFU/mL 3.28 Oh et al. (2007)
UV/O3 Chlorotetracycline-resistant bacteria 5.7 log 5 log NR Lee et al. (2011)
UV/O3 Aerobic plate count bacteria 5.5 log 99.9% NR Diaz et al. (2001)
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However, due to the large expenses incurred when 
using electricity to run advanced oxidation processes, it is 
imperative to explore the use of less costly options. This 
has prompted accelerated research efforts on the use of the 
renewable sources such as natural sunlight. The development 
of visible light active photocatalysts enables the use of sun-
light for photocatalytic processes which are environmental 
friendly and cost-effective (Tsydenova et al. 2015; Mecha 
et al. 2017b). Table 6 shows the energy consumption by 
advanced oxidation processes during wastewater treatment.

Recovery and reuse of photocatalyst

The recovery and reuse of photocatalysts in slurry reactors 
is a major concern for the large-scale utilization of photo-
catalytic processes in a sustainable way. This is necessary 
considering that the treatment of real wastewaters contain-
ing different types of contaminants may affect the catalyst 
activity and hence catalyst life (van Grieken et al. 2009b). 
Studies conducted in this area have showed that suspended 
photocatalysts can be recovered using a variety of ways 
such as filtration or centrifugation and reused multiple times 
without a significant decrease in performance. For exam-
ple, Rupa et al. (2007) reported that silver-doped titanium 
dioxide could be reused at least three times, and Swarnakar 

et al. (2013) observed insignificant reduction in catalytic 
performance of titanium dioxide films that were reused five 
times. This shows that the photocatalysts are robust and sta-
ble against a variety of contaminants in wastewater. Hence 
with proper recovery, regeneration and reuse strategies, they 
can make photocatalytic ozonation sustainable. A summary 
of findings from previous studies is provided in Table 7.

Conclusion

The presence of biorecalcitrant organic pollutants in water 
sources has accelerated exploration of the use of advanced 
oxidation processes such as ozonation and photocatalysis. In 
this review, these processes were evaluated and their individual 
merits and demerits discussed. For instance, photocatalysis 
is limited by low oxidation rates arising from electron–hole 
recombination. On the other hand, ozonation suffers low 
mineralization rates attributed to the production of inter-
mediate compounds that are ozone resistant. Potential ways 
of overcoming their individual drawbacks were explored. 
These include development of visible light active titanium 
dioxide photocatalyst to utilize solar light, thereby reducing 
energy costs and coupling of ozonation and photocatalysis to 
enhance the reaction kinetics. There is great potential of the 

Table 5  Toxicity assessments of different types of wastewater treated using various advanced oxidation processes such as ozonation, photolytic 
and photocatalytic ozonation

Process Wastewater type Performance References

Ozonation Secondary effluent Increased breeding rate (up to 74%) of Daphnia 
magna

Petala et al. (2009)

Ozonation/activated carbon Secondary effluent Reducing the baseline-toxic equivalent concen-
trations by 79% and the oestrogenicity below 
the detection limit

Macova et al. (2010)

Ozonation and activated carbon Secondary effluent Biological activity was reduced by 62% (AhR 
response) and 99% (oestrogenicity)

Reungoat et al. (2010)

Ozonation and activated carbon Secondary effluent Reduction of in vitro oestrogenic activity 
by > 75%.

Stalter et al. (2010)

Ozonation Secondary effluent Reduction of genotoxicity and acute invertebrate 
toxicity

Cao et al. (2009)

UV and UV/H2O2 Surface water No significant genotoxic response was observed 
after treatment

Martijn and Kruithof (2012)

Ozonation Secondary effluent No formation of oestrogenic by-products was 
observed

Kim et al. (2004)

Ozone/UV Chlorophenols Production of non-toxic products for Daphnia 
magna compared to parent compounds

Trapido et al. (1997)

TiO2/UV-A and  TiO2/UV-A/H2O2 Textile effluent Effective acute toxicity removal was obtained Arslan-Alaton (2007)
H2O2/UV Surface water No cytotoxicity of treated water observed after 

120 min
Miranda et al. (2016)

TiO2/UV/O3 Secondary effluent Treated wastewater was increasingly becoming 
less toxic. Cell viability increased from 28.7% 
(untreated water) to 80% after treatment

Mecha et al. (2017b)

O3/UVA/Fe(III) Synthetic secondary effluent Toxicity decreased by 95% after treatment Espejo et al. (2015)
O3/UV/Vis/TiO2 Urban wastewater No toxicity in treated water Moreira et al. (2015)
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Table 6  Energy consumption, as electrical energy, by advanced oxidation processes (AOP) for water and wastewater from different sources

Process Water type Energy consumption References

Ozonation Lake water For 90% p-chlorobenzoic acid transformation 0.035 kWh/
m3

Katsoyiannis et al. (2011)

UV/H2O2 Lake water For 90% p-chlorobenzoic acid conversion 0.17–0.75 
kWh/m3

Ozonation Wastewater For 90% p-chlorobenzoic acid transformation 0.2 kWh/
m3

Katsoyiannis et al. (2011)

UV/H2O2 Surface water For a 90% degradation of atrazine 1.87 kWh/m3 for 
medium-pressure lamps, 0.73 kWh/m3 for low-pressure 
lamps, and 2.17 kWh/m3 for dielectrical barrier dis-
charge lamps

Lekkerkerker-Teunissen et al. (2013)

