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Abstract
Nanoencapsulation is a promising technology allowing miniaturized dosage and administration of valuable volatiles, degra-
dable bioactives and biologicals. The produced nanoparticles display qualities such as a sustained availability of active con-
stituents, targeted delivery and enhanced shelf stability. This review presents methods of nanoencapsulation and nanoemul-
sion, such as solvent evaporation–emulsification, coacervation, nanoprecipitation, inclusion complexation, electrospraying, 
electrospinning, freeze drying and spray drying. Those methods are particularly relevant for the pharmaceutical, food and 
agricultural industries.
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Introduction

Nanoencapsulation is an emerging technique for encap-
sulation of bioactive compounds prone to degradation 
by environmental factors, as well as, for site-specific and 
sustained delivery of the bioactives (Soukoulis and Bohn 
2015; Rezaul et al. 2018). This powerful technique is of 
particular importance in designing novel delivery mecha-
nisms of bioactives in food and therapeutic supplements/
drugs and plays a prominent role in determining the future 
of ‘nanomedicine’(Pereira et al. 2017; Subrot et al. 2018). 
Off late, numerous methods of nanoencapsulation have been 
investigated for protection and efficient delivery of biological 
materials (Fathi et al. 2018). Though these methods are var-
ied, they are quite versatile in their performance and accu-
rately meet their objectives (Iqbal and Sun 2018; Shchukina 
et al. 2018). The present review collates the findings made 
by investigators on novel materials of encapsulation of 

bioactives, strategies involved, mode of delivery, and appli-
cations. The objective of this disquisition is to present the 
findings made, with a focus on the methods employed and 
the areas that need further investigation. This article is an 
abridged version of the chapter published by Dasgupta and 
Ranjan (2018) in the series Environmental Chemistry for a 
Sustainable World (http://www.sprin ger.com/serie s/11480 ).

Liquid‑based nanoencapsulation

Liquid-based nanoencapsulation is an efficient technique 
for site-specific delivery of nutraceuticals, even at a cel-
lular level. In this section, liquid-based methods used by 
researchers have been discussed, and their detailed findings 
are made. Figure 1 shows the different techniques for the 
process. 

Solvent evaporation–emulsification

This technique involves emulsification of a polymer solu-
tion in aqueous phase and the subsequent evaporation of 
the solvent, resulting in precipitation of the polymer as 
nanoparticles (Ghaderi et al. 2014). Research has shown 
that nanoencapsulates are spherical, where its size distribu-
tion is largely determined by constraints such as viscosity 
of organic/aqueous phase, stirring rate, temperature, and 
type as well as amount of the dispersing agent. The poly-
mers which are used frequently are polylactic acid (PLA), 
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polylactic-co-glycolic acid (PLGA), cellulose acetate phtha-
late, ethyl cellulose, β-hydroxybutyrate, and polycaprolac-
tone (Cavallaro et al. 2015; Fornaguera et al. 2015). These 
nanospheres are reportedly developed by employing either 
homogenization or high-speed ultrasonication (Rebolleda 
et al. 2015; Scholz and Keck 2015). The technique of ‘mul-
tiple emulsion’ has been employed for the encapsulation of 
curcumin in a network of chitosan cross-linked with trip-
olyphosphate along with freeze drying, yielding spherical 
encapsulates of sizes 254–415 nm (Sowasod et al. 2008). 
In another approach, researchers have studied solvent 
evaporation technique for encapsulation of curcumin, fol-
lowed by freeze-drying technique (Li et al. 2015b). The 
same approach was used by Prajakta et al. (2009) and the 
curcumin encapsulates (< 135 nm) revealed about twofold 
increase in anticancer activity, vis-à-vis curcumin per se, 
in HT-29 cell lines (human colon adenocarcinoma). On the 
other hand, smaller-sized nanospheres (45 nm) have been 
obtained for curcumin by using PLGA nanospheres, along 
with higher loading capacity, sustained release of bioactive, 
and higher anticancer potency on human prostate cancer cell 
lines (Mukerjee and Vishwanatha 2009; Akl et al. 2016).

