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Abstract
The shortage of fossil fuels is actually a major economic issue in the context of increasing energy demand. Renewable 
energies are thus gaining in importance. For instance, microalgae-based fuels are viewed as an alternative. Microalgae are 
microscopic unicellular plants, which typically grow in marine and freshwater environments. They are fast growing, have 
high photosynthetic efficiency, and have relatively small land requirement and water consumption in comparison with con-
ventional land crops biofuels. Nonetheless, selling biofuels is still limited by high cost. Here, we review biofuel production 
from microalgae, including cultivation, harvesting, drying, extraction and conversion of microalgal lipids. Cost issues may 
be solved by upstream and downstream measures: (1) upstream measures, in which highly productive strains are obtained 
by strain selection, genetic engineering and metabolic engineering, and (2) downstream measures, in which high biofuels 
yields are obtained by enhancing the cellular lipid content and by advanced conversion of microalgal biomass to biofuels. 
Maximum biomass and high biofuels production can be achieved by two-stage culture strategies, which is a win–win approach 
because it solves the conflicts between cell growth and biomass accumulation.
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Introduction

Fossil fuel has played an important role in the industrial 
era; however, they are non-renewable and less environment-
friendly. The statistics from Energy Information Adminis-
tration (EIA) estimated that the reserves of worldwide fos-
sil fuels will be exhausted in less than 50 years (Plant and 
Floorspace 2010). By comparison, biofuel is renewable 
and sustainable alternative energy, which is regarded as 
the replacement of fossil fuels. It is predicted by mobility 
model results for the 2 °C scenario (2DS) that the biofuels’ 
market share will account for 37% of total transportation 
fuel consumption by 2060, and this number indicates a great 
space for the production and market requirement as com-
pared with the current share of 4% published in 2016 (Oh 

et al. 2018). In general, biofuels can be classified as three 
generations such as the first generation, second generation, 
and the third generation, corresponding to the feedstocks 
of food sources sugarcane, wheat, corn, soybean, potato, or 
sugar beet (Bringezu et al. 2007), lignocellulosic biomass 
and agricultural wastes (Eisentraut 2010), and algae (i.e., 
macroalgae and microalgae) (Demirbas 2011), respectively.

Among the three types of feedstocks, microalgae-
based biofuel is considered as the promising one and has 
attracted more and more attention in the past years, owing 
to the characteristics such as fast growing rate, high-effi-
ciency photosynthesis, and high lipid content for some 
species (Peng et al. 2016a). Generally speaking, microal-
gae are capable of converting nutrients either in medium 
or wastewater into biomass and high-value cellular con-
stituents (Bouabidi et al. 2018; Wang et al. 2010). For 
example, lipid, protein, carbohydrate, pigments, antioxi-
dant biomolecules derived from microalgae can be applied 
in other sections of  CO2 mitigation, wastewater treatment, 
cosmetics, dyes, pharmaceuticals, functional food, food 
additives, feeds for animals and aquaculture, fertilizers, 
and others (Peng et al. 2013; Ramasamy et al. 2015; Umm-
alyma et al. 2017; Yun et al. 2014). Under such circum-
stance, microalgae-based biofuels have received more and 
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more concerns; however, the commercialization remains 
to be expanded because of barriers such as the shortage 
of feedstock, the blending wall of conventional biofuels, 
and the most fundamental cause like high production cost. 
This is derived from various challenges in the processes 
from the selection of strain, mass-cultivation, harvesting, 
drying, extraction, conversion, and others (Ho et al. 2014; 
Rastogi et al. 2018; Bwapwa et al. 2017; Seo et al. 2018).

Although some major challenges for the production 
of microalgae-based biofuels were presented in previous 
studies, most are limited to partial sections of the produc-
tion process. This paper presents a brief review on the pro-
gress and challenges of microalgae-based biofuels in the 
development of upstream and downstream technologies. 
The main objective of this study was to introduce the pro-
gress of technologies involved in upstream such as strain 
selection, genetic engineering, metabolic engineering for 
obtaining high concentration of microalgae, and the pro-
gress of downstream measures in large-scale cultivation, 

process control, harvesting, dewatering, extraction, and 
conversion to biofuels products.

Microalgal species for producing biofuels

Autotrophic microalgae consume carbon dioxide and pro-
duce carbohydrates or hydrogen, protein, and lipids, which 
can be further utilized as feedstock of biofuels, including 
biodiesel, biogas, biohydrogen, bioethanol, butanol, bio-
oil, char, and even power (Cheng et al. 2015; Francavilla 
et al. 2015; Im et al. 2015; Khandelwal et al. 2018; Kim 
et al. 2017; Lee et al. 2015; Song et al. 2017; Yun et al. 
2016; Zhao et al. 2014) (Fig. 1). Some typical microalgal 
species can reach high concentrations of targeted biofu-
els; for example, Chlorella protothecoides is considered 
as a perfect feedstock of biodiesel since they can accumu-
late 55% of lipid when cultivated heterotrophically under 
nitrogen limitation (Xu et al. 2006) (Table 1). Microalgae-
based biodiesel is generally obtained through two steps of 