Ozonation
Ozonation/UV

Secondary effluent For a 90% removal of pharmaceuticals and personal care 
products 0.09 kWh/m3  (O3) and 1.09 kWh/m3  (O3/UV)

Kim and Tanaka (2011)

Ozonation, catalytic 
ozonation, photoca-
talysis

Municipal wastewater For 90% pharmaceutical compounds removal to be: 
ozonation (0.23),  O3/H2O2 (0.22), catalytic ozonation 
(0.22), UV-C  TiO2 photocatalysis (0.87) and solar  TiO2 
photocatalysis (0.20) kWh/m3

Álvarez et al. (2011)

Various AOPs Distillery effluent Chemical oxygen demand and colour removal:  O3/UV 
(1.19);  O3/UV/H2O2 (1.04);  O3/UV/Fe2+ (0.76);  O3 
(0.64);  O3/Fe2+ (0.64); UV/H2O2 (0.27); UV/H2O2/Fe2+ 
(0.097);  O3/UV/Fe2+/H2O2 (0.01) kWh/m3

Asaithambi et al. (2015)

O3/UV/TiO2 Phenol solution 28.1 kWh/m3 Suzuki et al. (2015)
O3/UV/TiO2 Secondary effluent 7–22 kWh/m3 Mecha et al. (2017b)

Table 7  Photocatalysts recovery and multiple reuses after treatment of various wastewaters using photocatalysis and photocatalytic ozonation

Application/water matrix Photocatalyst Performance and reuse References

Solar photocatalytic ozonation O3/Light/CF-TiO2 After several cycles of use, no loss of 
activity observed

Rodríguez et al. (2019)

Catalytic ozonation of oxalic acid SrTiO3 Photocatalyst stable and efficient after 
four cycles of reuse

Wu et al. (2011)

Catalytic ozonation (surface water) TiO2 Photocatalyst stable and efficient after 
four cycles of reuse

Gracia et al. (2000)

Methyl orange solution Ag/TiO2 thin films Photocatalyst stable and efficient after 
six cycles of reuse

Arabatzis et al. (2003)

Disinfection of E. coli suspension Fe–Cd/TiO2 Photocatalyst performance (> 99%) 
after four uses

Feilizadeh et al. (2015)

Disinfection of E. coli suspensions Immobilized  TiO2 Photocatalyst stable and efficient after 
three cycles of reuse

van Grieken et al. (2009b)

Dyes and inactivation of bacteria Ag/AgBr/TiO2 No loss of activity after eight cycles 
of reuse

Hu et al. (2006)

Reactive Blue 220 (RB-220) dye Ag–TiO2 core–shell nanoparticles Minimal decrease in activity after 
three cycles of reuse under UV light 
irradiation and solar light

Khanna and Shetty (2014)

Synthetic municipal wastewater TiO2 P-25 Photocatalyst activity after 5 reuse 
experiments almost constant

Kositzi et al. (2004)

Dyes and inactivation of bacteria Ag/TiO2 nanomembrane No decrease in activity after 5 cycles 
of reuse

Liu et al. (2012)

Reactive Yellow-17 Ag–TiO2 No decline in activity after three 
cycles of reuse

Rupa et al. (2007)

Oxalic acid Fe-TiO2 No decrease in activity throughout the 
5 repeated runs

Teoh et al. (2007)

Secondary wastewater TiO2 doped with Ag, Cu, Fe with 
ozone

No significant decline in performance 
after three cycles

Mecha et al. (2017b)
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photocatalytic ozonation process. In particular, solar-enhanced 
photocatalytic ozonation holds promise as an environmentally 
friendly technique for wastewater remediation. Additional 
benefits of using photocatalytic ozonation including (1) the 
use of a single reactor instead of two (reduced reactor costs 
and hence capital costs), (2) synergy between the two pro-
cesses when used simultaneous as opposed to when they are 
employed separately and (3) potential reduction in reactor 
residence times are attractive benefits. The assessment of the 
recovery and reuse of photocatalysts, energy requirements and 
toxicity assessment of the treated wastewater are necessary 
as demonstrated in this study so as to make the process more 
sustainable. Based on the findings of the review, the following 
recommendations are proposed:

a. Further studies on solar-powered photocatalytic pro-
cesses to reduce dependence on electricity and decrease 
process costs.

b. Most studies have been performed on laboratory scale. 
The information obtained in laboratory scale studies is 
not sufficient for large-scale operation. There is need to 
perform pilot scale studies on photocatalytic ozonation 
of wastewater to generate sufficient data especially on 
mass transfer limitation of reaction kinetics and mix-
ing so as to guide the upscaling to large-scale treatment 
systems.

c. The possibility of recovery and reuse of photocatalysts is 
very crucial as a way of reducing costs and also prevent-
ing secondary pollution of treated wastewater by photo-
catalyst particles. There is need to develop appropriate 
techniques suitable especially in large-scale applica-
tions.

d. Studies demonstrated that synergy indeed exists between 
photocatalysis and ozonation when employed together. 
Based on the fact that process conditions play a sig-
nificant role in this synergism, there is need to develop 
mathematical models that can be employed in the design 
of systems that maximize on synergy and performance 
effectiveness to make these processes economically 
competitive to the existing conventional processes.

e. Given the impressive performance of photocatalytic 
ozonation in the degradation of recalcitrant organics 
in wastewater, it is necessary to explore the use of this 
process in related applications such as pretreatment of 
substrates for bioenergy production and treatment of 
biosolids to reduce soil pollution among others.
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