In addition, emulsion evaporation technique has produced 
curcumin encapsulates with in vivo antimalarial activity. 
High-pressure emulsification has also been found effective 
in the formation of nanospheres of curcumin in PLGA with a 
22-fold improved oral bioavailability than non-encapsulated 
curcumin (Tsai et al. 2011, 2012; Klippstein et al. 2015), 
and also, solubility of curcumin was improved 640-fold 
when entrapped in this technique in the said wall (Xie et al. 
2011). Furthermore, the ‘single emulsion technique’ has 
been employed for formulation of a blended nanoencap-
sulate of PLGA and PLGA-PEG blend (< 200 nm) using 
sonication followed by freeze drying, with the encapsu-
lates having 16 and 55 times higher bioavailability over the 

non-encapsulated bioactive (Khalil et al. 2013; Akl et al. 
2016). In fact, PLA-based coat in nanoencapsulation in 
evaporation–emulsification method has revealed 130-nm-
sized encapsulates with a 97% entrapment of the bioactive 
(Feng et al. 2018). The release study exhibited an initial 
burst followed by sustained delivery of bioactive, such as 
that of quercetin, with 88% release in 72 h and complete 
release in 96 h (Kumari et al. 2010, 2011). The success of 
this technique critically depends on the selection of appro-
priate emulsification and drying procedures. In another 
study, α-tocopherol has been encapsulated in nanosphere 
of size range 90–120 nm and exhibited total shelf life of 
about 3 months. To further illustrate that the processing 
parameters and aqueous-to-organic phase ratio do not affect 
the size of droplet and distribution of fabricated nanodis-
persion (Cheong et al. 2008; Campardelli and Reverchon 
2015). Investigations by other authors have further shown 
that varied droplet sizes could be achieved for biologicals 
such as astaxanthin (1101–165 nm) (Anarjan et al. 2011), 
phytosterols (50–282 nm) (Fun et al. 2011), and β-carotene 
(9–280 nm) (Hélder et al. 2011).

Coacervation

The coacervation technique allows loading of about 99% 
of bioactive during encapsulation. The process involves the 
principle of phase separation for differentiation of a single 
polyelectrolyte and/or mixture of polyelectrolytes from 
a solution, followed by formation of a coacervate phase, 
encircling the core. The strength of the coacervate has 
been observed to increase by including enzymatic/chemi-
cal cross-linkers such as transglutaminase or glutaraldehyde 
(Rathore et al. 2013; Moore et al. 2015; Wang et al. 2016a; 
Zhang et al. 2016a) This technique variants include simple 
and complex types using one and multiple types of coats, 
respectively, and they have been successfully employed 
for entrapment of sensitive bioactives (Taylor et al. 2008, 
2010). Furthermore, the nature and strength of the encap-
sulate could be determined by variations in type and ratio 
of the biopolymer (charge, flexibility, and molar mass), pH, 
ionic strength, along with hydrophobic interaction between 
biopolymers (Hosseini et al. 2015; Zou et al. 2016).

Particularly, upon investigation, complex coacervation 
has been found to be effective in encapsulating capsaicin 
in gelatin and acacia, wherein capsaicin was treated with 
hydrolyzable tannins, followed by cross-linking with glutar-
aldehyde and subsequent freeze drying. The process permit-
ted high target compound loading, encapsulation efficiency, 
and a satisfactory release (Xing et al. 2005; Nakagawa and 
Nagao 2012). A similar observation was made by researchers 
upon encapsulating bovine serum albumin using polyanion 
tripolyphosphate (TPP) as coat and chitosan as cross-linker, 

Fig. 1  Techniques of liquid-based encapsulation
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yielding 200–580-nm-sized nanospheres (Li et al. 2015a; 
Lomova et al. 2015; Wang et al. 2016b).

