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Abstract
Water pollution threatens environment and human health. Common polymer-based sorbents are used to trap pollutants by 
these sorbents are difficult to separate from treated water and, in turn, their application is limited. Alternatively, nanoma-
terials with magnetic features offer the advantage of fast and easy magnetically-assisted separation. Moreover, the surface 
modification of magnetic nanoparticles with biopolymers enhances their adsorptive capabilities. We review recent develop-
ments on magnetic biosorbents for water treatment. We present chemical strategies for the surface modification of magnetic 
nanoparticles with biopolymers to obtain highly effective, robust and reusable biosorbents. This can be done by two strategies: 
in situ functionalization and post-synthesis functionalization. Post-synthesis functionalization is done in two distinct stages, 
the synthesis of the magnetic nanoparticles and the surface functionalization, thus allowing better control of each stage indi-
vidually. Surface functionalization involves either simple coating or the covalent attachment of the biopolymer chains to the 
surface. Overall, covalent immobilization of the biopolymer onto the particle’s surface is recommended to ensure successful 
recycling and reuse of the biosorbents without significant loss of adsorption capacity. Finally, we discuss the performance 
of several magnetic biosorbents in the uptake of heavy metal species and organic pollutants from water.

Keywords Biopolymers · Magnetic nanoparticles · Biosorbents · Bionanocomposites · Surface modification · Magnetic 
separation · Pollutant uptake · Heavy metal ions · Organic pollutants

Introduction

Magnetic nanomaterials have attracted increased attention 
in the last decade for application as biosorbents in water 
remediation processes (Sousa et al. 2015; Mehta et al. 2015; 
Simeonidis et al. 2016; Adeleye et al. 2016; Reddy and Yun 

2016). Owing to reduced size, nanomaterials possess large 
surface area-to-volume ratio available, which is a desirable 
feature for adsorptive applications (Madhura et al. 2019). 
Nanomaterials possessing magnetic features are easily and 
quickly separated from treated water in the presence of an 
external magnetic field, which clearly represents an advan-
tage in relation to non-magnetic biosorbents. Iron oxides 
nanoparticles are the most widely used in research for treat-
ment of polluted water owing to low cost and moderate envi-
ronmental impact (Tang and Lo 2013; Su 2017). Enhance-
ment of adsorptive capacity of magnetic nanoparticles and 
selectivity toward target pollutants can be achieved via the 
chemical functionalization of the particles surfaces.

The search for eco-friendly and low-cost biosorbents 
has prompted the interest for new biopolymer-based nano-
materials and their use in water decontamination (Crini 
2005; Daniel-da-Silva et al. 2013; Dehabadi and Wilson 
2014; Carpenter et al. 2015). Surface modification with 
biopolymers, i.e., polymers occurring in nature, provides 
to the particles surfaces novel functional groups that may 
confer affinity toward a wide diversity of pollutants (Xu 
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et al. 2012; Boamah et al. 2015; Vandenbossche et al. 
2015). Besides being available on a sustainable basis, 
biopolymers present the advantages of low cost, biodeg-
radability and reduced toxicity (Nair et al. 2017; Rebelo 
et al. 2017; Resch-Fauster et al. 2017; Divya and Jisha 
2017) (Fig. 1).

Ideally, a biosorbent for water remediation should ful-
fill the following requirements: specificity to target pol-
lutants, high adsorptive performance, rapid adsorption, 
cost-effective, environmentally non-toxic, reusability 
and ease of separation from treated water. Low toxicity 
and easy magnetic separation can be in principle met by 
the simple combination of biopolymers with magnetic 
iron oxides. However, a rational design of the surface of 
the magnetic nanoparticles is needed to attain specific-
ity, high adsorption capacity and reusability. Advances 
in nanotechnology and in the field of colloidal science 
have extended the ability to tailor the surface of magnetic 
nanoparticles and to tune their physical–chemical proper-
ties to suit specific applications (Wu et al. 2015; Bohara 
et al. 2016).

This review aims to provide a critical overview of the 
most recent developments in the field of magnetic biosor-
bents for application in water treatment. Primary attention 
is given to the chemical strategies used for the surface 
modification of magnetic nanoparticles with biopolymers 
aiming to obtain highly effective and robust biosorbents 
with magnetic properties. The performance of the mag-
netic biosorbents in the uptake of heavy metal species and 
organic pollutants from water is discussed.

This article is an abridged version of the chapter pub-
lished by Soares et al. (2018) in the series Environmental 
Chemistry for a Sustainable World (https ://www.sprin ger.
com/serie s/11480 ).

Magnetically assisted water treatment

Magnetic nanoparticles for water treatment

Magnetic separation relies on the fact that magnetic nano-
particles can be manipulated by an external magnetic field 
gradient. For the effective magnetic separation of micro-
metric or nanosized materials from a viscous flow, the mag-
netic force produced by the external magnetic field must 
overcome the drag force associated with the carrier fluid. 
Larger magnetic nanoparticles present higher magnetic 
susceptibilities that originate higher particle velocities. In 
other words, larger particles are more efficient for magnetic 
separation. On the other hand, for adsorptive applications, 
smaller magnetic particles are desirable, owing to high sur-
face area-to-volume ratio.

