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Abstract
In aqueous systems, heavy metal ions, when present in excess than permissible limits, are dangerous for human beings and 
aquatic life. Heavy metals cannot be degraded. Rather, they accumulate in living organisms either directly or through the food 
chain. Inside the body, metal ions can be converted to more toxic forms or can directly interfere with metabolic processes. As 
a result of metal toxicity, various disorders and damage due to oxidative stress triggered by metal ions have been witnessed. 
Toxic effects of metallic pollution coupled with the need of pure water for the survival and sanitation have thus prompted 
researchers to take every possible step to uphold the quality of water. In this regard, various strategies have been developed 
for the detection and the removal of metal ions from aqueous systems. Here we review metal-free water and methodologies 
used for rapid detection at low levels. Also, the application of benign materials and methods for metal removal from aqueous 
systems is detailed. Electrochemical methods, especially stripping and cyclic voltammetry, are commonly used methods for 
detection, while adsorption and ion exchange methods are quite effective for removal.

Keywords Heavy metal ions · Cyclic voltammetry · Anodic stripping · Removal of metal ions · Adsorption · Ion exchange

Introduction

Increased anthropogenic activity has led to the release of 
many hazardous substances into water resources that has put 
aquatic ecosystem and environment at risk (Nagajyoti et al. 
2018). Heavy metal ions are the most serious contributors 
of water pollution as they are highly toxic, non-degradable 
and have a tendency to bioaccumulate and biomagnify as a 
result of food chain (Ayangbenro and Babalola 2017; Ali and 
Khan 2018; Kahlon et al. 2018). Their presence in aquatic 
ecosystems is sufficient to affect living systems directly or 
indirectly. Even in the soil environment, heavy metal ions 
are quite dangerous to both plants and animals as they are 
adsorbed by plants and finally reach to animals and humans 
(Dubey et al. 2018; Mallampati et al. 2013). In the soil envi-
ronment, sorption of these heavy metals by soil constituents 
is considered to be a vital process in reducing the mobility of 
these pollutants to water, crops, vegetables and the threat to 
human beings and animals (Zhu et al. 2019; Lair et al. 2007). 
The impacts of this water pollution have forced researchers 

to develop suitable techniques for the detection and quanti-
fication of heavy metal contaminants. Many techniques have 
been used for the detection of heavy metal ions which can be 
divided into three main categories; spectroscopic detection 
techniques, electrochemical detection techniques and opti-
cal detection techniques. Spectroscopic methods for heavy 
metal ion detection include atomic absorption spectroscopy, 
atomic emission spectroscopy, inductively coupled plasma 
mass spectrometry (Lebedev et  al. 2003), cold vapour 
atomic fluorescence spectrometry, which are quite sensi-
tive but are expensive and require laborious pre-treatment 
processes (Harrington et al. 2011). Electrochemical meth-
ods on a contrary are more cost-effective, time economic, 
user-friendly, reliable and suitable for in-field applications 
and include techniques such as amperometry, voltammetry, 
potentiometry, impedance measurement and coulometry for 
heavy metal ion detection (Zhu et al. 2015). These electro-
chemical techniques allow simple procedures and are also 
fast in terms of short analytical time as compared to other 
spectroscopic techniques. Among various electrochemical 
techniques, anodic stripping voltammetry has been widely 
used for the analysis of heavy metal ions at trace levels 
because it possesses good selectivity, portability, low cost, 
fast analysis speed and excellent sensitivity (Zhu et al. 2012; 
Zhang et al. 2015; Yao et al. 2014; Liu et al. 2014a, b; Xu 
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et al. 2013). In optical methods of detection, metal ions can 
be detected by conventional methods of absorption, reflec-
tion or luminescence spectrometry. Selective chromogenic 
reagents and indicator dyes are often used in optical detec-
tion methods, where they react with a specific metal ion. 
In addition, optical fibres, integrated optics, capillary-type 
devices, etc., are also helpful in the detection of metal ions.

In addition to the detection of heavy metal ion, their 
removal from aqueous systems is essentially a highly impor-
tant concern. Water contaminated with highly toxic heavy 
metal ions such as  Hg2+,  Pb2+ and  Cd2+ is detrimental and 
hazardous for human health and requires highly efficient and 
specific methods of removal from aqueous systems. There 
are many such methods which can be employed for removal 
process such as precipitation, flocculation, membrane sepa-
ration, ion exchange, evaporation. Every method has its own 
advantages and limitations in terms of efficiency, sensitiv-
ity, selectivity and specificity (Pujol et al. 2014; Crini and 
Lichtfouse 2019). Among many of these methods, adsorp-
tion is more often a method of choice, because of its low 
cost, simple design and strong operability, especially its high 
removal efficiency from dilute solutions (Wang et al. 2013). 
At several occasions, the surface of materials is modified 
so as to enhance the removal efficiency towards metal ion 
uptake (Elfeky et al. 2017; Ojemaye et al. 2017).

Here we present an overview of metal ion pollution sce-
nario in aqueous systems and potential consequences of 
these increasing levels of pollution on living system and 
the overall quality of life. Various methodologies that can 
be used in the detection purpose and the advantages of each 
method have been highlighted. Finally, some important 
methods which are quite useful for the removal of heavy 
metal ions from water have been discussed threadbare in 
this review paper.

Though metals are important to carry out cellular func-
tions, their concentration window has a great impact on 
human health. Concentrations below the toxicity range is 
not going to have many adverse effects, but when it goes 
beyond the permissible limits, it becomes dangerous and 
leads to various cytological and physiological effects (Sum-
ner et al. 2005). The effects of heavy metal ions on living 
beings along with their toxicity range according to World 
Health Organization (WHO) and Bureau of Indian Standards 
(BIS) are given in Table 1.

Table 1 lists various sources and effects of some most 
toxic heavy metal ions like lead (Pb), cadmium (Cd), mer-
cury (Hg), arsenic (As) and chromium (Cr) which are the 
cause for many of the heavy metal-related diseases (Flora 
et al. 2008; Flora 2009; Bashir et al. 2016). “Presence” of 
heavy metal ions is not an issue; rather, it is “excess” that is 
creating the problem. It has been reported in the literature 
that in most cases, trace levels of metals are important in the 
biological functioning of cells such as transportation and 

cell signalling (Valko et al. 2005). However, when present 
in excess, these metal ions move out of the main metabolic 
pathway and can bind with protein sites other than natural 
binding sites, breaking the cell cascade, thereby, leading to 
toxicity in living things (Sevcikova et al. 2011; Gemma et al. 
2006; Singh et al. 2010).

So considering the toxic effects of heavy metal ions when 
present in excess than the permissible limits, it is prior 
requirement to detect, quantify and then remove these heavy 
metal ions by applying suitable methodological procedures.

Detection

A metal ion detector is a device or instrument designed to 
detect the presence of metal ions in its surroundings and 
sometimes may also be useful to quantify these metal ions. 
As already mentioned the importance of metal ion free water 
systems, it is very essential to develop a strategy for making 
water bodies safe to use for living beings. Prior to removal 
of these toxic metal ions from water samples, we need to 
have a technique available that could detect their presence 
and also help in making a quantitative estimate of the level 
of pollution possible so that a suitable method is chosen for 
the removal. For this purpose, detection process should be 
developed which are time- and cost-effective besides being 
environmentally green. Also a detection technique must be 
sensitive enough to detect even traces of metal ions with a 
good accuracy. A number of techniques are available for 
detection of heavy metal ions, but a particular technique 
applicable for all the ions is rather missing.

Methods of detection

Heavy metal ion detection techniques can be broadly divided 
into three main categories:

Spectroscopic detection

Spectroscopic detection of heavy metal ions includes highly 
sensitive techniques like atomic absorption spectroscopy 
(Gong et al. 2016; Array and Merkoci 2012), inductively 
coupled plasma mass spectroscopy (Wang et al. 2015), X-ray 
fluorescence spectrometry (Sitko et al. 2015), neutron acti-
vation analysis and inductively coupled plasma-optical emis-
sion spectrometry (Losev et al. 2015; Poikyo and Permki 
2003). They are versatile in terms of simultaneous determi-
nation of heavy metal ions concentration for a large range 
of elements with very low detection limits. However, these 
techniques are quite expensive and require trained personnel 
to work on the complex equipments. Flame atomic absorp-
tion spectroscopic technique has been used to determine Cu, 
Pb and Cd ions in water where limit of detection has been 
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reported to be 2, 3 and 0.2 μg dm−3 for  Cu2+,  Pb2+ and  Cd2+ 
ions, respectively (Shirkhanloo et al. 2011). High-resolution 
surface plasmon resonance spectroscopy combined with 
anodic stripping voltammetry has been used to detect lead, 
copper and mercury ions from parts per million down to 
subparts per billion levels (Wang et al. 2007). Some of the 
important spectroscopic methods used for the detection of 
heavy metal ions are explained below.