Nanoprecipitation

Nanoprecipitation technique encompasses interfacial 
deposition of polymers, subsequent to the displacement 
of a semi-polar solvent miscible with water from a lipo-
philic solution (Eisner 2015). The method is more fac-
ile, less complex, less energy consuming, and is an easy 
and reproducible method that has been widely used in the 
preparation of nanoparticles. Common polymers include 
poly(alkylcyanoacrylate) (PACA), poly(ε-caprolactone) 
(PCL), polylactic acid (PLA), poly(lactic-co-glycolic acid) 
(PLGA), and Eudragit (Vuddanda et al. 2014; Bacinello 
et  al. 2015; Cauteruccio et  al. 2015; Mahalingam and 
Krishnamoorthy 2015). Reportedly, this technique has 
been used for producing nanoparticles (76–560 nm) in 
PLGA, with poly(l-lysine) and polyvinyl alcohol (PVA) 
as stabilizers, and subsequent lyophilization. The encap-
sulates have considerable anticancer effect (with sus-
tained release) in colonogenic assays, with respect to 
non-encapsulated curcumin. Another study has also used 

the same coat for encapsulation of curcumin, with PLGA 
and PEG-5000 as stabilizers. The researchers found 
enhanced in vitro and in vivo bioavailability of curcumin 
and increased cellular uptake (Anandharamakrishnan 
2014a; Zhu et al. 2014). To improve the functionalities 
of the core, such as cellular uptake, targeted release and 
mucoadhesive properties, single or multiple biopolymers 
have been examined for matrices such as for curcumin 
(Gou et al. 2011; Suwannateep et al. 2011; Xu et al. 2012; 
Klippstein et al. 2015).

The solvent displacement method adopted for design 
of β-carotene encapsulate has reportedly produced small-
sized nanoparticles (< 80 nm) (Fig. 2), unaltered from coa-
lescence, and ringing (Ribeiro et al. 2008; Paz et al. 2013). 
The technique has also been employed for encapsulation 
of astaxanthin (Bhatt et al. 2016) and vitamin E, via mem-
brane contractor technique (Khayata et al. 2012a, b; Hat-
egekimana and Zhong 2015). Authors observed enhanced 
stability, bioavailability, cellular uptake, and sustained 
release of the active compound in the said encapsulation 
technique. The limitation that has been cited is with the 
use of only organic solvents in the process, disallowing 
the otherwise spontaneous release of the active compound.

Fig. 2  Preparation of β-carotene 
nanodispersions by the solvent 
displacement method, using 
poly(lactic-co-glycolic acid) 
(PLGA) and polylactic acid 
(PLA) coatings, with subse-
quent lyophilization
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Inclusion complexation

Inclusion complexation is another viable method of encap-
sulation wherein a supramolecular linkage of a ligand and 
a shell material (a cavity-bearing substrate) is established, 
with typical entropy-driven hydrophobic effect and van 
der Waals force or hydrogen bonding (Karoyo and Wilson 
2015; Aree and Jongrungruangchok 2016). The approach 
has been utilized for encapsulation conducted with α and 
β-cyclodextrin (structure illustrated in Fig. 3), with yields 
of 88% and 74%, respectively, (Hădărugă et  al. 2006), 
while an encapsulation efficiency of 99.5% and stability of 
4 months (in suspension form) was achieved when usnic 
acid was encapsulated in β-cyclodextrin (Lira et al. 2009). 
In fact, compared to encapsulation of the same core in usnic 
acid liposome, a prolonged release from the encapsulates 
in inclusion complexation technique was observed (Lira 
et al. 2009). Similarly, the encapsulation of docohexanoic 
acid in β-lactoglobulin (with low methoxy pectin) provide 
80% improved shelf stability to the core vis-à-vis when free 
(Zimet and Livney 2009; Ron et al. 2010). Few researchers 
have even proposed β-lactoglobulins and β-cyclodextrin to 
be the most appropriate coat materials in the process, par-
ticularly for volatile bioactives (Zhu et al. 2014; Hosseini 
et al. 2015; Perez et al. 2015; Rajendiran et al. 2015; Ha 
et al. 2016).

