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Abstract
Hydrothiolations are the most useful and atom-economical pathway for the generation of sulfur–carbon and sulfur–nitrogen 
bonds. In particular, the preparation of sulfenylhydrazines-1,2-dicarboxylates by sulfur functionalization of nitrogen–nitro-
gen double bonds has received great interest in organic synthesis of compounds of unique biological properties. Previous 
protocols have drawbacks such as long reaction times and the use of toxic solvents. Here, we describe the preparation of 
sulfenylhydrazines-1,2-dicarboxylates by hydrothiolation of dialkyl azodicarboxylates under neat conditions. This new 
eco-friendly methodology afforded the products in up to 99% yield, in only 5 min at room temperature. A possible reaction 
mechanism is proposed.
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Introduction

Catalytic hydrothiolation processes have emerged as the 
most useful and atom-economical pathway for the genera-
tion of new sulfur–carbon bonds (Beletskaya and Ananikov 
2011; Degtyareva et al. 2019; Dondoni and Marra 2014; 
Sinha and Equbal 2019). In this regard, the most traditional 
protocols usually involve the monohydrothiolation of alk-
enes and alkynes via Markovnikov (Giuseppe et al. 2012; 
Malyshev et al. 2006; Yang et al. 2009; Palacios et al. 2016) 
or anti-Markovnikov type addition through metal-catalyzed 
reactions (Liao et al. 2013; Modem et al. 2016; Rocha et al. 
2017; Sarma et  al. 2012). Remarkably, hydrothiolation 

reactions can also provide the corresponding products with 
high selectivity achieved by agro-waste extracts (Godoi et al. 
2019) as well as under metal-free conditions (Chun et al. 
2016; Rosa et al. 2017).

On the other hand, the development of new methodologies 
for the generation of new sulfur–nitrogen bonds has gained 
special attention and several transformations have been 
notably reported (Terent’ve et al. 2018; Yang et al. 2019). 
Among them, sulfur functionalization of nitrogen–nitrogen 
double bonds has received great interest in organic synthesis 
(Wen et al. 2015; Zhou and Xu 2016; Xu et al. 2018), since 
it allows the preparation of target molecules with unique 
synthetic and biological properties (Kamal et al. 2007; Li 
et al. 2013). Indeed, sulfenylhydrazines-1,2-dicarboxylates 
have shown versatile synthetic applications (Huang and Hu 
2007), playing an important role as intermediate in the prep-
aration of disulfides via thiol dimerization (Mukaiyama and 
Takahashi 1968) and likewise in the cyclization of olefinic 
carboxylic acids (An et al. 2018).

Due to sulfenylhydrazines-1,2-dicarboxylates relevance, 
these organosulfur compounds have been efficiently pre-
pared since the pioneer work described by Linke (Fig. 1, 
Eq. 1) (Linke et al. 1973). More recently, Xu and co-workers 
reported a convenient method for the synthesis of sulfenyl-
hydrazines-1,2-dicarboxylates under catalyst-free conditions 
(Fig. 1, Eq. 2) (Zhou et al. 2017). Although the previous 
protocols represent good advances on this research field, 
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they still have some drawbacks, since long reaction times as 
well as toxic solvents are generally required. Moreover, the 
vast majority of the protocols for the monohydrothiolation 
processes have employed exclusively alkenes and/or alkynes 
as substrates. Therefore, the development of a mild and eco-
friendly approach for the synthesis of sulfenylhydrazines-
1,2-dicarboxylates is highly desirable.

In this context, neat reactions medium have become a 
particularly valuable and environmental benign alternative 
in organic synthesis, avoiding the use of harmful and car-
cinogenic solvents (Sarkar et al. 2016). In this regard, the 
development of new methods for the preparation of organo-
sulfur compounds employing neat conditions has recently 
received considerable attention (Joshi et al. 2019; Mondal 
and Saha 2019). Despite the well-recognized versatility of 
neat transformations, the preparation of sulfenylhydrazines-
1,2-dicarboxylates through a hydrothiolation reaction asso-
ciated with neat conditions has not been reported to date. 
Thus, according to our interest into straightforward and eco-
friendly methods, herein we have disclosed a rapid and suit-
able methodology for the synthesis of sulfenylhydrazines-
1,2-dicarboxylates (Fig. 1, Eq. 3).