Iron oxide nanoparticles, more specifically magnetite 
 (Fe3O4) and maghemite (γ-Fe2O3), are by far the most 
extensively investigated magnetic nanoparticles for water 
treatment due to their adequate magnetic properties, low 
cost, chemical inertness and low toxicity (Xu et al. 2012; 
Kaur et al. 2014; Mehta et al. 2015; Su 2017). The easy 
synthesis, coating or surface functionalization, and the 
facility of tuning the size and particle shape provide 
huge versatility to these materials. Magnetite nanoparti-
cles exhibit unique size-dependent magnetic properties. 
Bulk magnetite is a ferrimagnetic material composed 
of multiple magnetic domains. Due to such magnetic 
domains, bulk magnetite exhibits a hysteresis curve 
when magnetization is plotted versus magnetic field and 
a permanent magnetization in the absence of a magnetic 
field is observed. The decrease in the particle size to the 
nanoscale brings consequences in terms of magnetic prop-
erties. Below a critical particle size (~ 25 nm for  Fe3O4), 
it is energetically more favorable for particles to be com-
posed by single magnetic domains and therefore exhibit 

Fig. 1  Examples of biopolymers of different classes, such as poly-
saccharides, proteins and lipids. Polysaccharides include cellulose, 
starch and alginate among others. Collagen, fibrinogen and gelatin 
belong to the group of proteins, and lipids include the free fatty acids. 

Biopolymers present several interesting environmentally friendly fea-
tures such as low toxicity, versatility, biodegradability, biocompatibil-
ity and availability, and they are rich in functional groups (Nair et al. 
2017; Rebelo et al. 2017; Resch-Fauster et al. 2017)

https://www.springer.com/series/11480
https://www.springer.com/series/11480
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superparamagnetic behavior. The magnetization curve of 
superparamagnetic nanoparticles does not exhibit hys-
teresis which means that in the absence of an external 
magnetic field these particles have zero magnetization, no 
coercivity and less tendency to agglomerate, an important 
feature for adsorptive applications. However, for applica-
tions in magnetic separation ferromagnetic particles are 
usually preferable over superparamagnetic nanoparticles 
because they show higher magnetophoretic response, thus 
leading to faster separations.

Preparative methods of magnetic iron oxides

As described in the previous section, the properties of 
magnetic nanoparticles are strongly dependent on the par-
ticle size and shape. Thus, a number of synthetic strate-
gies have been developed for the synthesis of magnetic 
nanoparticles with uniform morphology, narrow size dis-
tribution and tailored properties, as extensively reviewed 
elsewhere (Laurent et al. 2008; Wu et al. 2015; Ling et al. 
2015). Examples of methods for the synthesis of colloi-
dal magnetite nanoparticles include the co-precipitation 
method (Roth et al. 2015; Pušnik et al. 2016; Lin et al. 
2017), the oxidative hydrolysis (Girginova et al. 2010; 
Reguyal et al. 2017), the hydrothermal treatment (Cheng 
et al. 2016; Gyergyek et al. 2017; Bhavani et al. 2017) 
and the thermal decomposition of iron-containing molec-
ular precursors (Jiang et al. 2014a; Glasgow et al. 2016; 
Bartůněk et al. 2016).

Surface modification of magnetic 
nanoparticles with biopolymers

Herein we will draw our attention on the synthetic proce-
dures for the production of magnetic biosorbents, via the 
surface modification of magnetic nanoparticles with biopol-
ymers. Preparative methods to obtain magnetic biosorbents 
in the particulate form, including composite nanoparticles, 
microparticles and hydrogel beads, will be addressed.

Biopolymers extracted from natural sources present the 
advantages of biodegradability, reduced toxicity and low 
cost. Coating magnetic nanoparticles with biopolymers 
improves their stability against oxidation and provides func-
tional groups to capture target pollutants from water (Avé-
rous and Pollet 2012; Wu et al. 2015; Bohara et al. 2016). In 
addition, biopolymers improve the colloidal stability of the 
magnetic nanoparticles in aqueous media and prevent the 
formation of magnetic aggregates, which otherwise could 
contribute to diminish the available surface area and sorp-
tion capacity (Wu et al. 2008; Mehta et al. 2015). Colloidal 
stability is improved either due to steric shielding caused by 
biopolymer chains or due to electrostatic repulsions between 
charged moieties present in the biopolymer.

Polysaccharides are among the most commonly used 
biopolymers for preparing magnetic biosorbents. Examples 
of polysaccharides are listed in Table 1. They can provide 
distinct ionic character such as neutral, anionic or cationic, 
variable chemical functionalities and physical properties to 
the magnetic biosorbents. Surface modification with poly-
saccharides allows to enhance and to tune the chemical affin-
ity toward specific target pollutants.