Encapsulation using supercritical fluid

Supercritical fluid has intermediate properties between that 
of liquid and gas and has unique characteristics such as 
liquid-like density, gas-like viscosity, higher penetrability, 

and higher solubility than a gas, and is suitable for encap-
sulation of thermolabile compounds (Dutta 2017; Kaga 
et al. 2018). Common supercritical fluids include carbon 
dioxide, propane, nitrogen, and water, with carbon dioxide 
being the most popular. For encapsulation, the mixture 
of active compound and the coat (such as a polymer) is 
exposed to supercritical fluid and subsequently allowed to 
expand, through a nozzle (throttling), resulting in entrap-
ment of the active core, owing to the supercritical phase 
behavior. The process could be assumed to be principally 
pressure driven, with scope of modification in encapsula-
tion by altering the temperature (Duarte et al. 2015).

Supercritical carbon dioxide encapsulation has been 
conducted for hydroxypropyl methyl cellulose phthalate 
(HPMCP), producing 163–219  nm nanoparticles with 
improved bioavailability and shelf stability of the core (Jin 
et al. 2009). Phytonutrients such as curcumin have been 
encapsulated using supercritical antisolvent technology 
using polymer polyvinylpyrrolidone in a one precipita-
tion–encapsulation step by Alvaro et al. (Londoño 2018). 
Another study on phytosterol nanoencapsulation using 
supercritical fluid revealed a particle size < 500 nm and 
also the influence of the surfactant type and its concentra-
tion on the characteristics of nanoencapsulate (Türk and 
Lietzow 2004; Delgado-Zamarreño et al. 2016). The pro-
cess is highly efficient, albeit the high capital investment 
for the supercritical unit is a limitation (Reverchon et al. 
2015).

Fig. 3  Structures of cyclodextrins (Zhou and Ritter 2010)
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Electrospraying and electrospinning

Electrospraying and electrospinning techniques are par-
ticularly favored for food and pharmaceutical applica-
tions, since these processes produce desirable nanosized 
particles and fibers for targeted applications. The process 
employs electrohydrodynamic force to break the liquids 
into fine droplets for encapsulation (Zhu et al. 2014; Gho-
rani and Tucker 2015; Lim 2015). Importantly, in electro-
spraying, the polymer is transformed into nanosized parti-
cles, while in electrospinning, the polymer is transformed 
into continuous nanosized polymer threads (Ceylan et al. 
2017; Azarian et al. 2018). Process of encapsulation using 
the process of electrospinning improves the stability and 
water solubility (Tu and Id; Beliba 2018). In fact, accord-
ing to Fung (2015), electrospraying is the modified version 
of electrospinning. Both of these have been explained in 
the following section.

Electrospraying

Electrospraying is one of the most favored methods of 
nanoencapsulation. In this technique, an electric field acts 
as the driving force for encapsulation. The core mixed with 
polymer solution passes through a syringe and is acted 
upon by the voltage applied across the syringe resulting 
in a jet stream of the low viscosity mixture, now nanoen-
capsulated, emanating from the syringe as a fine mist. The 
emanation from syringe is often termed as Taylor cone 
(Fig. 4), and the process forms a continuous system of 
encapsulation once initiated (Jaworek and Sobczyk 2008; 
Lim 2015; Moghaddam et al. 2015b). The encapsulates fall 
onto oppositely charged surface, with subsequent evapora-
tion of the solvent; yielding miniaturized dry nanoparti-
cles. Their size depends on the solvent flow rate and charge 
applied (Chen 2007a; Anandharamakrishnan 2014a, chap-
ter 3; Moghaddam et al. 2015b). The quantum of volt-
age and duration of electrical exposure are critical in this 
process and govern the characteristics of the product. The 
applied voltage determines the force required for pushing 
the solution and making it a continuous process.