Fig. 1  Applications of micro-
algae

Table 1  Typical microalgal species for biofuels production

Microalgal species Targeted biofuels Microalgal growth and/or biofuels 
production

Cultivation/reaction conditions References

C. protothecoides Biodiesel 55% of lipid Heterotrophy; nitrogen limitation Xu et al. (2006)
S. obliques Biohydrogen 300 μmol  H2/(mg Chl*h) Indirect process; light biophotoly-

sis; (Fe–Fe) enzymes
Appel and Schulz (1998)

Nannochloropsis salina Biogas 0.70 L biogas/g Photobioreactor, large scale, 35 °C Quinn et al. (2014)
Chlorococum sp. Bioethanol 38 wt% Fermentation Singh and Gu (2010)
Spirulina sp. Biomethanol Gasification/anaerobic fermenta-

tion
Rodionova et al. (2017)

Microalgal consortium Biochar 45.0 ± 5.9% dw solid biochar (with 
energy density 8–10 MJ/kg)

Hydrothermal liquefaction Roberts et al. (2013)
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firstly extract lipids from microalgal cells, and followed 
by transesterification of lipid fraction using alcohol in the 
presence of catalysts (Rodionova et al. 2017). A rate up 
to 300 μmol H2/(mg Chl h) was reported in Scenedesmus 
obliques, and this enables S. obliques to be suitable for 
producing biohydrogen (Appel and Schulz 1998). The 
general routes include indirect process with firstly pro-
duce biomass through photosynthesis and then covert the 
biomass (particularly carbohydrates) to biohydrogen via 
fermentation and/or photofermentation (Benemann 1996, 
2000), while the other approach is splitting water to hydro-
gen and oxygen via processes of direct or indirect water 
biophotolysis (Rodionova et al. 2017). 

As also shown in Table 1, some microalgal species 
are also reported to produce biogas with productivity of 
0.70 L biogas/g VS (0.43 L  CH4/g VS), and the results 
were obtained in the cultivation of Nannochloropsis salina 
in photobioreactor at large scale at a temperature of 35 °C 
(Quinn et al. 2014). Moreover, microalgal biomass can 
be also fermented into biogas, which can be illustrated 
by that 3.83 g/L obtained from 10 g/L of lipid-extracted 
microalgae debris of Chlorococum sp. (corresponds to 
38 wt%) when the microalgal biomass as a substrate via 
yeast fermentation (Singh and Gu, 2010). In practice, the 
addition of hydrogen is demonstrated to modify the com-
bustion characteristics of natural gas (Ren et al. 2019). 
Biomethanol can be produced by some species such as 
Spirulina sp., through gasification or anaerobic fermenta-
tion (Rodionova et al. 2017). It was also found that micro-
algal consortium has capability to take wastewater effluent 
as growth medium in open ponds, and the biomass can be 
harvested as the feedstock of biochar, reaching 45.0 ± 5.9% 
dw solid biochar (with energy density 8–10 MJ/kg) via 
hydrothermal liquefaction (Roberts et al. 2013).

Development of upstream measures

In general, the upstream technologies applicable to microal-
gae mainly include three aspects (Table 2). Firstly, it is better 
to select some proper strains characterized with robustness, 
fast growing rate and rich in lipid from wild environment. 
Secondly, advanced genetic engineering can be adopted to 
modify and obtain the strains with fast growth rate and high 
lipid productivity. Thirdly, other measures such as metabolic 
engineering can be used to enhance the accumulation of 
lipid and other fuel products. Genetic and metabolic engi-
neering of microalgae could be used to, for example, elimi-
nate photosaturation and photoinhibition, which is expected 
to significantly increase productivity of outdoor cultures and 
greatly improve the economics of microalgae oil production. 
However, it will require long-term research and funding, to 
overcome current strictures against the release of genetically 
modified organisms. Thus, for the foreseeable future it would 
be prudent to limit projections to what can be achieved with 
wild-type strains (Rodolfi et al. 2010).

Strain selection

As estimated, there are one to ten million microalgal species 
on the earth and more than 40,000 species have been identi-
fied (Wang et al. 2010). Microalgae are featured as having 
fast growing rate and high lipid content; however, not all of 
them are regarded as the best lipid producers but depend on 
particular strain (Mata et al. 2010). In this regard, the fun-
damental requirement of microalgae-based biofuel is select-
ing suitable strains with the best combination of microalgal 
biomass productivity and lipid content in outdoor culture. 
For example, it would be promising when the strains can 
substantially accumulate lipids even to nutrient deficiency. 