Table 1  Main characteristics of polysaccharides and derivatives commonly used for coating magnetic nanoparticles, according to their ionic 
character, source and functional groups, in the context of environmental applications

Ionic character Polysaccharide Source Functional groups Target pollutants References

Neutral Cellulose Vascular plants –OH Heavy metal ions, resorcinol (Anirudhan and Shainy 2015; 
Luo et al. 2016; Ding et al. 
2017)

Dextran Fermentation of sucrose –OH Aromatic hydrocarbons, As (Cho et al. 2015; Kumar and 
Jiang 2017)

Starch Green plants –OH Cu, dyes (Mahdavinia et al. 2016; Yang 
et al. 2016b)

Anionic Alginate Cell walls of brown algae –OH, –COO− NaF, Sr, dyes (Hong et al. 2016; Li et al. 
2016b; Zhang et al. 2016)

Carrageenan Red seaweeds –OH, –OSO3
− Dyes, heavy metal ions, 

pharmaceuticals, herbi-
cides

(Gholami et al. 2016; Soares 
et al. 2016; Fernandes et al. 
2017)

Natural gum Microorganisms –OH, –COO− Dyes, heavy metal ions (Sahraei et al. 2017)
Cationic Chitosan Shells of shrimp/crusta-

ceans
–OH, –NH3

+ Dyes, heavy metal ions, 
pharmaceuticals, oils

(Chen et al. 2017a; Xiao et al. 
2017; Fan et al. 2017)
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Strategies for surface functionalization

The surface of magnetic nanoparticles, typically magnetic 
iron oxide nanocrystals containing surface hydroxyl groups, 
can react with different functional groups. Owing to this 
broad reactivity, there is a range of strategies for the surface 
modification of magnetic nanoparticles with biopolymers, 
which can be carried out either in situ during nanoparticle 
synthesis, or using post-synthesis routes, i.e., ex situ (Bohara 
et al. 2016; Su 2017). The main interactions that can be pre-
sent in the adsorption mechanism of biopolymers onto mag-
netic nanoparticles are electrostatic interactions, hydropho-
bic interactions and hydrogen bonding (Avérous and Pollet 
2012; Bohara et al. 2016). As a result of the many strategies 
available for surface modification, several distinct structures 
of magnetic bionanocomposites can be obtained, including 
core–shell structure, multicores or matrix-dispersed struc-
ture, shell–core–shell and Janus-type hetero-structures (Wu 
et al. 2015; Bohara et al. 2016) (Fig. 2).

In situ surface functionalization

This is a one-pot synthesis strategy where both the syn-
thesis of magnetic nanoparticles and their surface func-
tionalization are carried out. The biopolymer and the 
precursor of magnetic nanoparticles are added simultane-
ously and the coating process starts as soon as nucleation 
occurs, preventing further growth of the particles (Bohara 
et al. 2016). This method benefits from the ability of the 
biopolymer to interact with metal ions from the precur-
sors of magnetic nanoparticles and from the nanoparti-
cles’ surface. The metal ion–biopolymer interaction may 
occur through different modes including complexation and 
hydrogen bonding (Boury and Plumejeau 2015). Hence, 

owing to these interactions the biopolymer can play a key 
role in either the nucleation or particle growth steps. For 
example, starch was employed to effectively control and 
tune the size of  Fe3O4 nanoparticles prepared by oxida-
tion–precipitation of ferrous hydroxide (Tancredi et al. 
2015). The size of the nanoparticles was tuned from 15 to 
100 nm by changing the time of starch addition to the reac-
tion mixture. Starch acted as a kinetically control agent 
that affected the size, size distribution and aggregation 
state of the magnetic nanoparticles. Starch-coated  Fe3O4 
nanoparticles were water dispersible, presenting good col-
loidal stability. In our group, it has been observed that the 
particle size and the stability toward oxidation of  Fe3O4 
nanoparticles generated by co-precipitation in the presence 
of carrageenan, strongly depended on the type and concen-
tration of carrageenan used (Daniel-da-Silva et al. 2007).

The in situ synthesis of magnetic nanoparticles is typi-
cally performed using wet chemical routes that require 
aqueous environment and mild conditions of temperature, 
compatible with the presence of the biopolymer. Among 
in situ strategies, the co-precipitation of ferric and ferrous 
ions under alkaline conditions is the most commonly used 
route to prepare biopolymer-coated magnetite  (Fe3O4) 
nanoparticles (Lee et al. 1996; Kim et al. 2014). Gener-
ally, nanocomposite structures obtained are core–shell 
structures or mosaic (matrix-dispersed) structures (Wu 
et al. 2015; Bagheri and Julkapli 2016). Nevertheless, the 
morphology and the thickness of the polymer shell are 
difficult to control using this methodology. Owing to these 
limitations and even though the one-step synthesis is less 
time-consuming, magnetic biosorbents prepared by in situ 
procedures have been less reported. Some representative 
examples are described below that illustrate the usefulness 
of in situ strategy for the functionalization of magnetic 

Fig. 2  Distinct structures of 
magnetic bionanocomposites: 
a core–shell structures include 
simple core–shell, yolk–shell 
and inverse core–shell struc-
tures; b multicore structures 
include mosaic and shell–core 
structures; c shell–core–shell 
structures; and d Janus struc-
tures comprise several types of 
arrangements such as snowman, 
acorn, dumbbell, two hemi-
spheres, half of raspberry and 
Janus structures
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nanoparticles aiming applications in the removal of pol-
lutants from water.