Experimental

General

Hydrogen nuclear magnetic resonance spectra (1H NMR) 
were obtained at 400 MHz. Spectra were recorded in deu-
terated chloroform  (CDCl3) solutions. Data are reported as 
follows: chemical shift (δ), multiplicity, coupling constant 
(J) in Hertz and integrated intensity. Carbon-13 nuclear 
magnetic resonance spectra (13C NMR) were obtained 
at 100  MHz. Spectra were recorded in  CDCl3 solu-
tions. Chemical shifts are reported in ppm relative to the 

tetramethylsilane (TMS) for 1H NMR and to the solvent 
for 13C NMR. Electrospray ionization quadrupole time-of-
flight mass spectrometry (ESI-Q-TOFMS) measurements 
performed with a micrOTOF Q-II (Bruker Daltonics) mass 
spectrometer equipped with an automatic syringe pump from 
KD Scientific for sample injection. The ESI-QTOF mass 
spectrometer was running at 4.5 kV at a desolvation tem-
perature of 180 °C. The mass spectrometer was operating 
in the positive ion mode. Thin layer chromatography (TLC) 
performed using Merck Silica Gel GF254, 0.25 mm thick-
ness. Generally, the reactions were monitored by TLC until 
disappearance of starting material. For visualization, TLC 
plates were either placed under ultraviolet light or stained 
with iodine vapor. The solvents were used without further 
purification.

General procedure for the preparation 
of sulfenylhydrazines‑1,2‑dicarboxylates

Thiol 1 and dialkyl azodicarboxylate 2 were placed into 
a round bottom flask. The reaction was carried out under 
room temperature for 5 min. After the completion, the reac-
tion system was then extracted with ethyl acetate and water 
(3 × 5 mL). The organic phase was dried over  MgSO4 and 
filtered, and the solvent was removed under reduced pres-
sure. Purification by flash chromatography with a mixture 
of hexane/ethyl acetate (80:20) afforded the desired product.

Results and discussion

In order to establish the best reaction conditions, we 
employed diisopropyl azodicarboxylate and benzenethiol as 
standard substrates (Table 1). Firstly, the effect of the sol-
vent on the reaction system has been evaluated (entries 1–4). 

Fig. 1  Hydrothiolation of 
dialkyl azodicarboxylates
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When the reaction was carried out using water as a solvent, 
the desired product was obtained in 65% yield (entry 1).

Next, we carried out some experiments employing well-
known eco-friendly solvents such Water Extract of Banana 
peel ash (WEB), Water Extract of Papaya Bark (WEPAB) 
and Water Extract of Rice Straw Ash (WERSA). However, 
no improvement in the yield value of 3aa was observed in 
the presence of these agro-waste aqueous extracts (entries 
2–4). On the other hand, when the reaction has proceeded 
in the absence of any solvent the expected product was 
achieved in 78% yield (entry 5). Consequently, further 
experiments were conducted under neat conditions.

The influence of the time and temperature has been inves-
tigated in detail (entries 6–10). No significant change on the 
reaction yield was observed on increasing the time to 8 min 
(entry 6). However, a substantial decrease on the yield was 
observed by decreasing the reaction time from 5 to 2 min 
(entry 7). Similarly, the reaction showed to be very sensitive 
to any change on the temperature (entries 8–10).

Furthermore, the formation of a significant amount of 
diphenyl disulfide 4 as a by-product was observed at higher 
temperatures (entries 9 and 10). It most probably explained 
due the high ability of azodicarboxylates to convert mer-
captans into respective disulfides, accordingly to previous 
reports (Mukaiyama and Takahashi 1968).

Subsequently, we evaluated the influence of green catalysts 
on the reaction (entries 11–13). However, no improvement in 
the reaction yield was achieved in the presence of any cata-
lyst. Finally, we performed an additional experiment employ-
ing ultrasound irradiation (entry 14). However, the conven-
tional heating proved to be a better option when compared to 
this kind of energy source. Thus, the best reaction condition 
was found by carrying the reaction at 25 °C for 5 min in the 
absence of solvent, affording the desired product in 78% yield.

Having established the best reaction set, we have studied 
the scope and limitations of the methodology (Table 2). Ini-
tially, diisopropyl azodicarboxylate was treated with differ-
ent aromatic thiols under the optimized conditions (entries 
1–5). In terms of electronic effects, benzenethiol derivatives 
containing para-donating groups were more reactive than 
their withdrawing analogues, under the same conditions 
(entries 2–4). In particular, when p-methyl benzenethiol was 
used, the product 3ba was achieved with 85% yield (entry 2).

We also attempted to employed aliphatic thiols under the 
same reaction conditions (entries 6–9). In this regard, benzyl 
mercaptan proves to be a suitable sulfur source, furnishing 
the respective product 3fa in 62% yield (entry 6). Similarly, 
when 1-dodecanethiol was treated with diisopropyl azodi-
carboxylate, the desired product 3ga was obtained in good 
yield (entry 7).