Table 2  Upstream and downstream measures to enhance microalgal growth and biomass production

Type Approach Representative techniques/criteria References

Upstream measures Strain selection Robust strain; fast growing rate, high lipid 
or other fuels’ yield

Arroussi et al. (2017) and Seo et al. (2018)

Genetic engineering Trans-conjugation; transformation; elec-
troporation; microinjection

Qin et al. (2012) and Ghosh et al. (2016)

Metabolic engineering Degradation of nutrients; biosynthesis; 
preventing lipid catabolism

Dunahay et al. (1996) and Trentacoste et al. 
(2013)

Downstream measures Large-scale cultivation Appropriate strains Singh and Gu (2010)
Process control Optimal cultivation system and conditions Quinn et al. (2012) and Peng et al. (2016a)
Harvesting and dewatering Primary harvesting; secondary dewatering Mata et al. (2010), Uduman et al. (2010) and 

Buckwalter et al. (2013)
Extraction and conversion Transesterification; fermentation; hydro-

treatment; pyrolysis
Skorupskaite et al. (2016), Asada et al. 

(2012), Plant and Floorspace (2010), 
Sharma and Singh (2017) and Lee and Lee 
(2016)
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The strains should be robust enough to withstand shear stress 
generated by mixing or the interference by wild strains or 
other microorganisms. Moreover, they are flexible to adapt 
to the changes in physicochemical parameters of the grow-
ing environment (Arroussi et al. 2017; Rodolfi et al. 2010; 
Seo et al. 2018).

The strain of marine or freshwater microalgae can be 
generally isolated using a micropipette for isolation under a 
microscope, cell dilution, and cultivation in liquid medium 
or agar plate (Arroussi et al. 2017). Winkler test screening 
protocol entailed a new and fast method for mutant strain 
selection and analysis of algal hydrogen metabolism with-
out applying nutritional stress, and this method was recom-
mended to isolate the hydrogen-producing Chlamydomonas 
reinhardtii strains (Rühle et al. 2008). Four strains, in which 
two marine and two freshwater strains were screened among 
thirty microalgal strains, were found with high biomass pro-
ductivity and lipid content. For example, up to 60% lipid 
content was achieved in eustigmatophyte Nannochlorop-
sis sp. F&M-M24 under nitrogen starvation (Rodolfi et al. 
2010). Besides, some locally isolated strains are more likely 
accustomed in highly variable environment of outdoor cul-
tures, though they may have difficulties in dominating year-
round in the fluctuated cultivation conditions (Rodolfi et al. 
2010).

Genetic engineering

Genetic engineering is defined as the direct manipulation of 
organism’s genes using biotechnology. It has been applied 
in the production of microalgae to satisfy the growing needs 
and increasing quality of human life (Peng et al. 2016a; 
Rodolfi et al. 2010).

In the past, some researchers adopted a crucial systemic 
technology to obtain high microalgal biomass concentra-
tion for sustainable industrial applications, and to modify 
the metabolic pathway for producing more anticipated high-
value products (Qin et al. 2012). Generally speaking, there 
are several methods for transformation in marine algae, 
including trans-conjugation, natural transformation and 
induced transformation, electroporation (or electropermea-
bilization), biolistic transformation, glass beads, silicon car-
bon whiskers method, microinjection, artificial transposon 
method, recombinant eukaryotic algal viruses, and agrobac-
terium tumefaciens-mediated genetic transformation (Qin 
et al. 2012).

Among the methods, gene transfer by electroporation 
is characterized by simplicity of the procedure and high 
efficiency with a small amount of DNA and is a common 
method for various cells and bacteria for over 30 years 
(Neumann et  al. 1982; Zimmermann et  al. 1975). In 
detail, an electrical field (e.g., 1–1.5 kV, 250–750 V/cm) 
can be imposed on cells to increase the permeability of 

cell membrane, and then chemicals, drugs, or DNA can 
be introduced into the cells (Neumann et al. 1982; Sugar 
and Neumann 1984). The method is applicable to both 
prokaryotic cells and eukaryotic algae including red algae, 
green algae, and diatoms. For example, marine alga Nan-
nochloropsis sp., suitable for potential biofuel production, 
has been successfully genetically transformed with several 
knockout genes involved in the nitrogen metabolism (Kil-
ian et al. 2011). However, this method is constrained in 
brown algae because of undeveloped protoplast prepara-
tion and immature regeneration technologies (Qin et al. 
2012).

Direct gene transfer by biolistic transformation (i.e., 
micro-particle bombardment) has been demonstrated to be 
the most efficient method for many diatom strains (Qin et al. 
2012; Cheney 1992), and it has been widely employed in 
the transformation of the nuclear and chloroplast expression 
systems (Qin et al. 2012). The method is characterized by 
some advantages; for instance, it is the only effective method 
that can repeatedly transform chloroplasts, mitochondria and 
other organelles. It can introduce exogenous DNA into broad 
cells and tissues of plants, animals, microbes, pollen, and 
other peculiar acceptors. Furthermore, diversified endog-
enous vectors can be also used in biolistic transformation 
through a controllable and mature manipulation procedure 
(Qin et al. 2012). However, this method is highly reproduc-
ible and works under specialized and high-cost equipment 
(Qin et al. 2012). Particularly, DNA is generally coated with 
gold particles to target within the cell via pressurized helium 
gas (Apt et al. 1996; Dunahay et al. 2010; Ghosh et al. 2016).