Atomic absorption spectrometry

In atomic absorption spectroscopy, a specific wavelength is 
used to excite isolated atoms from ground state to excited 
state and the amount of energy absorbed during this exci-
tation is measured which is proportional to the concentra-
tion of atoms present in the sample. A block diagram of a 
typical atomic absorption spectrometer is shown in Fig. 1. 
It consists of a primary light source, atomizer to produce 
gas-phase atoms or ions for analysis, a monochromator, a 
detector and an electronic “readout” system.

Atomic absorption spectroscopic determination of ele-
ments can only be performed on gaseous medium in which 
the individual atoms or ions are well separated from each 
other. Plasmas, flames and electrothermal atomizers are 
used to generate gas-phase analyte atoms/ions. This pro-
cess in which sample is volatilized and decomposed in 
such a way so as to produce gas-phase atoms and ions is 
called as atomization. A specific light source is used to 
excite atoms or ions of a particular element and these light 
sources usually use a hollow cathode lamp or an electrode-
less discharge lamp of the same element, which is to be 
analysed. Many lamps are also available that can be used 
to determine more than one element without changing the 
lamp. Solid-state detectors or photomultiplier tubes have 
been used as detectors in atomic absorption spectroscopy. 

For the determination of mercury, a modified atomic 
absorption spectroscopic technique, called as flow injec-
tion mercury systems, is used. Spectroscopic detection of 
some metal ions by the help of atomic absorption spectros-
copy is summarized in Table 2.

Graphite furnace atomic absorption spectrometry

Graphitic furnace consists of a cylindrical graphitic tube 
that is open at both the ends and has a central hole for intro-
duction of samples. The sample is introduced directly into 
a graphite tube where it is heated to remove the solvent and 
matrix components, and then atomization of the sample 
takes place. The atomized sample is then analysed in the 
same way as reported in flame atomic absorption spectros-
copy. In graphitic furnace atomic absorption spectroscopy, 
atomization occurs in an environment where temperature 
is not changing rapidly as sample is no longer directly on 
furnace wall, as a result of which more reproducible sig-
nals are obtained. The disadvantages of graphitic furnace 
atomic absorption spectroscopy as a detection tool for heavy 
metal ions are in terms of analysis times which are longer 
than those for flame sampling and the numbers of elements 
that can be determined by this method are fewer. Graphitic 
furnace atomic absorption spectroscopy was used for the 
determination of lead, cadmium, copper, arsenic and mer-
cury with detection limits of 0.28, 0.014, 0.49, 0.19 and 
0.061 mg L−1, respectively (Nie et al. 2008). A graphite 
furnace technique was also used for the analysis of lead in 
“Yin Qiao Jie Du” tablets where LOD for Pb was found to 
be of the order of 0.1 ppb (Yuan et al. 2009). Graphitic fur-
nace atomic absorption spectroscopy as an effective method 
for the detection of some heavy metal ions is reported in 
Table 2.

Fig. 1  Single-beam atomic 
absorption spectrophotometer 
used to detect metal ions. It con-
sists of a primary light source, 
atomizer to produce gas-phase 
atoms or ions for analysis, a 
monochromator, a detector and 
an electronic “readout” system
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Atomic fluorescence spectrometry

Atomic fluorescence spectrometry is different from atomic 
absorption spectrometry in principle and working. Like 
atomic absorption spectroscopy, in atomic fluorescence 
spectrometry a sample solution is first atomized and then 
the atoms are illuminated with a light source leading to the 
excitation of atoms. These excited atoms undergo radiative 
deactivation and emit characteristic radiations that fall on the 
detection device, and the atomic fluorescence is measured by 
the detector. For mercury determination, cold vapour atomic 
fluorescence spectrometry can be used in which carrier gas 
like argon is used to take free mercury atoms to the cell 
where these atoms are excited by a collimated ultraviolet 
light source. The excited atoms re-emit the absorbed energy 
as fluorescence which is measured by the help of photo-
multiplier tube detector or a UV photodiode detector. The 
major advances in the field of metal detection using atomic 
fluorescence spectrometry are highlighted in Table 3.

X‑ray fluorescence spectrometry

When a material is irradiated with X-rays or gamma rays, it 
leads to the ionization of the material. Such a bombardment 
of material with high energy radiations can even eject elec-
trons from inner orbitals of K or L shell as shown in Fig. 2. 
These vacancies are fulfilled by electrons from higher energy 
shells which is accompanied by the emission of photon or 
fluorescence called as X-ray fluorescence spectrometry, 
which is measured.

Since each element has a unique set of energy levels, 
each element produces its own fluorescence spectrum with 
a unique set of energies associated with multiple peaks of 
different intensities. Thus, XRF is quite useful technique to 
determine the elemental composition of a sample quite eas-
ily. The block diagram of X-ray fluorescence spectrometer 
which is composed of an X-ray source, sample chamber, 
fluorescence detector, data processing and display system 
is shown in Fig. 3.

XRF technique has been used to screen and identify toxic 
elements in various FDA-regulated products (Palmer et al. 
2009) and many other such sources which are summarized 
in Table 3.

Electrochemical methods of detection

Electrochemical techniques are economic, user-friendly 
and reliable and involve simple procedures for monitoring 
of contaminated samples. The other advantage offered by 
electrochemical methods is the very short analytical time 
as compared to other spectroscopic techniques (Pujol et al. 
2014). However, these electrochemical techniques have 
some drawbacks like they possess lower sensitivity and 
higher limits of detection (LOD) as compared to spectro-
scopic and optical techniques. Also, these techniques often 
in certain cases require developments and modifications 
in the design to improve their performance in detection 
of heavy metal ions (Bansod et al. 2017). For example, 
various electrochemical techniques have to be coupled 
with different biosensing electrodes in order to improve 

Table 2  Detection of toxic heavy metal ions from various sources by atomic absorption spectroscopy  (AAS) and graphitic furnace atomic 
absorption spectroscopy (GF-AAS)

a Atomic absorption spectroscopy
b Graphitic furnace atomic absorption spectroscopy

Metal ion/ions Source Technique References

Mn, Pb, Cr, Cd Kulufo River, Arbaminch, Gamo Gofa, Ethiopia AASa Tsade (2016)
Pb, Sb, Al, As Tube wells of District Pishin, Balochistan, Pakistan AAS Tareen et al. (2014)
Pb, Cd, Zn, Ni, Cr, Mn, Fe Water and therapeutic mud AAS Radulescu et al. (2014)
Cd, Cu, Fe, Ni, Pb, Zn, Tl Seawater AAS Kojuncu et al. (2004)
Pb, Cd, Cr, Cu, Ni Chinese tea GF-AASb Zhong et al. (2016)
Ca, Mg, Fe, Cu, Zn Chinese tablets AAS Dong and Zhu (2002)
Ca, Mg, Fe, Mn, Cu, Zn, Cd Chinese taponin tablet recipe AAS Dong and Zhu (2003)
Co, Ni Water samples GF-AAS Minami et al. (2003)
Pb Water sample GF-AAS Chen et al. (2005)
Pt Rocks GF-AAS Odonchimeg et al. (2016)
V Wine GF-AAS Wierzbicki and Pyrzynska (2002)
Cd Wine GF-AAS Cvetkovi et al. (2006)
Cr French wine and grapes GF-AAS Cabrera-Vique et al. (1997)
Hg Muscle samples of fish GF-AAS Moraes et al. (2013)
Fe Natural and mineral waters AAS Tautkus et al. (2004)
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their sensitivity and limits of detection by modifying the 
electrode material. The presence of heavy metal ion in 
water usually brings the change in electrical parameters 
like current, voltage, electrochemical impedance, charge 
and electroluminescence (Cui et al. 2015) in the electro-
chemical setup. Based on that electrical signal has been 

affected by the presence of heavy metal ions, these tech-
niques can be categorized into potentiometric, amperomet-
ric, voltammetric, coulometric, impedance measurement 
and electrochemiluminescent techniques. Some important 
electrochemical techniques are presented below.