Table 1  Optimization of the reaction conditions

Benzenethiol (0.5 mmol), diisopropyl azodicarboxylate (0.6 mmol), catalyst, solvent
a Yields for isolated products
b Under ultrasound irradiation

Entry Solvent Time (min) Temperature (°C) Catalyst (mol%) Yield 3aa (%)a Yield 4 (%)a

1 H2O 5 25 – 65 –
2 WEB 5 25 – 41 –
3 WEPAB 5 25 – 33 –
4 WERSA 5 25 – 59 –
5 – 5 25 – 78 –
6 – 8 25 – 72 –
7 – 2 25 – 52 –
8 – 5 0 – 55 –
9 – 5 50 – 55 42
10 – 5 100 – 59 38
11 – 5 25 nano-CuO (20) 78 –
12 – 5 25 nano-Fe3O4 (20) 44 –
13 – 5 25 NH2SO3H (20) 61 –
14b – 5 25 – 59 –
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Table 2  Synthesis of several sulfenylhydrazines-1,2-dicarboxylates

Entry R R1 Product 3 Yield (%) a

1 Ph i-C3H7 78

2 p-MeC6H4 i-C3H7 85

3 p-MeOC6H4 i-C3H7 76

4 p-ClC6H4 i-C3H7 36

5 o-MeC6H4 i-C3H7 60

6 Bn i-C3H7 62

7 n-C12H25 i-C3H7 62

8 n-C6H11 i-C3H7 52

9 n-C3H4NS i-C3H7 –

10 Ph Bn 78

11 p-MeC6H4 Bn 54

12 p-MeOC6H4 Bn 99

13 p-ClC6H4 Bn 69

14 o-MeC6H4 Bn 70

15 Bn Bn 42

16 n-C12H25 Bn 99

17 n-C6H11 Bn 76

18 n-C3H4NS Bn –
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Next, we evaluated whether the methodology could toler-
ate the modification in the  R1 group from azodicarboxylate. 
For this purpose, dibenzyl azodicarboxylate was reacted 
with a wide range of thiols (entries 10–18). Generally, 
dibenzyl azodicarboxylate reacts very smoothly with aro-
matic thiols containing both electron donating and electron 
withdrawing substituents attached to the para position of 
the aromatic ring, affording the corresponding products in 
moderate to excellent yields (entries 10–13). For instance, 
when p-methoxybenzenethiol was employed as a sulfur 
source, the product 3cb was isolated with 99% yield (entry 
12). In terms of steric effect, the reaction also well tolerated 
a methyl substituent at ortho position of the aromatic ring, 
affording the respective sulfenylhydrazine 3eb in 70% yield 
(entry 14). Moreover, dibenzyl azodicarboxylate reacted 
very smoothly with aliphatic thiols, affording the expected 
products 3fb and 3gb in 42% and 99% yields, respectively 
(entries 15 and 16).

To get insights into the mechanisms of the reaction, a 
series of control experiments were also performed (Fig. 2). 
At first, we observed a decreased in the value of 3aa when 
the reaction was carried out under inert atmosphere. Next, 
carrying the experiments under dark conditions, it has indi-
cated that the reaction course is dependent of air and light 
combination. Further experiments were carried out employ-
ing different radical scavengers. However, no product for-
mation was observed in the presence of radical inhibitors 
such as 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) and 
2,6-di-tert-butyl-4-methylphenol (BHT), even at extended 
reaction time. According to these experiments, the reaction 
most probably takes place through a radical pathway.

Based on our observations and in accordance with previ-
ous reports (Chun et al. 2016; Nakajima et al. 2019; Ryu 
et al. 2013; Zalesskiy et al. 2016), a plausible reaction path-
way has been proposed for the hydrothiolation of dialkyl 
azodicarboxylates (Fig. 2). We believe that initially a thiyl 

Table 2  (continued)
Reaction conditions: thiol (0.5 mmol), dialkyl azodicarboxylate (0.6 mmol), 5 min at 25 °C
a Yields for isolated products

Fig. 2  Control experiments and plausible mechanism
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radical 5 might be generated in the reaction media assisted 
by light and air oxygen (Bhat et al. 2015; Li et al. 2019). 
Subsequently, this specie would be smoothly converted 
into intermediate 6 through the reaction with dialkyl azodi-
carboxylate. Finally, this radical would react with another 
equivalent of thiol to form the corresponding product and 
concomitantly regeneration of the thiyl radical, completing 
the reaction pathway.

Conclusion

In summary, we have successfully developed an environ-
mentally benign and efficient protocol for the preparation 
of sulfenylhydrazines-1,2-dicarboxylates, at room tempera-
ture, under ambient atmosphere (open flask) and solvent-free 
conditions. Generally, the synthetic method showed to be 
tolerant to aryl and alkyl thiols bearing electron donating 
and withdrawing groups affording the desired organosulfur 
compounds in high yields by spending very short reaction 
time via hydrothiolation of nitrogen–nitrogen double bonds. 
We believe that the chemistry described herein represents a 
new tendency for the sulfenylation of double bonds. Studies 
regarding the hydrothiolation of other organic compounds 
are still under investigation in our laboratory.
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