To date, more than twenty marine microalgal strains have 
been successfully transformed with the aforementioned 
transformation methods. For marine cyanobacteria, the 
genetic transformation was successfully demonstrated in 5 
strains of Synechococcus (i.e., Synechococystis, Pseudana-
baena) using the method of trans-conjugation (Sode et al. 
1992), or natural transformation (Jiang et al. 2003).

For brown algae, five types of acceptor cells such as 
juvenile sporophytes, male and female gametophytes, tissue 
pieces from sporophytes, and parthenogenetic sporophytes 
can all be transformed by particle bombardment (Jiang et al. 
2003; Qin et al. 1999). For diatoms, biolistic transformation 
was successfully demonstrated in centric diatom Thalassio-
sira weissflogii (Falciatore et al. 1999), Thalassiosira pseu-
donana (Poulsen et al. 2010), Chaetoceros sp. (Miyagawa-
Yamaguchi et al. 2011), Cyclotella cryptica (Dunahay et al. 
2010), and the pinnate diatoms Navicula saprophila (Duna-
hay et al. 2010), Cylindrotheca fusiformis (Fischer et al. 
2010), and Phaeodactylum tricornutum (Miyagawa et al. 
2010). For green algae, foreign DNA can be also introduced 
in marine microalga Dunaliella salina and freshwater micro-
alga C. reinhardtii using the agitation of glass beads (Feng 
et al. 2009; Kindle 1998).
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Metabolic engineering of microalgal pathways

Metabolic engineering is the practice of optimizing genetic 
processes (i.e., remove and add genes) and regulatory pro-
cesses on an organism, to alter its metabolic functions in 
a predetermined manner such as increasing the organisms’ 
production of a certain substance (Shuler and Kargi 2001). 
The control of metabolic pathways is generally completed 
by nutritional and environmental regulation in bioprocess 
engineering (Park et al. 2019). In general, metabolic reac-
tions can be classified into three major types, including the 
degradation of nutrients, biosynthesis of small molecules 
(e.g., amino acids, nucleotides), and biosynthesis of large 
molecules (Dunahay et al. 1996).

It was reported that fatty acid of diatom C. cryptica can 
be increased by the overexpression of the acetyl-CoA car-
boxylase gene (ACCase) under stressed condition (Dunahay 
et al. 1996), because ACCase controls the biosynthesis of 
fatty acid (Ghosh et al. 2016). The oil content of diatoms 
and green algae was also increased by adding heterologous 
plant fatty acid synthetase enzymes gene (Blatti et al. 2012; 
Radakovits et al. 2010). An increase up to 82% total neutral 
lipid was achieved by knocking down the pyruvate carboxy-
lase kinase expression of diatom P. tricornutum using an 
antisense cDNA construct (Ma et al. 2014).

In addition to pyruvate, the overexpression of endogenous 
malic enzyme can result in a 2.5-fold increased lipid accu-
mulation of P. tricornutum under nutrient-replete condi-
tions (Xue et al. 2014). Some transgenic strategies are also 
applied to increase the lipid accumulation of green alga and 
diatom under nitrogen-starved conditions (Hamilton et al. 
2014; Wang et al. 2009; Yongmanitchai and Ward 1991). 
Furthermore, lipid accumulation can be enhanced by pre-
venting lipid catabolism, for example, as compared with the 
wild-type, 3.3-fold higher total lipid content of the diatom T. 
pseudonana was achieved by transforming antisense con-
structs (Trentacoste et al. 2013).

Development of downstream measures

The downstream technologies applicable to microalgae 
mainly include the following aspects, such as large-scale 
cultivation of suitable microalgal strains, the design of effi-
cient cultivation system and modified cultivation modes to 
deal with the conflict between biomass and lipid production, 
energy-saving approaches for harvesting and dewatering, 
and the efficient technologies of extraction and conversion.

Large‑scale cultivation

Large-scale cultivation is the fundamental of commercial-
izing microalgae-derived biofuels, due to sufficient biomass 

makes biofuels production possible. In general, it is limited 
by those factors as appropriate strain, farming, process con-
trol, and other measures.

Appropriate strain guaranteeing high biomass production

As aforementioned, it is the priority to select promising 
microalgae species with high oil content and can quickly 
grow in the culture, and this is one of the essential keys to 
produce biocrude, biodiesel, and drop-in fuels and further 
develop economically viable project (Singh and Gu 2010; 
Arroussi et al. 2017). As reported in Algae 2020 (Will 2009), 
five key strategies such as “fatter (i.e., algae species with 
high oil content), faster (i.e., grow more quickly), cheaper 
(i.e., capital and operating costs), easier (i.e., manipulation 
at each sub-sets of systems) and fractionation marketing 
approaches (e.g., biomass co-product marketing strategies)” 
have been identified as the key factors of driving a successful 
commercialization of microalgae-based biofuels.