Table 3  Detection of some 
toxic heavy metal ions 
by atomic fluorescence 
spectrometry (AFS) 
and X-ray fluorescence 
spectrometry (XRFS)

a Atomic fluorescence spectroscopy
b X-ray fluorescence spectrometry

Metal ion/ions Sample Analytical 
technique

References

Cd Brown rice AFSa Hafuka et al. (2017)
Pb Water samples AFS Beltran et al. (2015)
As Chicken meat AFS Sanchez-Rodas et al. (2006)
Cu, Pb Aqueous solution XRFSb Hutton et al. (2014)
As Mining polluted soils AFS Ruiz-Chancho et al. (2005)
Fe, Ni, Mn, Cu, Zn, Pb Coastal seawaters XRFS Yuan-Zhen et al. (2012)
As, As Acid mine drainage, Beltran AFS Oliveira et al. (2006)
As, As Seafood AFS Schaeffer et al. (2005)
As, Cr, Cu, Ni, Pb, V, Zn Soil XRFS Ene et al. (2010)
Se Cow milk AFS Muniz-Naveiro et al. (2007)
As, Pb, U Aerial parts of Origanum sipyleum L XRFS Durmuşkahya et al. (2016)
Sc Sesame seeds AFS Kapolna et al. (2007)
Sb, Sb Marine algae, molluscs AFS de Greogi et al. (2007)
As, Cd, Cr, Cu, Ni, Zn, Pb Soils XRFS Taha (2017)
Cr, Ni, Cu, Zn, Zr, Rb, Y, 

Ba, Pb, Sr, Ga, V, Nb.
surface soil samples XRFS El-Bahi et al. (2013)

Hg Water AFS Logar et al. (2002)
Pb, As, Cu, Zn Soil samples XRFS Radu and Diamond (2009)
Cr, Ni, Cu, Zn, Hg, Pb Fish tissues XRFS Zarazúa et al. (2014)
Hg Wastewater samples XRFS Marguí et al. (2010)

Fig. 2  A block diagram of 
K-capture involved in X-ray 
fluorescence spectrometry 
(XRF) where the high-energy 
X-rays or gamma rays eject 
electrons from K-shell of an 
atom, creating a vacancy which 
is being filled by the electron of 
next higher energy level
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Potentiometry

This technique is based on the measurement of electro-
motive force (EMF) without applying any electric cur-
rent for such measurements. Potentiometric techniques are 
generally used for quantitative analysis of ions in solu-
tions. However, it is also quite effective in the detection of 
heavy metal ions because of its advantages like low cost, 
short response time, high selectivity and broad range of 
response (Array and Merkoci 2012). High detection lim-
its and reduced sensitivity are some drawbacks associated 
with this technique, and efforts have been carried out in 
order to overcome such problems. Use of modified elec-
trodes especially with carbon nanotubes and metal nano-
particles has been found promising in this regard (Düzgün 
et al. 2011; Bakker and Pretsch 2008). Such modified elec-
trodes have been reported with enhanced sensitivity and 
also lower down the limits of detection for heavy metal 
ions as shown in Table 4.

Amperometry

Amperometry is a potentiostatic technique in which a fixed 
potential difference is applied between working and refer-
ence electrode in the solution containing electroactive spe-
cies, and the flow of very small currents due to reduction of 
these heavy metal ions is measured. The current is recorded 
as a function of time, and such experiments are called 
amperometry techniques. By this technique, one particular 
metal ion is detected among various electroactive species 
due to fixed potential of the working electrode. The analyte 
to be detected undergoes a faradic reaction at some desired 
polarity and magnitude of the potential applied. However, 
due to less surface area of the working electrode, this faradic 
reaction is incomplete and only a fraction of analyte reacts. 
To overcome this problem, electrode surface has been modi-
fied by several means. In one such case, a highly sensitive 
screen-printed electrode modified with a nanostructured car-
bon black film has been used for the detection of  Hg2+ with 
the detection limit of 5 nM (Arduini et al. 2011). In another 

Fig. 3  A block diagram of 
X-ray fluorescence spectrom-
eter, composed of X-ray source, 
sample chamber, fluorescence 
detector, data processing and 
display system used to deter-
mine the elemental composition

Table 4  Detection of heavy metal ions by potentiometry

Metal ion Electrode modification Limit of 
detection 
(mol L−1)

References

Hg Thiourea-functionalized nanoporous silica-modified carbon paste electrode 7 × 10−8 Javanbakht et al. (2009)
Hg Screen-printed electrode modified with zirconium antimonate ionophore 5 × 10 −8 Aglan et al. (2018)
Hg Tribromomercurate–rhodamine B PVC membrane electrode 2.4 × 10−6 Othman (2006)
Hg Modified palm shell activated carbon paste electrode based on  Kryptofix®5* 1.0 × 10–7 Ismaiel et al. (2012)
Cd Multiwalled carbon nanotubes functionalized by dithizone-modified electrode 1.0 × 10−7 mol Karimi et al. (2012)
Cd PVC-based polyaniline Sn(IV) silicate composite cation exchanger ion-selective 

membrane electrode
1 × 10−7 Naushad et al. (2014)

Pb PVC-based carboxymethyl cellulose Sn(IV) phosphate composite membrane 
electrode

1 × 10−6 Inamuddin et al. (2015)

Pb Zirconium(IV) iodosulphosalicylate-based electrode 4.07 × 10−6 Lutfullah and Rahman (2012)
Pb Polypyrrole-modified electrode 7.0 × 10−7 Mazloum-ardakani et al. (2012)
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case, amperometric biosensors which utilize biologically 
modified electrodes have also been used in the detection 
of heavy metal ions (Mohammadi et al. 2005). Electrodes 
have been modified so as to enhance their sensitivity towards 
metal ion detection by amperometric technique, as reported 
in Table 5.

Voltammetry

Among electrochemical techniques, voltammetry is com-
monly used technique for the detection of heavy metal ions. 
In voltammetric techniques, current is measured at different 
applied potentials to obtain a current–voltage curve. Voltam-
metry is widely used technique for heavy metal ion detection 
because of its high accuracy, lower limit of detections and 
high sensitivity. There are various forms of voltammetry, 
though the basic procedure, i.e. measuring the current by 
varying the potential, is same for the all. Some of the modes 
in which voltammetry is conducted for the analysis of heavy 
metal ions are described below.

Cyclic voltammetry In cyclic voltammetry, applied poten-
tial is swept first in one direction and then in the reverse 
direction. The current in the forward and reverse scan is 
recorded and is plotted against applied potential to obtain 
cyclic voltagram. From this cyclic voltagram, some impor-
tant parameters like cathodic and anodic peak potentials 
and corresponding currents are obtained. Gold nanoparti-
cles-thiol functionalized reduced graphene oxide-modified 
glassy carbon electrode (GCE/rGO-SH/Au nanoparticles) 
was used for selective detection of  Hg2+ by employing 
cyclic voltammetry (Devi et al. 2018). The sensor showed 
linear response for  Hg2+ detection in concentration range 
of 1–10 μM in phosphate buffer saline (PBS) solution, and 
the low detection limit of 0.2 μM was obtained. Cyclic vol-
tammetric response of GCE/rGO-SH/Au nanoparticles was 

compared to the one with no thiol functionalization GCE/
rGO/Au nanoparticles, and a drastic change in the anodic 
peak potential was obtained as shown in Fig. 4. The higher 
anodic currents obtained in case of GCE/rGO-SH/Au nano-
particles electrode system may be due to higher loading of 
Au nanoparticles as the –SH group on the rGO sheets has a 
strong affinity towards the Au nanoparticles. 

Pulse voltammetry The use of pulse of voltage signal hav-
ing different shapes and amplitudes in voltammetric meas-
urement gives rise to another type of voltammetry known 
as pulse voltammetry. Pulse voltammetry is further subcat-
egorized into normal pulse voltammetry, reverse pulse vol-
tammetry, differential pulse voltammetry, etc. Out of vari-
ous pulse voltammetric methods, differential pulse is most 
commonly used due to its high sensitivity towards detection 
of heavy metal ions. Simultaneous determination of copper, 
lead and cadmium was carried out at a carbon paste elec-
trode modified with hexagonal mesoporous silica (HMS)-
immobilized quercetin (HMS-Qu/CPE) by employing dif-
ferential pulse voltammetry (Xia et al. 2010). Voltammetric 
response at querectin-modified carbon paste electrodes (Qu/
CPE) and querection/ionic liquid-modified carbon paste 
electrode (QuIL/CPE) is shown in Fig.  5, and a compari-
son was drawn between the voltammetric response shown 
by these modified electrodes towards  Cu2+,  Pb2+ and  Cd2+ 
ions. The peak currents of copper, lead and Cd at HMS-Qu/
CPE showed a good enhancement which apparently may be 
due to the cooperative effect of HMS and Qu.