Magnetic iron oxide nanoparticles were prepared by co-
precipitation in the presence of chitosan, followed by the 
addition of the cross-linker glutaraldehyde (Yang et  al. 
2016a; Azari et al. 2017) to impart mechanical robustness 
to the biosorbent. Small nanoparticles, with an average size 
of 5 nm (Yang et al. 2016a) and 50 nm (Azari et al. 2017), 
and narrow particle size distribution were obtained. The 
nanoparticles were homogeneously dispersed and embed-
ded in the biopolymer matrix. These biosorbents showed 
good adsorption of mercury species (Azari et al. 2017) 
even in the presence of competitive cations. In alternative 
to glutaraldehyde addition, more environmental friendly 
cross-linking strategies are being explored. For example, 
κ-carrageenan-coated magnetite nanoparticles of 4 nm size 
were prepared by co-precipitation and then cross-linked 
with chitosan (Mahdavinia and Mosallanezhad 2016). The 
electrostatic interactions between positively charged amino 
groups of chitosan and negatively charged sulfate groups of 
κ-carrageenan could produce stable complexes, with affinity 
for cationic dyes.

Several examples could be found concerning biopolymer-
coated magnetic nanophases obtained by in situ co-precipita-
tion that were subsequently modified in post-synthetic steps. 
In those systems, the biopolymer serves as a springboard 
for the addition of reactive groups aiming to improve the 
adsorption capacity. For instance, amino acids and diethyl-
enetriamine were grafted at the surface of chitosan-coated 
magnetite nanoparticles (size 10–50 nm) prepared via co-
precipitation, using epichlorohydrin as cross-linker (Gal-
houm et al. 2015a, 2017). The materials showed binding 
affinity for uranyl and Dy(III) ions.

Ex situ surface functionalization

This procedure is divided into two distinct stages, synthe-
sis and surface modification, which allows better control of 
each stage individually. It can involve the simple coating 
of magnetic nanoparticles with biopolymers, physically or 
chemically cross-linked or the covalent attachment of the 
biopolymer chains to the surface of the nanoparticles. The 
latter usually requires the use of a linker such as functional 
alkoxysilanes (Laurent et al. 2008; Sun et al. 2008; Begin-
Colin and Felder-Flesch 2012).

Ionic cross‑linking of  biopolymer coating Several natural 
polyelectrolytes have the ability to undergo ionotropic gela-
tion, i.e., to cross-link in the presence of counter ions to form 
hydrogels (Jiang et al. 2014b; Nie et al. 2016; Valle et al. 
2017). This ability combined with extrusion or emulsifica-
tion techniques has been widely explored for the encapsula-
tion of magnetic nanoparticles, to form magnetic compos-

ites particles with different sizes and shapes. For example, 
magnetic alginate core–shell type particles were fabricated 
using a method of electro-coextrusion and employed as a 
biosorbent for separation of fluoride from aqueous solu-
tion (Zhang et  al. 2016). In this method, the solutions of 
alginate and  Fe3O4 nanoparticles were injected simultane-
ously through a concentric nozzle using an electrostatic 
spinning machine and dropped into a solution of  CaCl2 for 
alginate cross-linking. The resulting particles comprised a 
core of aggregated  Fe3O4 nanoparticles coated by a shell of 
alginate. Because lanthanum (Lewis hard acid) shows high 
chemical affinity to fluoride anions (Lewis hard base), the 
 Ca2+ ions of the alginate were then replaced by  La3+ ions, 
through cation exchange. The resulting particles were able 
to uptake  F− ions from solution owing to Lewis acid-based 
interactions.

Magnetite nanoparticles were coated with κ-carrageenan 
and used to remove methylene blue from aqueous solutions 
(Salgueiro et al. 2013). The coating was performed by sim-
ple dispersion of the  Fe3O4 nanoparticles in κ-carrageenan 
solution followed by the addition of  K+ ions to promote 
sol–gel transition by physical cross-linking. These biosor-
bents show high methylene blue adsorption capacity due to 
electrostatic interactions between the cationic dye and the 
ester sulfate moieties of carrageenan. Nevertheless, marked 
loss of adsorption capacity after regeneration and reuse was 
observed. This loss was ascribed to possible leaching of 
κ-carrageenan that was physically adsorbed at the surface 
of nanoparticles.

Covalent cross‑linking of biopolymer coating The mechani-
cal and chemical stability of the biosorbent is an important 
aspect to consider, namely to ensure successful recycling 
and reuse of the biosorbents without loss of adsorption 
capacity. Covalent cross-linking is a versatile method to 
improve the robustness of the biosorbents. It results in the 
enhancement of the mechanical properties and insolubility 
of the biopolymer coating, as the chains are tied together by 
strong covalent linkages (Maitra and Shukla 2014). Some 
recent examples of covalently cross-linked magnetic biosor-
bents include cross-linked chitosan and quaternary chitosan 
particles prepared using a reverse-phase suspension cross-
linking technique (Li et al. 2016a; Song et al. 2017; Funes 
et  al. 2017). It is worth noting that glutaraldehyde is still 
one of the most frequently used cross-linkers, in spite of its 
known ecotoxicity (Leung 2001; Hu et  al. 2017; Christen 
et al. 2017). Alternative and much less toxic cross-linkers 
such as genipin (Muzzarelli 2009; Pujana et al. 2014) have 
been barely investigated for applications in water remedia-
tion (Laus and de Fávere 2011; Mondal et al. 2015).