The strains with high lipid contents are promising spe-
cies feedstock of biodiesel, and this would be the base of 
successful industrial farming of microalgae (Sadvakasova 
et al. 2019). Some studies screened a series of local strains 
(57 strains) from Moroccan coasts and found that diatoms 
are generally rich in triglycerides (TAG), while the lipid con-
tent of marine microalgae Tetraselmis sp. and Dunaliella sp. 
reached up to 56% and 50% of dry cell weight, respectively 
(Arroussi et al. 2017).

Scale‑up cultivation

Commercialization of microalgae-based biofuels is depend-
ent on the high biomass concentration and lipid contents 
through large-scale cultivation of microalgae (Quinn et al. 
2012). However, large-scale cultivation faces formidable 
challenges and the major barrier is the high production cost 
(Borowitzka 2013), owing to the intensive energy demands 
required for the complex processes of algal cultivation such 
as sterilization, mixing, aeration, illumination, gas exchange, 
and others (Peng et al. 2015, 2016b). For example, the pro-
cesses such as the sterilization of large volume of cultures 
and maintenance of sterility for the whole cultivation sys-
tem, efficient illumination, and deoxygenation approach, and 
other steps for better process control are difficult and costly. 
Thus, it is important to cut down the cost of microalgal culti-
vation that is potentially caused by the above processes, and 
meanwhile to obtain high biomass concentration and lipid 
productivity. The routes of offsetting overall costs mainly 
include co-producing value-added products, optimization 
of algal cultivation processes, and lowering cultivation cost 
via the utilization of wastewater or flue gas as nutrients and 
carbon source (Peng et al. 2013, 2015).
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Under the persistent efforts on the improvement and 
development of technologies in the past years, some suc-
cessful examples of large-scale microalgae farming have 
been implemented in companies. For instance, Sapphire 
Energy was found in 2007 and has built up some multi-year 
cooperation or agreement on algae-based research projects 
with other companies, aiming to co-develop algae-to-fuel 
cultivation systems at commercial-scale in the past few years 
(SapphireEnergy 2016). A commercial demonstration algae-
to-energy facility, the Green Crude Farm, was announced 
by the company in 2012, and the farm consists of 100 acres 
of two ponds (at sizes of 1.1 acres and 2.2 acres), and the 
planned 300 acre facility for the mechanical and processing 
equipment that are applied in the processes such as harvest-
ing, extraction of algae, and recycle of water (SapphireEn-
ergy 2016).

Algenol is a notable world-class team assorted with state-
of-the-art facility and proprietary algae growing systems 
(Algenol 2018). The company adopts photobioreactors with 
production yields 2–3 times that of open ponds, and VIPER 
manufacturing (i.e., Algenol’s proprietary photobioreac-
tors) with 40,000 square-foot facility. In addition to pro-
duce some high-value products including natural colorants, 
protein, Spirulina, personal care ingredients, biofertilizers, 
and biostimulants, Algenol also dedicates to biofuels such as 
bioethanol and green crude oil with proprietary vapor com-
pression steam stripping unit (VCSS) for the purification of 
the ethanol and hydrothermal liquefaction (HTL) technology 
to make crude oil, respectively.

Process control during the cultivation of microalgae

Suitable cultivation system for microalgal growth

Microalgae are capable of growing in natural habitats of 
oceans, rivers, lakes, and ponds or artificial systems of open 
ponds and photobioreactors (Wang et al. 2010). Open ponds 
can be natural waters (e.g., lakes, shallow lagoons, ponds) 
or artificial ponds such as circular ponds, raceway ponds, 
shallow big ponds and tanks, and container-based systems 
(e.g., hanging plastic bags) (Pulz 2001; Singh and Gu 2010; 
Tredici and Materassi 1992). In general, open ponds are 
characterized by some advantages of low cost, simplicity, 
and easier to operate. However, they also have some major 
limitations; for example, they require large areas of land, 
more water evaporation, low biomass productivity, low uti-
lization of  CO2 and light, poor mixing, and easier to be con-
taminated (Peng et al. 2013, 2015).

By comparison, closed systems like photobioreactors can 
be sorted as vertical column photobioreactors, flat panel 
photobioreactor, tubular photobioreactor, internally illumi-
nated photobioreactors, spectral shifting, membrane photo-
bioreactors, and plastic bag photobioreactors (Wang et al. 

2012). They are capable of offering good control over key 
operational parameters of microalgal cultivation, including 
temperature, length of light path, pH, species control, and 
others (Peng et al. 2016b). Thus, photobioreactors provide 
a higher possibility of achieving much higher growth rate, 
microalgal cell density, and volumetric biomass productiv-
ity compared to open ponds (Wang et al. 2012). The high 
capital and operational costs result from complex configu-
ration, illumination, cooling, mixing, deoxygenation, and 
other operational requirements. These limit the application 
of photobioreactors at large-scale microalgal farming (Peng 
et al. 2013, 2016b).