Encapsulation of chitosan micro-/nanospheres loaded 
with ampicillin has been verified by the findings of 
researchers who optimized the process parameters and 
recommended 26 g of needle gauge and 7 cm working 
distance to obtain an efficiency of 80% and zeta potential 
of 128.2 mV, besides higher stability compared to non-
encapsulated counterpart (Arya et al. 2008). In a similar 
study, docosahexaenoic acid with ultrathin zein has been 
encapsulated with the product’s high shelf stability (Tor-
res-giner et al. 2010). While, for encapsulation of whey 

by this method has shown influence on concentration of 
whey proteins, additional component such as glycerol, and 
pH too have effects in determining the capsule morphol-
ogy and size (Sanchez et al. 2009; López-rubio and Laga-
ron 2012). When curcumin with zein was elctrosprayed, 
nanoparticles of 175–250 nm were obtained which had 
85–90% of the active core, and showed improved dispers-
ibility and shelf stability of the same (Gomez-Estaca et al. 
2012, 2015).

Electrospinning

Another widely used technique of late is electrospinning, 
capable of producing nanofibers of size about 100 nm, and 
is reportedly employed in food, drug, and tissue engineering 
especially for neural, vasculature, tendon/ligament, and bone 
(Danie Kingsley et al. 2013a; Jayaraman et al. 2015). Akin 
to electrospray, this process also involves electrical cur-
rent for generation of nanoparticles, but at a higher voltage, 
allowing solidification of the liquid when emanated from 
the syringe, and subsequent fiber generation of the polymer 
used for encapsulation. The prime regulators of the process 
are solute concentration, polymer type, flow rate of solution, 
nozzle to ground distance, and applied voltage (Chen 2007a; 
Anandharamakrishnan 2014b; Moghaddam et al. 2015c). 
The effects of process parameters and characteristics of the 
solution are presented in Table 1.

In this technique, mainly the fiber holds the core within, 
and therefore, it is critical to determine the stability and 
release characteristics of the core. Besides, the conventional 

Fig. 4  Depiction of nanoencapsulation by electrospraying (Taylor 
cone indicated encircled). HV high voltage, ac alternating current, dc 
direct current
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electrospinning, two-phase electrospinning has also been 
found to be effective for encapsulation of bioactives. In this 
method, the aqueous solution of the core bioactive is mixed 
with an organic-polymer solution and subjected to electro-
spinning, forming nanoencapsulates within the polymer 
fiber. This approach has been effective in encapsulation of 
growth factors, hormones, cytochrome C and proteins in a 
biocompatible polymer (Dong et al. 2009). Bovine serum 
albumin has also been electrospun into biodegradable PCL 
by coaxial electrospinning for medical applications (Zhang 
et al. 2006). Encapsulation of bovine serum albumin and 
fluorescent-labeled epidermal growth factor was too con-
ducted into the same coat prepared from poly(lactic-co-gly-
colic acid) and tecophilic polyurethane (Chen et al. 2009). 
Ultrathin PVA electrofibers (< 150 nm droplet size) have 
also displayed higher protection to bifidobacteria, with 
regard to bacterial concentration and a concomitant higher 
shelf life, when electrospun (Sanchez et al. 2009; López-
rubio and Lagaron 2012).

Notably, electrospun curcumin in zein (310 nm) has 
shown enhanced antioxidant activity, entrapment efficiency 
and sustained release of the bioactive (Brahatheeswaran 
et al. 2012). Improved stability of curcumin in cellulose 
acetate nanofibers (314–340 nm) has also been demonstrated 
throughout the 4-month study (Suwantong et al. 2007, 2008, 
2010; Suwannateep et al. 2011). In another work, researchers 
reportedly utilized electrospinning and formulated nanoen-
capsulated curcumin loaded in β-cyclodextrin and PVA 
(250–350 nm) by inclusion complexation. Interestingly, 
PVA/complex fibers showed comparatively faster release 
than PVA/curcumin (Sun et al. 2013b). Parallely, β-carotene 
in ultrafine fibers of zein prolamine was exposed to encapsu-
lation, and the encapsulate (1.140 mm) had improved ther-
mal and luminous stability (Fernandez et al. 2009). In fact, 
vanillin/cyclodextrin inclusion complex in PVA (nanoparti-
cles of 120–230 nm) provided significant stability to vanillin 
than when free (Kayaci and Uyar 2012; Kayaci et al. 2013).