Coating by  complexation of  polyelectrolytes Coating of 
magnetic nanoparticles can be also performed by the com-
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plexation of polyelectrolytes oppositely charged. Most of 
biopolymers are polyelectrolytes, i.e., macromolecules that 
are either charged or, under suitable conditions, can become 
charged. Hence, biopolymers can undergo complexation in 
the presence of other oppositely charged biopolymers (Luo 
and Wang 2014) or synthetic polyelectrolytes (Gentile et al. 
2015). The assembly of oppositely charged polyelectrolytes 
and magnetic nanoparticles is mainly governed by strong 
but reversible electrostatic interactions, as well as hydrogen 
bonds. The layer-by-layer assembly technique is a simple 
and versatile method for the fabrication of polymer-based 
coatings and has been widely used to modify spherical and 
planar inorganic substrates (Srivastava and Kotov 2008). 
This method involves the sequential adsorption of oppo-
sitely charged biopolymers onto the surface of the nanopar-
ticles. The thickness of the polymer coating can be tuned by 
varying the number of layers deposited and the properties 
of the polymer solutions. Using a distinct approach, mag-
netic chitosan/carrageenan microspheres with high efficient 
adsorption capacity toward both cationic and anionic dyes 
and heavy metal ions in wastewater were prepared (Liang 
et  al. 2017). The microspheres were fabricated via emul-
sification procedure from the homogeneous chitosan/carra-
geenan solution.

Grafting of  biopolymers onto  magnetic particles sur‑
face Another strategy explored for the preparation of mag-
netic biosorbents is the grafting of the biopolymer onto the 
surface of magnetic nanoparticles. The biopolymer can be 
directly grafted onto the surface of the particle (Badruddoza 
et al. 2011; Lu et al. 2016) or after surface functionalization 
with ligands that will subsequently link to the biopolymer 
(Bini et al. 2012; Rodriguez et al. 2017). This strategy might 
also involve the coating with a thin layer of amorphous 
silica  (SiO2). The  SiO2 shells protect magnetic iron oxides 
from oxidation and ion leaching and provide a suitable sur-
face for further chemical modification aiming the grafting 
of the biopolymers onto its surface. For example, carboxy-
methylated carrageenans were grafted onto the surface of 
amino-functionalized silica-coated magnetite nanoparticles, 
via carbodiimide chemistry (Daniel-da-Silva et  al. 2015). 
The biosorbents showed good methylene blue adsorption 
due to electrostatic interactions between the carrageenan 
and the dye. Owing to the covalent immobilization of the 
carrageenan, the particles were reusable without significant 
loss of the adsorption capacity.

Bio‑hybrid coatings In alternative to the grafting of 
biopolymers at the surfaces of silica-coated nanoparticles, 
the biopolymer can be introduced in the silica network, 
yielding an organic–inorganic hybrid material enriched 
in biopolymer, herein designated by bio-hybrid material. 
Our group has developed a method for the encapsulation 

of  Fe3O4 nanoparticles with bio-hybrid siliceous shells 
comprising a polysaccharide covalently grafted to the sili-
ceous network (Soares et al. 2016, 2017a; Fernandes et al. 
2017). The encapsulation was performed through a one-
step procedure, involving the hydrolysis and condensation 
of a mixture of tetraethyl orthosilicate and an alkoxysilane 
covalently bound to the biopolymer, in the presence of the 
magnetic particles. This method was successfully used with 
polysaccharides having distinct chemical nature and ionic 
character, namely κ-carrageenan (Soares et al. 2016, 2017b; 
Fernandes et al. 2017), chitosan (Soares et al. 2017a) and 
starch (Fernandes et al. 2017). In comparison with the post-
encapsulation grafting, this method allowed to obtain sur-
faces highly enriched with biopolymer functional groups. 
The resulting magnetic biosorbents were highly effective in 
the removal of the organic pollutants paraquat, methylene 
blue and metoprolol from aqueous solutions (Soares et al. 
2016, 2017b; Fernandes et al. 2017). Magnetic hybrids pre-
pared from chitosan were tested for the uptake of nonpolar 
organic solvents from water (Soares et al. 2017a).

Adsorptive applications of magnetic 
bionanocomposites in water treatment

In this section, the most recent magnetic bionanocompos-
ites for the cleanup of emerging pollutants from water is 
reviewed taking into consideration adsorptive technologies. 
Table 2 provides an overview of several materials that have 
been successfully used for the removal of inorganic and 
organic pollutants.

Removal of heavy metal species

Due to their well-known toxicity, heavy metals such as lead, 
cadmium, arsenic, mercury and chromium have been consid-
ered priority pollutants since they pose the greatest concern 
regarding human exposure (Bashir et al. 2019; Malik et al. 
2019).

A wide variety of magnetic bionanocomposites have 
been proposed for the effective removal of Pb(II) from 
water under several operating conditions (Charpentier 
et al. 2016; Luo et al. 2016; Wang et al. 2016; Li et al. 
2017; Sahraei et al. 2017; Sengupta et al. 2017; Chen et al. 
2017b). Pb(II) can have a serious impact on human health 
mainly due to increased oxidative stress, with a highly det-
rimental effect on the hematopoietic, renal, reproductive 
and central nervous system (Flora et al. 2012). Recently, 
a chitosan/polyethylenimine-grafted magnetic composite 
has been reported with an impressive maximum adsorp-
tion capacity 341 mg g−1 of Pb(II) and 321 mg g−1 of 
Cd(II) (Li et al. 2017). With an optimum performance 
in pH range 6–7, the isotherm studies indicated a good 
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Table 2  Magnetic bionanocomposites for the uptake for several inorganic and organic pollutants (PAC powered activated carbon, OMWCNT oxi-
dized multiwalled carbon nanotube)