Stripping voltammetry Stripping voltammetry eventually 
consists of two main steps: electrodeposition where ana-
lyte solution from well-stirred solution is deposited on the 
electrode and voltammetric step where analyte is stripped 
off and can be analysed by any of the VM methods. The 
stripping voltammetry is further characterized into anodic 

Table 5  Amperometric detection of heavy metal ions using various modified electrodes

a Parts per billion (ppb)

Metal ion Electrode modification Limit of detection 
(mol L−1)

References

Hg Pt/CeO2/urease-modified electrode 1.8 × 10−8 Gumpu et al. (2017)
Pb 1.9 × 10−8

Hg Poly(vinylferrocenium) (PVF(+))-modified platinum electrode 5 × 10−10 Celebi et al. (2009)
Hg L-tyrosine-modified platinum electrode 1.4 × 10−8 Majid et al. (2002)
Cd Microwater/polyvinylchloride-2-nitrophenylethyl ether (PVC–NPOE) gel 

interfaces-based tape ion sensor.
1.78 × 10−7 Lee et al. (2009)

Cd, Co, Ni, As, 
Cr, Pb

Glucose oxidase-functionalized cobalt oxide-modified glassy carbon electrode 50a Mugheri et al. (2016)

Pb, Single carbon fibre electrode 1.3 × 10−6 Li et al. (2007)
Cd, 3.3 × 10−6

Cu 7.4 × 10−6
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stripping voltammetry (ASV) or cathodic stripping voltam-
metry (CSV) by applying anodic potential scan or a cathodic 
potential scan, respectively. In addition to a very low limit 
of detection, stripping voltammetry requires relatively sim-
ple and inexpensive instrumentation, with exceptional suit-
ability for miniaturization (Jothimuthu et al. 2011). Anodic 
stripping voltammetry for the detection of zinc ions was car-
ried out in acetate buffer by using disposable copper-based 
electrochemical sensor (Pei et al. 2014). Besides good sen-
sitivity and lower limit of detection, the sensor was able 
to detect and measure the concentration of  Zn2+ in blood 
serum as well. Anodic stripping voltammograms at various 
concentrations of  Zn2+ ion are shown in Fig. 6.

Stripping methods in combination with voltammetric tech‑
niques Stripping methods can be used in combination with 
various pulse voltammetric techniques that give rise to new 
detection techniques like linear sweep anodic stripping vol-
tammetry, differential pulse anodic stripping voltammetry, 

Fig. 4  Detection of  Hg2+ ions by the help of cyclic voltamme-
try using modified glassy carbon electrode. Cyclic voltagrams of a 
GCE/rGO/Au nanoparticles and b GCE/rGO/-SH/Au nanoparticles 

recorded in 0.1 M KCl solution in the potential range from − 0.2 to 
0.3 V at a scan rate of 50 mV s−1. Reproduced with permission from 
Devi et al. (2018). Copyright 2018 Electrochemical Society

Fig. 5  Detection of  Cu2+,  Pb2+ and  Cd2+ ions by differential pulse 
voltammetric technique. The differential pulse voltammograms of 
1.0  μM (each) multicomponent  Cu2+/Pb2+/Cd2+ solution at (a) Qu/
CPE, (b) QuIL/CPE and (c) HMS-Qu/CPE. Adapted from Xia et al. 
(2010)

Fig. 6  Anodic stripping voltammetric detection of zinc ions by using 
disposable copper-based electrochemical sensor: a anodic stripping 
voltagram of  Zn2+ samples in a range from 100 nM to 40 μM range, b 

calibration curves for  Zn2+ using peak height and c peak area of strip-
ping voltammograms. Reproduced from Pei et al. (2014). Copyright 
2014 American Chemical Society
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square-wave anodic stripping voltammetry, etc., which are 
quite effective for trace level detection of heavy metal ions 
with very low limits of detection. Square-wave anodic strip-
ping voltammetry has been performed for the detection of 
heavy metal ions such as  Zn2+,  Cd2+,  Pb2+,  Cu2+ and  Hg2+, 
on cubic and octahedral  Fe3O4 nanocrystal-modified elec-
trodes (Yao et al. 2014). According to Yao et al., in com-
parison to cubic  Fe3O4 nanocrystal-modified electrode, 
octahedral  Fe3O4 nanocrystals show better electrochemi-
cal sensing performances towards these investigated heavy 
metal ions as shown in Fig. 7. Also the electrochemical per-
formance of octahedral  Fe3O4 nanocrystals showed domi-
nating performance towards detection of  Pb2+ ions with 
higher sensitivity and lower limit of detection compared to 
other metal ions.

Other electrochemical methods include linear sweep 
voltammetry (LSV) which involves conventional electrodes 
linear sweep of potential (10 mV s−1 to about 1000 mV s−1) 
to obtain I–V curve and polarography, where one of the 
electrodes used is polarizable dropping mercury electrode 
(DME) whose potential changes from its reverse value and 
the other electrode used is non-polarizable electrode such 

as calomel electrode. Some of the important electrochemi-
cal techniques along with the electrode system used for 
detection of some toxic heavy metal ions are highlighted 
in Table 6.

Galvanostatic techniques

In galvanostatic techniques, it is electric potential that is 
measured while applying electric current. A current source 
(galvanostat) is used to control the current between the work-
ing electrode and counter electrode, and resulting potential 
is measured across the working and reference electrodes. 
Galvanostatic technique employees simple instrumenta-
tion as compared to the potentiostatic techniques; however, 
these techniques have the disadvantage of large double-layer 
charging effects that occur throughout the experiment. Gal-
vanostatic stripping chronopotentiometry (SCP) is one of the 
most applied galvanostatic techniques for heavy metal ion 
detection. It has been reported that SCP is less sensitive to 
the presence of organic matter (Estela et al. 1995), as a result 
of which SCP has been extensively used for detection of 

Fig. 7  Detection of various heavy metal ions by the help of square-
wave anodic stripping voltammetry. Square-wave anodic stripping 
voltammetric response of a octahedral and b cubic  Fe3O4 nanocrys-
tals-modified GCE for determination of Pb(II), comparison of c sen-
sitivity and d limit of detection (3σ method) for SWASV detection 

of  Zn2+,  Cd2+,  Pb2+,  Cu2+ and  Hg2+ at  Fe3O4 cubic and octahedral 
nanocrystals, respectively (Insets in a and b are the correspond-
ing linear calibration plots of peak current against concentrations). 
Adapted with permission from Yao et  al. (2014). Copyright 2014 
American Chemical Society
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heavy metal ions like cadmium, lead and copper in foods and 
biological samples (Szlyk and Czerniak-Szydlowska 2004).

Optical methods of detection

The optical effects of the materials may be detected by con-
ventional methods of absorption, reflection or luminescence 
spectrometry. Optical fibres, integrated optics, capillary-type 
devices, specific indicator dyes, ionophores, etc., are more 
often used for optical detection of heavy metal ions. Optical 
ion sensing, though suitable for detection of some heavy 
metal ions, has its own limitations (Wolfbeis 2002). There 
are many non-selective optical indicators that react with 
more than one metal ion, and also many metal ion indicators 
combine with hydrogen ions so pH has to be controlled in 
a proper way so that an appropriate correction factor can be 
applied. To overcome the poor selectivity of indicator dyes, 
masking agents may be put into use. For example, fluoride 
may be co-immobilized in sensor membranes so that unde-
sired interferences by other metal ions are suppressed or 
to make use of test strips containing reducing agents that 
convert analyte into a different species or oxidation state for 

which a selective indicator is available (Oehme and Wolfbeis 
1997).