In the present scenario, it is necessary to design a suitable 
cultivation system for microalgal growth in particular for 
large-scale microalgal farming. Based on the advantages and 
disadvantages of open ponds and photobioreactors, some 
companies prefer to adopt photobioreactors than open ponds 
systems or natural formations, but it is an attractive option 
of cultivating microalgae in open ponds in the regions where 
has sufficient lands and has no competition with arable lands 
(Singh and Gu 2010). It was reported that most microalgae 
systems today can produce a range of 2500–5000 gallon of 
oil per surface acre in raceway ponds with 30% oil content 
(Singh and Gu 2010).

Cultivation modes to solve conflicts between biomass 
and lipid production

Lipid synthesis is usually induced by environmental stresses 
such as salinity, temperature, nutrients, and pH (Peng et al. 
2015). Among these factors, nitrogen limitation is regarded 
as the most effective approach to enhance lipid accumulation 
of microalgae, whereas at the expense of cell growth (Park 
et al. 2019). Some studies have demonstrated the feasibil-
ity of enhancing strains from low or medium initial lipid 
content to super high level; for example, the lipid content of 
Dunaliella tertiolecta was dramatically improved from the 
initial level of 21 to up to 70% under saline stress (Arroussi 
et al. 2015).

To solve the conflict between cell growth and biomass 
accumulation, some efforts are made to select genetically 
strains or screen local strains with fast growth rate and 
high lipid content (Arroussi et al. 2017; Sadvakasova et al. 
2019). High biomass concentration of microalgal cultures 
can be achieved through simplified cultivation, including 
the optimization of medium composition (Liu et al. 2007), 
process optimization and control on light utilization, oxygen 
accumulation mitigation, and contamination prevention (Liu 
et al. 2007; Pulz 2001; Li et al. 2008), and improvement of 
cultivation systems (Wang et al. 2012). Currently, two-stage 
process has been demonstrated to be a win–win strategy for 
obtaining both high cell density and biomass concentration 
(i.e., carbohydrates, lipid or hydrogen) at lower operative 
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and investment costs (Ra et al. 2015; Nagappan et al. 2019). 
In the process, microalgal cells are cultivated in photoau-
totrophic conditions in the first stage, and then transfer the 
biomass to a heterotrophic reactor where cells use organic 
carbon to synthesize starch and lipids (Caprio et al. 2016). A 
hetero-photoautotrophic microalgal growth model was also 
studied for improved organic-rich wastewater treatment and 
microalgal lipid yields, and therefore offering a sustainable 
way to produce microalgae-based bioenergy and byproducts 
(Zhou et al. 2012).

Energy‑saving approaches for harvesting 
and dewatering

Harvesting and dewatering of microalgal biomass are 
regarded as a major bottleneck to microalgae-based bio-
fuels due to their energy-intensive feature, and the pro-
cesses may account for 20–30% of the total production 
costs (Mata et al. 2010; Uduman et al. 2010). Thus, finding 
energy-saving approaches is very important to offset the 
production cost of microalgae-based biofuels. In general, 
microalgae can be harvested by two steps of bulk harvest-
ing and followed by thickening (or dewatering) (Chen et al. 
2011). As shown in Table 3, technologies of primary har-
vesting generally consist of coagulation and flocculation, 
flotation, filtration, screening, ion exchange, gravity sedi-
mentation, precipitation, centrifugation, and other tech-
niques (Cheng et al. 2011; Heasman et al. 2000; Hwang 
et al. 2013; Laamanen et al. 2016; Singh and Patidar 2018; 
Uduman et al. 2010; Buckwalter et al. 2013). The sec-
ondary dewatering methods include filtration, drying, and 
others such as microwave and fluid bed (Buckwalter et al. 
2013; Laamanen et al. 2016; Shelef et al. 1984). Advanced 
approaches such as a combined method of pulsed electric 
field (PEF) and hydrothermal liquefaction (HTL) has been 
proposed as a promising and suitable pretreatment for wet 
extraction of microalgal residual biomass. It was reported 
that PEF could accelerate the formation and extraction 

efficiency of amino acids up to 150% in 60 min, and this 
promised a higher biocrude yield by 6 wt% (Vlaskin et al. 
2018). Besides, other methods are also applied in specially 
cell wall disruption using high energy ultrasonic or micro-
wave-assisted extraction (Ranjan et al. 2010; Balasubra-
manian et al. 2011), or using supercritical fluid extraction 
at high temperature and pressure (Crampon et al. 2013), 
ionic liquids with very low melting point usually below 
100 °C (Kim et al. 2012).