Biosorbent Pollutant Adsorption capacity pH References

Magnetic chitosan–gra-
phene oxide

Acid red 17 and bromophe-
nol blue

8.1 and 9.5 mg g−1 2, 6 (Sohni et al. 2017)

Imprinted  Fe3O4–quater-
nary ammonium chitosan

As(III) 12 mg g−1 6 (Song et al. 2017)

Fe3O4–chitosan beads As(V) 147 µg g−1 6–8 (Martínez-Cabanas et al. 
2016)

Fe3O4–chitosan–PAC–clay Atenolol, ciprofloxacin and 
gemfibrozil

15.6, 39.1 and 24.8 mg g−1 10, 7, 4 (Arya and Philip 2016)

8-Hydroxyquinoline-
anchored imprinted 
γ-Fe2O3@chitosan

Co(II) 100 mg g−1 8 (Hossein et al. 2016)

Pyridinium–diethylenetri-
amine magnetic chitosan

Cr(VI) 176 mg g−1 3 (Sakti et al. 2015)

Fe3O4–quaternary ammo-
nium chitosan

Cr(VI) and methyl orange 3.25 and 2.5 mmol g−1 2 (Li et al. 2016a)

Fe3O4–κ-carrageenan–g-
poly(methacrylic acid) 
hydrogel

Crystal violet 28.24 mg g−1 7 (Gholami et al. 2016)

Polyethylenimine-modified 
polystyrene/Fe3O4/chi-
tosan

Cu(II) 204 mg g−1 6 (Xiao et al. 2017)

Starch–g-polyacrylonitrile/
montmorillonite/Fe3O4

Cu(II) 164 mg g−1 4.7 (Mahdavinia et al. 2016)

Fe3O4–chitosan Cu(II) 236 mg g−1 6 (Neeraj et al. 2016)
Fe3O4@ aminopropyl-func-

tionalized silica–chitosan
Demulsification n/a n/a (Lü et al. 2017)

Magnetic cellulose 
ionomer/layered double 
hydroxide

Diclofenac 268 mg g−1 9 (Hossein et al. 2016)

Gelatin-based magnetic 
beads

Direct red 80 and methyl-
ene blue

380 and 465 mg g−1 n/a (Saber-Samandari et al. 
2017)

Fe3O4–alanine- or serine- 
or cysteine-grafted 
chitosan

Dy(III) 14.8, 8.9, and 17.6 mg g−1 5 (Galhoum et al. 2015a)

Magnetic chitosan modified 
with glutaraldehyde

Hg(II) 96 mg g−1 5 (Azari et al. 2017)

Itaconic acid-grafted mag-
netite nanocellulose

Hg(II) 240 mg g−1 8 (Anirudhan and Shainy 
2015)

Fe3O4–cysteine–chitosan La(III), Nd(III), and 
Yb(III)

17, 17, 18 mg g−1 5 (Galhoum et al. 2015b)

Chitosan/Al2O3/Fe3O4 
microspheres

Methyl orange 419 mg g−1 6 (Tanhaei et al. 2016)

Glutaraldehyde cross-
linked chitosan-coated 
 Fe3O4 nanoparticles

Methyl orange 758 mg g−1 6–10 (Yang et al. 2016a)

Fe3O4@SiO2–κ-
carrageenan

Methylene blue 530 mg g−1 9 (Soares et al. 2017b)

Fe3O4–OMWCNT-κ-
carrageenan

Methylene blue 1.24 × 10−4 mol g−1 6.5 (Duman et al. 2016)

Fe3O4–κ-carrageenan cross-
linked with chitosan

Methylene blue 123 mg g−1 2–12 (Mahdavinia and Mosal-
lanezhad 2016)

Magnetic chitosan/clay 
beads

Methylene blue 82 mg g−1  > 9 (Bée et al. 2017)
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agreement with the Langmuir isotherm for both metals. 
The adsorption process was thermodynamically favorable 
and endothermic in nature. The good removal efficiency 
could be attributed to the biopolymer at the surface of 
the particles, which resulted in a higher number of amino 
groups with superior uptake efficiency. Furthermore, the 
chitosan/polyethylenimine-grafted magnetic composite 
could be effectively regenerated for five cycles while keep-
ing good performance and stability. Magnetic hydrogel 
beads containing gum tragacanth in its composition have 
also been reported for the effective cleanup of Pb(II) and 
Cu(II) from water (Sahraei et al. 2017), with a maximum 

adsorption capacity of 81 and 69 mg g−1, respectively, at 
pH 6. The good removal capacity was ascribed to the pres-
ence of several chelating sulfonic acid, carboxylic acid and 
hydroxyl and amino groups.

Magnetic carboxymethyl chitosan nanoparticles have 
also been proposed for the cleanup of Pb(II), Cu(II) and 
Zn(II). By preparing the materials through a simple one-step 
chemical precipitation method, their adsorption efficiency 
was determined with values of 243, 232 and 131 mg g−1 at 
pH 5.2 (Charpentier et al. 2016). The good sorption capac-
ity was attributed to the availability of a large number of 
carboxyl groups which are able to coordinate to metal ions.