Indicator dye‑based sensors

Such type of sensor is based on the binding reaction of heavy 
metal ion with the indicator dye that leads to change in the 
absorption or fluorescence of such binding reagents. In such 
type of heavy metal ion sensors, indicator plays the role of 
a transducer for the heavy metal ion for which direct optical 
determination is not possible. In another group of indicators, 
heavy metal ions act as “quenchers” where both static and 
dynamic quenching of luminescence of indicator dye takes 
place when the two combine together (Lakowicz 1983). In 
case of static quenching, a quencher interacts with fluoro-
phore in its ground state, while in dynamic quenching, the 
interaction between the two occurs in the excited state only. 
The process of dynamic quenching is reversible in the sense 
that the dye is not consumed. Fluorescent indicators provide 
advantage of improved sensitivity and selectivity; however, 
their disadvantages cannot be ruled out. Many indicators 
are not selective and can bind with more than one metal ion. 
Some indicators cannot be used in optical sensing of heavy 

Table 6  Detection of heavy metal ions by various voltammetric techniques

a Square-wave voltammetry
b Linear sweep voltammetry
c Cyclic voltammetry
d Square-wave anodic stripping voltammetry
e Anodic stripping voltammetry
f Differential pulse anodic stripping voltammetry

Metal ion Electrode system Technique Detec-
tion limit 
(mol L−1)

References

Hg Hydroxyapatite (HA) nanoparticles-modified glassy carbon 
electrode (GCE)

SWVa 1.41 × 10−7 Kanchana et al. (2015)

Hg Indium tin oxide (ITO) electrodes modified by gold nanopar-
ticles (Au nanoparticles)

LSVb 1 × 10−6 Ratner and Mandler (2015)

Hg Graphene-modified glassy carbon electrode CVc 1 × 10−9 Talat et al. (2018)
Cd Bi/glassy carbon electrode (Bi/GCE) SWASVd NA Zhao et al. (2017)
Pb Montmorillonite-bismuth-carbon electrode SWASV 1.8 × 10−9 Luo et al. (2010)
Cd 3.1 × 10−9

Cd A boron-doped diamond electrode modified by 0.5 mM 
4-aminomethyl benzoic acid

ASVe 1.8 × 10−9 Innuphata and Chootoa (2017)

Pb Graphitic carbon modified with 4-amino salicylic acid CV &  DPASVf 9 × 10−8 Kempegowda and Malingappa (2012)
Cd 10.7 × 10−9

Pb Clay nanoparticle anthraquinone—GC thin film DPASV 1 × 10−9 Yuan et al. (2004)
Cd 3 × 10−9

 Pb A solid paraffin-based carbon paste electrode modified with 
2-aminothiazole-functionalized silica gel

ASV 7.3 × 10−9 Silva et al. (2011)

Cu 90 × 10−9

Pb Glassy carbon electrode modified with novel calix [4] arene ASV 6.1 × 10−9 Jian-Qua et al. (2003)
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metal ions because of unfavourable analytical wavelengths, 
poor stability, the need for additional reagents and their non-
availability in pure form required for sensing applications. 
Many indicators bind irreversibly or only at high or low pH 
values. The main problem associated with indicator dye-
based sensors is that for each particular heavy metal ion, a 
specific dye, and hence a different analytical wavelength, 
has to be used every time, which complicates the overall 
procedure of detection (Oehme and Wolfbeis 1997).

Ionophore‑based sensors

Because of many limitations of indicator reagents, ion-com-
plexing organic molecules, ionophores have been employed 
for heavy metal ion detection by optical means. Ion car-
rier, complexing properties of these ionophores and their 
ability to bind with selective ions have made them capable 
for heavy metal ion specification. There are several sensing 
schemes where ionophores can be made as effective metal 
ion sensors like the introduction of chromogenic or fluoro-
genic moieties into ionophores or combining the ionophores 
with suitable dyes. Another way which is most suitable for 
detection of heavy metal ions is the extraction of ions into 
membranes using ion carriers (Lerchi et al. 1992, 1994: 
Hisamoto et al. 1995). In such optical sensors, selective 
binding of heavy metal with ionophores is responsible for 
recognition of heavy metal ion, while the optical signal is 
provided by a proton-selective chromo-ionophore. During 
the binding of heavy metal ions, protons equivalent to the 
charge of metal ion are released from the chromo-ionophore 
resulting in a change in the colour or fluorescence of the 
chromo-ionophore. The heavy metal ions bind to ionophore 
through coordination bonds with various heteroatoms (nitro-
gen, oxygen, sulphur) which are present in ionophores.

Review on optical sensors

An optic chemical sensor containing a sensitive layer of 
5,10,15,20-tetra(p-sulphonatophenyl) porphyrin covalently 

immobilized onto a polymeric matrix has been used for the 
detection of  Cd2+,  Pb2+ and  Hg2+. The complexation of 
these heavy metal ions with the sensor results in different 
absorbance spectra and thus changes the reflection behav-
iour of the sensor (Czolk et al. 1992). A novel  Hg2+ ion-
selective chemosensor bearing a rhodamine and two tosyl 
groups was synthesized and was successfully used for the 
detection of  Hg2+ ions (Fig. 8). Interaction of  Hg2+ with the 
sensor induces a visual colour change as well as significant 
enhancement in fluorescence of the sensor. The selectivity of 
the sensor lies in its ability of producing no or much smaller 
spectral changes on interacting with metal ions other than 
 Hg2+ (Lee et al. 2007).

The detection of zinc ions by highly selective optical sen-
sor based on the tris-triazole trimethylamine derivative with 
three pyrene fluorophores is based on the sharp change in 
the intensity ratio of the monomer (376 nm) and excimer 
(465 nm) emissions upon binding of metal cations in ace-
tonitrile (Ingale and Seela 2012). Azobenzene derivative 
containing two amino groups is able to coordinate to  Hg2+ 
ion. This coordination gives rise to a metal-induced intramo-
lecular charge transfer in which free amino group serves as 
the electron donor. Coordination of  Hg2+ induces a 100 nm 
bathochromic shift of the absorption maximum and red col-
ouring of the solution. The colour change is specific to  Hg2+ 
ions (Fu et al. 2007). Hemicyanine dye, containing aniline 
(electron-donating group) and a benzothiazolium (electron-
withdrawing group), has been used to perform selective 
optical detection of  Hg2+ in aqueous solutions at neutral pH 
(Tatay et al. 2006). A naked eye detection of  Hg2+ ion was 
successfully achieved by using a bis(ferrocenyl) azine, as 
chromogenic molecule, supported on solid cellulose fibre 
(Fig. 9). The sensor is metal specific and produces a spec-
tacular colour change upon binding with  Hg2+ ion. The col-
our change is also helpful to determine the concentration of 
the ion either by naked eye or spectroscopically (Díez-Gil 
et al. 2007).

The addition of  Hg2+ to such ligand leads to a hyp-
sochromic shift of the absorption band and also a colour 

Fig. 8  Detection of  Hg2+ ion 
by the optical method where a 
“tren-based tripodal chemosen-
sor” depict spectral changes 
on interaction with  Hg2+ ion. 
Adapted with permission from 
Lee et al. (2007). Copyright 
2007 American Chemical 
Society
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change of solution from pink to green. Dithiacrown ether 
based on 1, 8-dihydroxyanthraquinone has been used for 
selective detection of  Cd2+ and  Hg2+ ions. The detec-
tion is based on the increase in the fluorescence intensity 
(Kadarkaraisamy and Sykes 2007). Crown ether fused to 1, 
8-dihydroxyanthraquinone has been used as a fluorescent 
sensor for  Pb2+ ions (Kadarkaraisamy and Sykes 2006). 
The coordination of  Pb2+ to such crown ether changes the 
energy of excited states and increases the fluorescence 
intensity by many folds. In addition, a bathochromic shift 
of the emission band maximum as a result of coordination 
has also been reported.

Removal of metal ions

Once the presence of a particular metal ion and its quantity 
in water is tested by any of the above-mentioned detection 
techniques, it is very essential to remove it so that water 
can be made safe for use. Removal process is as important 
as detection because a slight excess of metal ion from its 
permissible limit can prove dangerous to human health. 
A proper technique of removal has to be followed for a 
particular metal ion to ensure its complete removal from 
the aqueous system; besides, care has to be taken to select 
the technique which is safe to use, environmental friendly 
and economical.

Methods of removal

Many methods have been used to remove heavy metal ions 
from water. Among these, the most remarkable ones are 
chemical precipitation, adsorption, ion exchange, etc., 
which are most often used for the removal of metal ions 
from aqueous systems.