Selection of harvesting technology is directly relevant 
of the efficiency and cost, while the above technologies 
have their own advantages and disadvantages. For exam-
ple, coagulation and flocculation are feasible for small size 
of microalgae (e.g., < 5 μm) and enable them to be larger 
sizes flocks (1–5 mm) (Park et al. 2011). Other technolo-
gies such as centrifugation have drawbacks such as being 
energy intensive, having high capital and operating costs, 
and resulting in shear stress to algal cells (Grima et al. 
2003; Harun et al. 2010), while filtration is expensive 
and easily to be fouling (Vonshak and Richmond 1988). 
As reported, the combination of flocculation with flota-
tion was demonstrated to be capable of achieving a high 
rate of solid–liquid separation (Rubio et al. 2007). In the 
commercialization utilization, Global Algae Innovations 
developed “ZOBI Harvester” which is renowned for an 
automated membrane filtration system with 100% harvest 
efficiency and no need for secondary dewatering in the 
combined processes of harvest and dewatering (Equipment 
2018). This system has been commercialized at 20,000 L/h 
with an energy use of 0.04 kWh/m3, and it is capable of 
reaching a 30 times reduction in harvest and dewatering 
energy and 4 times reduction in water flow (EnergyGovOf-
fices 2016). The automated harvesting system is scalable 
(with the size range of 5–200,000 gpm) and easy to oper-
ate. Particularly, it harvests microalgae at ambient pressure 
without exposure to high shear stress or centrifugal forces 
(Equipment 2018).

Table 3  Approaches for harvesting and dewatering

Types Approaches Examples References

Primary harvesting Sedimentation Gravity/centrifugal sedimentation Uduman et al. (2010)
Flocculation Chemical/biochemical/electro-flocculation Mubarak et al. (2019)
Centrifugation Decanter; centrifuge; hydrocyclones Knuckey et al. (2006)
Flotation Electro-/dissolved air/suspended air flotation Pragya et al. (2013) and Chen et al. (2011)
Others Screening; ion exchange; ultrasonic separa-

tion; electrophoresis techniques; magnetic 
separation

Cerff et al. (2012), Cheng et al. (2011), Heasman et al. 
(2000), Hwang et al. (2013), Laamanen et al. (2016), 
Singh and Patidar (2018) and Uduman et al. (2010)

Drying Steam/spray/drum/freeze/oven/sun drying Shelef et al. (1984)
Secondary dewatering Filtration Forward osmosis; Belt/micro-/ultra-/rotary/

pressure/cross-flow/vacuum drum filtration
Buckwalter et al. (2013)

Others Microwave; fluid bed Buckwalter et al. (2013) and Shelef et al. (1984)
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Efficient technologies of extraction and conversion

Improving the extraction efficiency of microalgal biomass

The dried microalgae biomass will be further used to extract 
microalgal lipids through mechanical or non-mechanical 
methods, such as cell homogenizers, autoclave, ultrasounds, 
bead mills, and spray drying, and freezing, the utilization 
of polar and non-polar solvents, osmotic shock, acid, base, 
and enzymatic reactions, and supercritical carbon dioxide 
 (SCCO2) (Halim et al. 2011; Mata et al. 2010). However, 
most of the extraction methods work at the laboratory scale 
but to be challenging at large-scale extraction because of 
the volume and complex (Lam and Lee 2012). For instance, 
some previous studies (Jesus et al. 2019) found that large 
quantities of solvent consumption are the largest expense 
when extracting lipid from wet microalgae using green 
solvents such as 2-methyltetrahydrofuran and cyclopentyl 
methyl ether. They also compared various methods of lipid 
extraction and demonstrated that the Hara and Radin method 
was the most effective for extracting 1 kg of fatty acids from 
Chlorella pyrenoidosa (at 65.71% moisture) using hexane/
isopropanol (3:2 v/v). However, the green solvents prices 
are not competitive as compared with fossil-based solvents. 
Moreover, a solvent-free osmotic shock pretreatment method 
was used to extract lipid and subsequently produce meth-
ane from microalgae D. salina and Chaetoceros muelleri, 
a lipid recovery efficiency of 21% and 72% was obtained, 

respectively (González-González et al. 2019). Furthermore, 
some recent methods including microwave-assisted extrac-
tion, supercritical fluid extraction, use of ionic liquids, and 
switchable hydrophilicity solvents are also recommended for 
economical lipid extraction (Deshmukh et al. 2019).

Enhancing the conversion of microalgae to biofuels

Microalgal biomass can be converted to renewable fuels 
(e.g., power, heat, and fuels) and energy source through vari-
ous technologies including (1) transesterification (Skorup-
skaite et al. 2016), (2) thermochemical such as combustion, 
pyrolysis, gasification, thermochemical liquefaction, and 
(3) biochemical/biological conversion in terms of anaero-
bic digestion, fermentation, and photobiological hydrogen 
production (Asada et al. 2012; Plant and Floorspace 2010; 
Sharma and Singh 2017) (Fig. 2).