Table 2  (continued)

Biosorbent Pollutant Adsorption capacity pH References

Carboxymethyl chitosan-
modified magnetic-cored 
dendrimers

Methylene blue and methyl 
orange

20.85 and 96.31 mg g−1 3; 11 (Kim et al. 2016)

Magnetic ampholytic poly-
electrolyte microspheres

Methylene blue, Congo 
red, Cu(II) and Cr(III)

124, 212, 20 and 12 mg g−1  > 9, < 5 (org. only) (Liang et al. 2017)

CoFe2O4–alginate beads Methylene blue, crystal 
violet and malachite 
green

466, 456, 248 mg g−1 5 (Li et al. 2016b)

Fe3O4@SiO2–κ-
carrageenan

Metoprolol 447 mg g−1 7 (Soares et al. 2016)

Ion-imprinted magnetic 
chitosan/poly(vinyl 
alcohol)

Ni(II) 500 mg g−1 5.5 (Zhang et al. 2015)

Fe3O4–corn stalk NO3
− 102 mg g−1 6–9 (Song et al. 2016a)

Fe3O4@SiO2–κ-
carrageenan

Paraquat 257 mg g−1 7.3 (Fernandes et al. 2017)

Magnetic cellulose beads Pb(II) 5 mg g−1 2–3 (Luo et al. 2016)
Magnetic graphene oxide 

coated with chitosan
Pb(II) 79 mg g−1 5 (Wang et al. 2016)

Chitosan/polyethylenimine-
grafted magnetic gelatin

Pb(II) and Cd(II) 341 and 321 mg g−1 6–7 (Li et al. 2017)

Fe3O4–chitosan and 
caboxymethylchitosan

Pb(II), Cu(II) and Zn(II) 243, 232, 131 mg g−1 5.2 (Charpentier et al. 2016)

Magnetic hydrogel beads 
with gum tragacanth

Pb(II), Cu(II), crystal violet 
and Congo red

81, 69, 101, 94 mg g−1 2–6  (M+) 2–8 (CV) 5–8 
(CR)

(Sahraei et al. 2017)

Fe3O4–β-cyclodextrin-
bearing dextran

Phenanthrene and pyrene Kd: 6095.5, 21,965 L kg−1 n/a (Cho et al. 2015)

Magnetic chitosan micro-
spheres

Phosphorous 4.84 mg g−1 7 (Funes et al. 2017)

Fe3O4–NH2-modified cel-
lulose

Reactive brilliant red, 
methyl orange and acid 
red 18

101, 222 and 99 mg g−1 2–3, 6, 6, > 8, (Song et al. 2016b)

Cellulose functionalized 
with poly(dopamine)

Resorcinol 258 mg g−1 3 (Ding et al. 2017)

Carbon nanotubes–C@
Fe–chitosan

Tetracycline 104 mg g−1 6 (Ma et al. 2015)

Carbon disulfide-modified 
magnetic ion-imprinted 
chitosan–Fe(II)

Tetracycline and Cd(II) 516 and 194 mg g−1 7–8 (Chen et al. 2017a)

Fe3O4–alanine- or serine-
grafted chitosan

U(VI) 85, 116 mg g−1 3.6 (Galhoum et al. 2015c)
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Cadmium is a highly toxic heavy metal, and its exposure 
even at very low concentrations has been linked to several 
diseases in humans (Satarug et al. 2009). Recently, a com-
posite of carbon disulfide-modified magnetic ion-imprinted 
chitosan–Fe(III) has been reported for the simultaneous 
cleanup of Cd(II) and tetracycline from water (Chen et al. 
2017a). The presence of pores in the composite along with 
the functional groups of the biopolymer resulted in good 
uptake efficiency (194 and 516 mg g−1 for Cd(II) and tetra-
cycline, respectively).

Arsenic, which is a metalloid that can induce toxic effects 
even at low concentrations (Tchounwou et al. 2012; Chen 
et al. 2015; Bibi et al. 2017), has a wide distribution in 
nature. Several forms of arsenic exist with distinct oxida-
tion states; however, the forms with As(III) (arsenite) and 
As(V) (arsenate) are the ones that raise the greatest con-
cern. These forms are toxic for aquatic systems (Kumari 
et al. 2017) and are related to several diseases in humans 
and with carcinogenic effects. An As(III)-imprinted mag-
netic  Fe3O4–N-(2-hydroxy) propyl-3-trimethyl ammonium 
chitosan composite has been presented for the removal of 
As(III) from water (Song et al. 2017). The use of this qua-
ternary chitosan resulted in improved dispersion of the com-
posite in water and delivered a high number of cationic bid-
ing sites that promoted the removal of As(III) species under 
optimal pH conditions (pH 6). Magnetic chitosan beads have 
also been proposed for the removal of As(V) from water 
(Martínez-Cabanas et al. 2016).

Mercury is a heavy metal with well-known toxicity. It is 
a natural element with a wide distribution in nature; how-
ever, a great portion of mercury bioaccumulation is origi-
nated from anthropogenic activity. Mercury and its several 
forms have been identified as priority hazardous substance 
by the European Union (directive 2008/105/EC) and the 
United States Environmental Protection Agency. An itaconic 
acid-grafted magnetite nanocellulose composite has been 
purposed for the removal of mercury from water (Anirud-
han and Shainy 2015). The maximum adsorption capacity 
obtained was 240 mg g−1 and the material exhibited a good 
reuse capacity, being recycled for six cycles. Recently, mag-
netic chitosan modified with glutaraldehyde was also pur-
posed for the Hg(II) water remediation (Azari et al. 2017). 
In this case, glutaraldehyde was important to promote the 
fixation of chitosan, resulting in superior stability and, con-
sequently, in a large number of strong chelating sites.