Chemical precipitation

It is one of the effective techniques for removal of heavy 
metals from wastewater. In this process, chemical reagents 
are used which react with the heavy metal ions present in 
wastewaters and form an insoluble precipitates. These pre-
cipitates are removed by sedimentation or filtration tech-
nique to get toxic metal ion free water. The heavy metal 
ions may be precipitated either by hydroxide precipitation 
or sulphide precipitation methods. A variety of hydrox-
ides has been used to precipitate metals from wastewater, 
based on the low cost and ease of handling. For exam-
ple, Ca(OH)2 and NaOH were used in removing Cu(II) 
and Cr(VI) ions from wastewater (Mirbagheri and Hos-
seini 2005). Sometimes, the addition of coagulants such 
as alum, iron salts and organic polymers can enhance the 
removal of heavy metals as hydroxide precipitates from 
wastewater (Charerntanyarak 1999). Hydroxide precipita-
tion is a pH-dependent process, and for mixed metals, it 
may create a problem as an ideal pH for one metal may put 
another metal back into solution. Sulphide precipitation is 
also an effective process for the treatment of toxic heavy 
metals ions. The solubility of the metal sulphide precipi-
tate is dramatically lower than hydroxide precipitate, and 
also by this method metal ion can be removed selectively 
with faster reaction rate. Sulphide precipitation method 
has been used to remove  Cu2+,  Cd2+ and  Pb2+ ions using 
pyrite and synthetic iron sulphide as precipitating agents 
(Özverdi and Erdem 2006). As an alternative, chelating 
precipitants like trimercaptotriazine, potassium/sodi-
umthiocarbonate and sodiumdimethyldithiocarbamate can 
be used to precipitate heavy metals from aqueous systems 
(Matlock et al. 2002a). Some new chelating precipitants 
have also been synthesized as commercial heavy metal 
precipitants may not possess necessary binding sites. For 
example, a new thiol-based compound, 1,3-benzenedi-
amidoethanethiol (BDET2) has been synthesized and was 

Fig. 9  A highly selective optical detection of  Hg2+ ion achieved by 
using a bis(ferrocenyl) azine, as chromogenic molecule a 1,4-dis-
ubstituted azine bearing two ferrocene groups, highly selective and 

chromogenic mercury sensor, b colour change due to binding of 
sensor with  Hg2+ in comparison with other divalent metal cations. 
Reproduced with permission from Díez-Gil et al. (2007)
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used effectively to precipitate mercury ions in wastewater 
(Matlock et al. 2002b).

Ion exchange method

Ion exchange is another technique of interest for the removal 
of toxic heavy metal ions from wastewater because of high 
removal efficiency and fast kinetics of ion exchanger mate-
rials (Kang et al. 2004). Ion exchange resins, synthetic or 
natural, have been used for this purpose; however, synthetic 
resins are preferred as they are more effective in removing 
the heavy metals from the solution (Alyüz and Veli 2009). 
These cation exchangers are either strongly acidic resins 
with sulphonic acid groups (–SO3H) or weakly acid resins 
with carboxylic acid groups (–COOH) where  H+ ions in 
the sulphonic group or carboxylic group of the exchanger 
get exchanged with the heavy metal ions. Factors like pH, 
temperature, initial metal concentration, contact time and 

charge of the metal ion have a good role to play in the uptake 
of heavy metal ions by ion exchange resins (Gode and Pehli-
van 2006; Abo-Farha et al. 2009; Pathania et al. 2014). 
Ion exchange capabilities of thermally stable acrylamide 
zirconium(IV) sulphosalicylate (AaZrSs) composite mate-
rial for the removal of various metal ions have been carried 
out by our research group (Ahad et al. 2016). Out of various 
metal ions tested, the exchanger was found to have maximum 
retention potential for  Cd2+ ion with the recovery efficiency 
of around 98%. The effect of doze, contact time, initial metal 
ion concentration and pH on the adsorption behaviour of the 
exchanger has also been investigated (Fig. 10).

Ion exchange capabilities of zirconium resorcinol phos-
phate synthesized by reverse micelle method have been 
carried out by our research group (Bashir et al. 2016). The 
nanocomposite was found to be  Cd2+ ion selective with high 
distribution coefficient (Kd) value in aqueous system as well 
as in other solvents. As a result, the ion exchanger was not 

Fig. 10  Removal of various metal ions by ion exchange method while 
using thermally stable acrylamide zirconium(IV) sulphosalicylate 
(AaZrSs) as ion exchanger. Effect of a pH, b initial metal ion con-
centration, c adsorbent dose and d contact time on the percentage 

removal of  Cd2+ by the hybrid material: acrylamide zirconium(IV) 
sulphosalicylate (AaZrSs). Adapted with permission from Ahad et al. 
(2016). Copyright 2016 Royal Society of Chemistry
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only capable of removing  Cd2+ ions from wastewater but 
also can be effectively used to separate binary mixtures like 
 Cd2+/Zn2+ and  Cd2+/Ni2+ as shown in Fig. 11.

Al-Othman et al. (2011a, b) have successfully synthe-
sized an organic–inorganic-type composite cation exchanger, 
poly-o-toluidine Zr(IV) tungstate, and used this hybrid 
material for the removal of Hg(II) ions. In addition to its 
high thermal stability and rapid elution of exchangeable 
 H+ ions, the cation exchanger was possessing high selec-
tivity for Hg(II) ion and was quite efficient for metal ion 
separation in case of binary mixtures. Naushad et al. (2015a, 
b, c) used Nernst–Planck approximation to study kinetics 
of  Cd2+,  Co2+,  Cu2+ and  Pb2+ ions on the surface of ace-
tonitrile stannic(IV) selenite composite cation exchanger. 
From these kinetic studies, various physical parameters like 
fractional attainment of equilibrium, self-diffusion coeffi-
cients, energy of activation and entropy of activation were 
estimated to evaluate the mechanism of ion exchange on the 
surface of composite ion exchange material. In similar stud-
ies, Nernst–Planck equation was applied to study the heavy 
metal ion exchange kinetics over the surface of nylon 6,6 
Zr(IV) phosphate and poly-o-methoxyaniline Zr(IV) molyb-
date composite cation exchanger (Al-Othman et al. 2011a, b, 
2013). Various useful ion exchange kinetic parameters were 
evaluated in order to validate the practical use of this ion 
exchanger in the field of wastewater treatment and to predict 
the ion exchange process occurring on the surface of the 
cation exchanger. A polymeric–inorganic cation exchanger, 
acrylonitrile stannic(IV) tungstate with good ion exchange 
capacity, higher stability, reproducibility and selectivity for 
heavy metals, is another important ion exchanger that has 
been used for the removal of metal ions from water (Nabi 
et al. 2009). Its practical application was demonstrated in 
the quantitative separation of  Fe3+ and  Zn2+ contents of a 
commercially available pharmaceutical, Fefol-Z sample. 

Zeolites have also been found good cation exchangers for 
heavy metal ions under different experimental conditions 
(Motsi et al. 2009). A schematic representation of zeolite 
involving ion exchange process for the removal of Co(II) 
ions from wastewaters is shown in Fig. 12.

Clinoptilolite which is a natural zeolite has received 
extensive attention in this field due to its selectivity towards 
heavy metal ions. Some other ion exchanger materials 
used for the removal of heavy metal ion are summarized 
in Table 7.

Adsorption method

In many cases conventional methods, including chemi-
cal precipitation, flocculation, membrane separation, ion 
exchange, etc., are not desirable because of low capacities 
and low removal rates for metals other than Hg(II). Adsorp-
tion method is considered to be quite attractive in terms of 
the low cost, simple design and strong operability, especially 
its high removal efficiency from dilute solutions (Wang et al. 
2013). Adsorbents which have been mostly used for heavy 
metal removal are activated carbon, biomaterials, layered 
double hydroxide (LDH), carbon nanotubes (CNT)-based 
materials, etc.

1. Activated carbon.
  Activated carbon has proved an efficient adsorbent 

for the removal of metal contaminants present in the 
aquatic environment. Because of its high surface areas, 
it is widely used in the treatment of wastewaters. The 
effectiveness of activated carbon in cleaning up polluted 
water is due to its well developed porosity structure 
as well as the presence of a wide spectrum of surface 
functional groups. Al-Malack et al. (2017) carried out 
adsorption studies on activated carbon and obtained 

Fig. 11  Binary mixture separa-
tion capabilities of zirconium 
resorcinol phosphate nanocom-
posite. Separation of a  Cd2+/
Zn2+ ion mixture and b  Cd2+/
Ni2+ ion mixture. Adapted with 
permission from Bashir et al. 
(2016). Copyright 2016 Ameri-
can Chemical Society
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adsorption efficiency of 78% and 94% for  Cd2+ and  Pb2+ 
ions, respectively. Activated carbon prepared from pea-
nut shell was used to remove Cr(VI) from water where 
Cr(VI) adsorption was found to be pH dependent (AL-
Othman et al. 2012). Effective adsorption of Cr(VI) was 
found to occur in the pH range of 2–4. Some other exam-
ples of activated carbon as adsorbent for metal ions are 
summarized in Table 8.