Direct combustion is used to convert microalgal biomass 
into hot gasses for energy production, which can power a 
turbine and turn a generator to produce electricity, under 
the condition of oxygen, furnace, boiler, or steam turbine at 
around 1000 °C (Lee and Lee 2016; Suganya et al. 2016). 
For example, biomass for power (e.g., electricity) and heat 
can be achieved by combustion direct-firing in a boiler, 
where high-pressure steam is produced and introduced into 
a steam turbine, and flows over a series of turbine blades 
to make the turbine and electric generator rotate and there-
fore the electricity is produced (ClimateTechWiki 2006). A 

Fig. 2  Conversion technologies of microalgal biomass to renewable 
fuel. Note: The black solid frames indicate the major technologies 
and techniques applied for the conversion of microalgal biomass to 
the renewable fuels, respectively. The green dotted frames are the 
targeted microalgal-based fuels or end products. The number repre-
sents the procedures or conditions in which, (1) direct combustion: 
energy can be obtained under conditions of oxygen, furnace, boiler/
steam turbine, at 1000 °C; (2) transesterification: direct/conventional 
transesterification; (3) fermentation: dewatering → milling → liq-

uefaction → saccharification → fermentation → distillation → H2, 
 CH4; and the other route (3)′ anaerobic/dark environment → ethanol, 
 CO2 → purification → bioethanol; (4) hydrotreatment/gasification: 
dehydration → pyrolysis → combustion → gasification → water–gas 
shift reaction → jet fuel; (5) pyrolysis: conventional/fast/flash pyroly-
sis → bio-oil, char, syngas; (6) anaerobic digestion: hydrolysis → fer-
mentation → acetogenesis → methanogenesis → biogas  CH4,  CO2: and 
the other route is (6)′ digested at pH 6–9, and methane is produced for 
generating electricity
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limited amount of oxygen or air is required for the burning 
of organic material to produce carbon dioxide and energy, 
which drives a second reaction that is the conversion of fur-
ther organic material to hydrogen  (H2) and additional  CO2. 
Some  CH4 and  CO2 would be produced when the third reac-
tion occurs in the way of carbon monoxide (CO) and residual 
water (Rao et al. 2017).

Methyl esters (FAME) can be produced by direct (single-
stage) and conventional (two-stage) transesterification, and 
the chemical equation is that triglyceride and methanol react 
under the role of catalyst, to produce glycerol and methylest-
ers (Adeniyi et al. 2018; Lee and Lee 2016). By comparison, 
hydrotreatment or gasification process of microalgal oil into 
jet fuel is completed by hydrotreating fatty acid and esters 
(Kuepker 2015) with the steps of dehydration, pyrolysis, 
combustion, gasification, and/or water–gas shift reaction 
(Rao et al. 2017). Pyrolysis is the thermal decomposition of 
biomass in the absence of oxygen, and to produce liquid fuel 
(bio-oil), solid fuel (biochar), and gaseous fuel products  (H2, 
 CH4), the process can be classified as conventional pyrolysis, 
fast pyrolysis and flash pyrolysis (Lee and Lee 2016; Sira-
junnisa and Surendhiran 2016).

Anaerobic digestion is a process of obtaining methane 
from the delipidized algal biomass with carbon and nitrogen 
content via the consecutive stages of hydrolysis, fermenta-
tion, acetogenesis, and methanogenesis (Lee and Lee 2016; 
Sirajunnisa and Surendhiran 2016). This method converts 
organic biomass into biogas (~ 60%  CH4 and ~ 40%  CO2), 
and small-scale biogas digesters have been applied through-
out many developing countries such as China, India, Nepal, 
Thailand, South Korea, and Brazil (ESMAP 2005). Fer-
mentation aims to convert the cellulose sugar or starch of 
microalgal biomass into bioethanol, with consecutive stages 
of dewatering, milling, liquefaction, saccharification, fer-
mentation, distillation and eventually the fuel products of 
bioethanol is obtained (Lee and Lee 2016).

Conclusion

With the rapid process of economic development and energy 
consumption, as well as the crisis of limited fossil fuel 
resource, and the increasing requirement of environmental 
protection, more and more concerns have been paid on the 
development of environmentally friendly fuels such as bio-
fuels to solve the conflict. Microalgae-based biofuels have 
been regarded as one of the promising feedstocks for the 
new generation of biofuels. However, its commercialization 
faces the biggest challenge of high production cost, which 
results from the high capital and operational costs in terms 
of complex configuration, illumination, cooling, mixing, 
deoxygenation, and other operational requirements. Many 
efforts have paid on exploring enormous advances in the 

development of upstream and downstream technologies, to 
offset the cost of obtaining high biomass concentration and 
high content of anticipated fuels. Some appropriate microal-
gal strains have been screened or modified to guarantee high 
microalgal biomass production, and win–win strategies such 
as two-stage of cultivation have been demonstrated the pos-
sibility of obtaining both high biomass production and lipid 
content or other fuels. Furthermore, advanced technologies 
applied in harvesting and biomass-to-fuels conversion make 
microalgae-based fuels more promising. However, some 
significant challenges remain in the scale-up of microalgal 
farming systems, and the constraints should be tackled in 
the future.
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