Chromium is another natural occurring heavy metal, 
being Cr(III) the most stable form and widely distributed 
in nature. Even though Cr(III) has an important biologi-
cal role, it is now accepted that the exposure to high levels 
has been linked to adverse health effects. The presence of 
Cr(VI) in drinking water is of serious concern since it can 
easily enter the cells when compared with Cr(III) (Barceloux 
and Barceloux 1999; Wilbur et al. 2012; Ni et al. 2014). A 

pyridinium–diethylenetriamine magnetic chitosan was pro-
posed for the efficient removal of Cr(VI) from water (Sakti 
et al. 2015). The use of pyridinium units along with chitosan 
delivered several functional groups (amines and quaternary 
amines) that promoted the electrostatic interaction with the 
metal.

Removal of organic compounds

Every day, different classes of organic pollutants are dis-
charged with the potential to contaminate drinking water 
sources. Some examples include dyes, pharmaceuticals, 
pesticides, solvents or many other organic by-products 
originated from industrial manufacturing (Dsikowitzky 
and Schwarzbauer 2014; Cizmas et al. 2015; Crini et al. 
2019). There is now great evidence that a large diversity of 
hazardous organic pollutants is present in drinking water 
sources, with an alarming negative impact on human health 
or aquatic ecosystem. To address this problem, different 
types of bionanocomposites have been purposed for the 
adsorption of organic pollutants. Furthermore, many bio-
nanocomposites have been explored for the uptake of sev-
eral common less toxic dyes, given their prevalent use as 
molecular models for preliminary assessment of material 
performance. A well-known example of such case is methyl-
ene blue. Recently, our group explored the ability of hybrid 
magnetic biosorbents containing a siliceous shell with cova-
lently linked κ-carrageenan for the uptake of methylene blue 
from water (Soares et al. 2017b). The experimental results 
indicated a Z-type isotherm, with a maximum adsorption 
capacity of 530 mg g−1. In addition, the material could be 
recycled for six cycles without loss in performance or sta-
bility. The biopolymer had an important role by providing 
anionic ester sulfate groups that could establish electrostatic 
interactions with the cationic dye under optimal pH condi-
tions. A gelatin-based magnetic nanocomposite comprising 
carboxylic acid-functionalized carbon nanotube has also 
been reported for the uptake of methylene blue and direct 
red 80 (Saber-Samandari et al. 2017). The authors proposed 
that the gelatin delivered cationic functional groups that can 
remove the organic pollutants from water through electro-
static interactions. Alginate beads containing dispersed poly-
dopamine  CoFe2O4 particles were reported for the uptake 
methylene blue, crystal violet and malachite green (Li et al. 
2016b). It was shown that the presence of carboxylate, cat-
echol and amino groups provided important binding sites 
for the removal of the organic dyes through electrostatic 
interactions.

In addition to dyes, other organic pollutants have also been 
investigated for water remediation, given the rising concerns 
regarding their impact on human health and the ecosystems. 
For example, our group explored the ability of hybrid mag-
netic nanoparticles containing κ-carrageenan for the uptake 
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of metoprolol (beta blocker) (Soares et al. 2016) and paraquat 
(herbicide) (Fernandes et al. 2017). The good performance of 
the material, 447 and 257 mg g−1 for metoprolol and paraquat, 
respectively, and recycling capacity make it as a good candi-
date for the water remediation of these pollutants. Magnetic 
cellulose ionomer/layered double hydroxide has been success-
fully used for the removal of diclofenac from water (Hossein 
et al. 2016). The pyridinium rings of cellulose ionomer pro-
vided several binding sites for the removal of diclofenac. A 
composite material based on chitosan and magnetic carbon 
nanotubes has been employed for the removal of tetracycline 
(Ma et al. 2015). The adsorption profile fitted well with the 
Freundlich isotherm model with a maximum performance of 
104 mg g−1. In addition, the biosorbent could be recycled for 
ten cycles while keeping good performance.

Conclusion

The application of magnetic bionanocomposite particles for 
the uptake of pollutants in water treatment has emerged as an 
interesting alternative to conventional sorbents. These biosor-
bents offer clear advantages of magnetic separation and tuned 
affinity for a variety of pollutants. The rational design of the 
surface of these materials is essential, in order to attain robust 
and reusable biosorbents with high adsorption capacities. 
Thus, this article dedicated a specific section to the most rel-
evant chemical strategies for the surface modification of mag-
netic nanoparticles with biopolymers, aiming the production of 
magnetic biosorbents optimized and specialized in the targeted 
pollutants. A direct outcome of the use of optimized biosorb-
ent particles is the reduction in quantities of solids needed 
in the water treatment, which, apart from bringing down the 
costs of water remediation, also reduces the potential environ-
mental effects of the exhausted sorbents disposed. The use of 
nature occurring biopolymers anticipates potential bio- and 
eco-compatibility of the magnetic biosorbents.
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