2. Biosorption
  Biosorption of heavy metals from aqueous solutions 

can be considered as an alternative technology in indus-
trial wastewater treatment; dry biomass is used to extract 
toxic heavy metals from industrial effluents. In biosorp-
tion of heavy metal ions, physisorption and chemical 
adsorption play an important role in the adsorption 

mechanisms of metal ions (Sahmoune 2018). The term 
biosorption is used to describe the passive non-metaboli-
cally mediated process of metal binding to living or dead 
biomass (Rangsayatorn et al. 2002). A variety of low-
cost biomass has been developed and commercialized 
for controlling pollution. Low-cost ash and magnetite-
modified ash developed from agricultural products have 
been used for the removal of  Pb2+ ions from water where 
their highest removal capacities of 25 and 30 mg g−1, 
respectively, were reported for this toxic metal ion 
(Ghasemi et al. 2014a, b). Some other important bio-
materials used for controlling heavy metal ion pollu-
tion include anaerobically digested sludge (Tokcaer and 
Yetis 2006), fungi (Garcia et al. 2005), algae (Elifantz 
and Tel-Or 2002), hemp-based biosorbents (Morin-Crini 

Fig. 12  Metal ion removal 
capabilities of zeolites involving 
ion exchange process. Sche-
matic representation of  Co2+ 
ions distribution on the extra-
framework sites in the Co(II)–
NaY zeolites. Reproduced with 
permission from Sanaeepur 
et al. (2015). Copyright 2015 
Elsevier

Table 7  Heavy metal ion 
removal performance of some 
ion exchange materials

Ion exchanger Metal ion Removal per-
centage

References

Clinoptilolite Pb2+ 55 Inglezakis et al. (2007)
Purolite C100 Pb2+ 99 Badawy et al. (2009)
Amberjet 1200 Na Ni2+ 98 Zewail and Yousef (2015)

Pb2+ 99
Acidic cation exchange resin Ni2+ 97 Shaidan et al. (2012)
Clinoptilolite Zn2+ 100 Athanasiadis and Helmreich (2005)
Duolite GT-73 Resin Hg2+ 30–40 Chiarle et al. (2000)
Acrylamide zirconium(IV) 

sulphosalicylate (AaZrSs) 
composite

Cd2+ 98 Ahad et al. (2016)

Sodium dodecyl sulphate acryla-
mide Zr(IV) selenite (SDS-AZS)

Pb2+ 90 Naushad (2014)
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et al. 2019) and bacterial biomass (Oves et al. 2013). 
In addition, agricultural materials including rice bran, 
soybean, cottonseed crop milling waste, jute, leaves–
derived biosorbents (Anastopoulos et al. 2018), saw-
dust, spent mushrooms substrates (Kulshreshtha 2018), 
coconut shell, cellulose-based adsorbents (Varghese 
et al. 2018), maize cob and groundnut husk (Saeed et al. 
2005; Okieimen et al. 1985; Okieimen and Okundaye 
1989; Shukla and Pai 2005; Marshall and Johns 1996; 
Ogunsuyi et al. 2001) have also been found extremely 
useful in this field. Phytoremediation, a plant-based 
technology is an efficient, eco-friendly and economic 
biosorption method to tackle the heavy metal pollution 
(Muthusaravanan 2018). Biosorption is receiving much 
more attention in the field of metal ion removal because 
it offers advantages like cost-effectiveness, selectivity, 
easy availability, efficient removal of metals even at low 
concentrations, less production of unwanted secondary 
sludge, etc. (Bashir et al. 2018; Escudero et al. 2019).

3. Layered double hydroxides
  Layered double hydroxides (LDH) are a type of ani-

onic clay mineral with lamellar structures having general 
formula  [M2+ 1−xM3+ x(OH)2]X+  (An–)x/n · mH2O, where 
 M2+ and  M3+ represent divalent and trivalent metal 
cations, respectively,  An– represents an interlayer anion, 
x represents the molar ratio of  M3+/(M2+/M3+), and m 
represents the number of water molecules between the 
layers (He et al. 2018). Metal cations in the laminates of 
the LDHs as well as anions in the interlayers can be sub-
stituted by other metal cations and anions, respectively 
(Fig. 12a). As a result, different LDHs with different 
interlayer spacings can be obtained. The adsorption of 

heavy metal ion mainly depends on the exchangeabil-
ity of the interlayer anions of LDHs; besides, type of 
cations in the laminates, the type of interlayer anions 
and the nature of surface groups also play an important 
role in the removal performance of LDHs towards heavy 
metal ions. Usually small anions, such as ethylenedi-
aminetetraacetate (EDTA), citrate, glutamate, malate, 
are preferred for interlayer anions as they are effective 
for the leaching of heavy metals due to the formation of 
chelate complexes (Mosekiemang and Dikinya 2012). 
In situ oxidative polymerization was carried out for the 
synthesis of polyaniline/Mg/Al layered double hydrox-
ide (PANI/LDH) and was used for the efficient removal 
of Cr(VI) as depicted in Fig. 12b (Zhu et al. 2016). The 
composite was found to have maximum adsorption 
capacity of 393.7 mg g−1 for Cr(VI) (Fig. 13). 

Table 9 highlights some of the important LDHs having 
different interlayer anions that have been used to remove 
various heavy metal ions.

4. Carbon nanotubes (CNTs)
  CNTs can be considered as a graphite sheet that has 

been rolled into a tube. There are two types of CNTs: 
single-walled carbon nanotubes (SWCNTs) and multi-
walled carbon nanotubes (MWCNTs) (Fig. 14).

  CNTs possess highly porous and hollow structure, 
large specific surface area and light mass density. Also, 
there are four possible interaction sites present in CNTs: 
internal sites, interstitial channels, grooves and outside 
surface (Gadhave and Waghmare 2014). As a result of 
these additional sites, a strong interaction between CNTs 

Table 8  Removal percentages 
of different metal ions using 
activated carbon as adsorbant at 
neutral pH

Source of activated carbon Metal ion Removal efficiency 
(%)

References

Sigma-Aldrich Cd2+ 86 Karnib et al. (2014)
Pb2+ 83
Cr3+ 50
Ni2+ 90

Coconut shell Pb2+ 100 Bernard et al. (2013)
Fe2+ 76
Cu2+ 71
Zn2+ 26

Oil palm and coconut shells Pb2+ 86 Rahman et al. (2014)
Ni2+ 82
Cr3+ 70

African palm fruit Cd2+ 93 Abdulrazak et al. (2017)
Cu2+ 97
Ni2+ 92
Pb2+ 95

Fig sawdust Pb2+ 80.6 Ghasemi et al. (2014a, b)
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and pollutant molecules can take place very easily (Li 
et al. 2005). Owing to these properties, CNTs find a 
role in removal of hazardous pollutants from aqueous 
systems. Oxygen-containing functionalized carbon 
nanotubes (F-CNTs) were modified with chitosan so 
as to obtain chitosan-coated carbon nanotube (CHIT/
F-CNTs). The chitosan-modified CNTs were not only 
found to be a good adsorbant for Cu(II) and Cr(VI) ions 
but metal-loaded chitosan-coated oxygen-containing 
functional carbon nanotubes were successfully used 
to develop a supercapacitor electrodes through a facile 
heavy metal ion adsorption and carbonization procedure 
(Hao et al. 2018). The scanning electron micrographs 
and schematic representation of chitosan-modified CNTs 
for heavy metal ion adsorption are shown in Fig. 15. 

  Some important other CNT-based materials useful for 
adsorption of heavy metal ions are given in Table 10. 

5. Other adsorbant materials
  In addition to these adsorbant materials for heavy 

metal ions, there are so many other adsorbants, which 
have shown excellent performance in the field of waste-
water treatment. Some of these adsorbants are not only 

Fig. 13  Use of layered double hydroxides (LDHs) for the removal 
of heavy metal ions from aqueous systems. a Schematic diagram 
of LDH, b preparation of PANI/LDHs hybrid material by an in situ 

oxidative polymerization procedure and its efficient use for Cr(VI). 
Reproduced with permission from He et al. (2018). Copyright 2018 
Taylor & Francis

Table 9  List of some layered 
double hydroxides (LDHs) and 
their use in heavy metal ion 
removal

LDH Inter layer anion Heavy metal Ion 
removed

Removal effi-
ciency (mg g−1)

References

Mg–Al LDH Glutamate Pb2+ 68.49  Yanming et al. (2017)
Mg–Zn–Al LDH CO

2−

3
Cr(IV) 33.82 Eshaq et al. (2016)

Mg/Al LDH MoS
2−

4
As3+ 99 Ma et al. (2017)
As(V) 56
Cr(VI) 130

Al–Mg LDH Cl- Cr(VI) 112.0 Li et al. (2009)
Ca–Al LDH Dodecyl sulphate Ni2+ 143.8 Chen et al. (2016)
Zn–Fe LDH Citrate Pb2+ 94.3 Rahmanian et al. (2018)
Mg–Al LDH MoS

2−

4
Hg2+ 500 Ma et al. (2016)

Fig. 14  Highly porous and hollow structure with large specific 
surface area of carbon nanotubes. Structure representations of a 
MWCNT and b SWCNT. Reproduced with permission from Ihsanul-
lah et al. (2016). Copyright 2015 Elsevier
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having high adsorption capacities for the highly toxic 
metal ions like  Hg2+ but can also be regenerated without 
much loss in their adsorption capacities (Naushad et al. 
2016). Since in adsorption process, adsorbents can be 
recreated by the desorption process because it is revers-
ible technique, adsorption is considered as an environ-
mentally acceptable method for recovery and separation 
of heavy metal ions (Carolin et al. 2017). Metal ions 
like  Hg2+ possess strong affinity towards O, N and S 
atoms containing ligands, so the materials coated with 
polymers or resins can prove effective in increasing their 
efficiency and selectivity towards various metal ions 
(Naushad et al. 2015a, b, c). Crystal violet-modified 
amberlite IR-120 resin have been effectively used for 
the removal of Co(II) ions from aqueous systems (Nau-
shad et al. 2015a, b, c), while polyaniline Sn(IV) silicate 
composite has been found very much effective for the 
removal of Cd(II) ion (Naushad et al. 2013). Some other 

adsorbants that have been used for the metal ion removal 
are summarized in Table 11.

Membrane filtration

Membrane filtration is useful for removal of suspending sol-
ids and organic molecules, but its role in metal ion removal 
can’t be ignored. There are various types of membrane 
filtration such as ultrafiltration, nanofiltration and reverse 
osmosis that can be employed for heavy metal removal from 
wastewater. In ultrafiltration, permeable membrane is used 
to separate heavy metals or macromolecules on the basis of 
the pore size and molecular weight (Barakat 2011). Lower 
driving force and a smaller space requirement due to its high 
packing density are some of the advantages offered by ultra-
filtration. Ultrafiltration can be modified so as to improve its 
removal efficiency. One such modification involves poly-
mer-supported ultrafiltration where water soluble polymeric 

Fig. 15  Use of modified carbon nanotubes for the removal of Cu(II) 
and Cr(VI) ions. SEM images of a, b oxygen-containing functional-
ized carbon nanotubes (F-CNTs), c, d chitosan-coated carbon nano-

tube (CHIT/F-CNTs) and e schematic representation of chitosan-
modified CNTs as a heavy metal ion adsorbant. Reproduced with 
permission from Hao et al. (2018). Copyright 2018 Springer

Table 10  Removal of some 
toxic heavy metal ions by CNT-
based materials

CNT material Metal ion Adsorption 
capacity

References

Amino-modified MWCNTs Pb2+ 58.26 Vukovic et al. (2011)
Activated alumina CNT nanoclusters Cd2+ 229.90 Sankararam-

akrishnan et al. 
(2014)

MWCNTs Ni2+ 3.72 Yang et al. (2009)
CNT supported by activated carbon (AC) Cr(VI) 9.00 Bahr et al. (2001)
Oxidized CNTs Pb2+ 63.29 Liu et al. (1998)

Cu2+ 23.89
Cd2+ 11.01

MWCNTs/ThO2 Pb2+ – Mittal et al. (2016)
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ligands bind metal ions and form macromolecular complexes 
(Rether and Schuster 2003). Many polymeric complexing 
agents such as pectin, alginate, chitosan, polyacetic acid, 
polystyrene, polyethyleneimine, polyvinyl alcohol have 
been found very effective to increase the efficiency of metal 
removal by ultrafiltration (Garba et al. 2019). This modi-
fication provides advantages like low-energy requirements 
and fast reaction kinetics and also improves selectivity. In 
reverse osmosis pure solvent is forced through semi-perme-
able membrane by applying pressure, while solute particles 
are retained. The membranes used for reverse osmosis have 
a dense barrier layer in the polymer matrix where most of 

the separation process takes place. Reverse osmosis has been 
employed to remove  Cu2+ and  Cd2+ ions from wastewater 
where more than 90% removal has been reported (Maximous 
et al. 2004). In another case ceramic ultrafiltration mem-
brane was used in the recovery of mixtures of  Fe2+ and  Fe3+, 
 Cu2+ and  Cr3+ by using ultrafiltration technique (Crini et al. 
2017). Polymer-supported ultrafiltration is a technique of 
choice where metal ions form stable chelates with enhanced 
selectivity. The schematic representation of polymer-sup-
ported ultrafiltration is shown in Fig. 13a. Resins contain-
ing amino and imino groups are well known to form stable 
chelates with copper, nickel and other transition metal ions. 

Table 11  List of the various adsorbants for heavy metal ion removal

a 3-[2-(2-Aminoethylamino)ethylamino] propyl-trimethoxysilane
b Nickel ferrite bearing nitrogen-doped mesoporous carbon
c N,N′di(3-Carboxysalicylidene)-3,4diamino-5-hydroxypyrazole
d Magnetic metal–organic framework nanocomposite

Adsorbant Metal ion/s Max. adsorption Capacity 
(mg g−1)

References

Fe3O4@TASa Cd(II) 286 Alqadami et al. (2017a, b)
Cr(III) 370
Co(II) 270

Alizarin red-S-loaded amberlite IRA-400 resin Hg(II) 303.03 Naushad et al. (2015a, b, c)
(NiFe2O4-NC)b Hg(II) 476.2 Naushad et al. (2017)
DSDHc anchored on mesoporous silica Pb(II) 169.34 Shahat et al. (2015)
(Fe3O4@AMCA-MIL53(Al)d U(VI) 227.3 Alqadami et al. (2017a, b)

Th(IV) 285.7

Fig. 16  Polymer-supported ultrafiltration as a tool for the removal 
of heavy metal ions from water. a Schematic representation of the 
polymer-supported ultrafiltration separation technique and b ideal-

ized structure of the polymeric complex poly(ethylenimine) with cop-
per (II) ions. Adapted with permission from Geckeler and Volchek 
(1996). Copyright 1996 American Chemical Society
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Poly(ethylenimine) (Fig. 13b) is one such example which 
has been used in connection with polysulphone or polyamide 
membranes for heavy metal ion removal (Geckeler and Vol-
chek 1996). Molecules of poly(ethylenimine) form chelates 
with transition metal ions with no interference from the pres-
ence of alkali and alkaline earth metals (Fig. 16).

Electrochemical method

Electrolytic recovery is one of the methods used to remove 
metals from wastewaters. This process uses electricity to 
pass through an aqueous metal-bearing solution. Electro-
chemical treatments of wastewater involve electrodeposition, 
electrocoagulation, electrofloatation and electro-oxidation 
(Shim et al. 2014). In this process, consumable electrode is 
used to supply ions into the wastewater, where they neutral-
ize the charges of the particles (Tran et al. 2017). These ions 
remove the undesirable contaminants by means of chemical 
reaction, coagulation or precipitation as depicted in Fig. 17. 
In electroprecipitation method heavy metals present in 
wastewater are precipitated as hydroxides with the supply 
of electricity.

Copper, chromium and nickel ions have been removed 
from wastewater by using electrocoagulation process with 
100% removal efficiency in a time span of 20 min (Akbal 
and Camci 2011). Nearly 100% removal efficiency has also 
been reported for  Cd2+,  Cu2+ and  Ni2+ ions by electrocoagu-
lation method using batch cylindrical iron reactor (Un and 
Ocal 2015). The electrochemical method has some advan-
tages over the traditional flotation and coagulation such as 
better removal rate and larger probability of coagulation 
as the electricity applied to the system sets the whole pro-
cess in motion, reduced sludge production, no requirement 

for chemical use and ease of operation. On the other hand, 
chemical precipitation requires a large amount of chemicals 
to reduce metals to an acceptable level for discharge.

Conclusion

Pollution by heavy metal ions is one of the serious envi-
ronmental problems. Heavy metal ion toxicity has been 
reported to cause many health issues to living beings which 
has motivated researchers to develop various strategies for 
detection and removal of these heavy metal ions from aque-
ous systems to make water safe for use. Many materials and 
methods have been adopted earlier for these purposes which 
have shown promising performance, but are having many 
drawbacks as well. Such materials and methods have been 
modified from time to time in order to improve their perfor-
mance and to overcome the associated limitations. Search 
for new materials and methods, which are more efficient, 
environment friendly, easy to operate and cheap, is a con-
tinuous ongoing process to lower down the concentrations 
of these heavy metal ions below the level where they cannot 
prove dangerous to living beings.
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