Nanoencapsulation and drying techniques

In order to have the flexibility of application, storage, ship-
ment, and easy dispersion in aqueous medium of encapsu-
lates, drying is preferable. Among the techniques available, 
freeze drying and spray drying are mostly applied.

Freeze drying

Freeze drying or lyophilization is a method of evaporation 
of moisture from the frozen substrate by sublimation of 
moisture from the same. The process is favorably suited for 
thermolabile compounds and is preferred over dehydration 
(Rey and May 2004; Anandharamakrishnan 2014a; Ishwarya 

2014). The four main steps in freeze drying are freezing, 
primary drying, secondary drying, and final treatments.

Curcumin has been subjected to emulsion–diffu-
sion–evaporation technique, along with lyophilization, to 
form nanoparticles (264 nm) with 77% efficiency, 15% active 
compound loading, achieving a stability of 3 months, and a 
nine times higher bioavailability (Shaikh et al. 2009). Simi-
lar constructive effects of the said technique have also been 
reported for curcumin-loaded O-carboxymethyl chitosan 
nanoparticles which have shown controlled and sustained 
release of curcumin from the nanocapsules. These nanoparti-
cles also exhibited enzyme-triggered degradation and release 
in the presence of lysozyme; having a toxic behavior against 
cancer cell lines (Anitha et al. 2011a, b, 2012, 2017). In 
another study, curcumin has been entrapped in chitosan-g-
poly(N-vinylcaprolactam), by ionic cross-linking using trip-
olyphosphate and freeze drying, and the encapsulates have 
shown anticancer activity on cell lines (Anitha et al. 2011a, 
2012; Rejinold et al. 2011). Volatile bioactives such as fish 
oil (Bejrapha et al. 2010; Choi et al. 2010), capsicum oleo-
resin (Quintanar-Guerrero et al. 1998; Surassmo et al. 2010, 
2011; Bejrapha et al. 2011; Hebbalalu et al. 2013), miglyol 
829 oil (Abdelwahed et al. 2006; Roca and Cited 2006; Sun 
et al. 2013a; Frank et al. 2015; Zhang et al. 2016b) (+)-cat-
echin and (−)-epigallocatechin gallate (EGCG) (Dube et al. 
2010; Gadkari and Balaraman 2015), tocopherol (Luo et al. 
2012; Hosseini et al. 2013), have also been encapsulated by 
the said technique. However, lyophilization is energy and 
time incentive and requires usage of cryo-protectants (such 
as sucrose, trehalose) to prevent aggregation of the dried 
substrate (Clark and Doona 2015; Ezhilarasi et al. 2013; 
Anandharamakrishnan 2014b) adding to the cost.

Spray drying

Spray drying is a versatile and widely applied drying tech-
nique for food and pharmaceuticals, wherein the feed (solu-
tion of core and coat) is fed to the drier, exposed to hot air at 
regulated inlet air temperature and sprayed from an atomizer, 
producing a fine mist of the feed, resulting in generation of 
encapsulates when dried (Jafari et al. 2008) (Fig. 5). This 
requires less time and energy, (compared with lyophiliza-
tion) thus produces microparticles (Bayu et al. 2011; Muru-
gesan and Orsat 2012). Choice of wall materials include 
maltodextrin, gum acacia, modified starch, polysaccharides 
(alginate, carboxymethylcellulose, guar gum), and proteins 
(whey proteins, soy proteins, and sodium caseinate), to name 
a few (Dutta and Bhattacharjee 2016; Ghosh et al. 2017; 
Singh et al. 2018). Mechanism of this technique is discussed 
in Fig. 6.

Nanoencapsulation has also been attempted by the said 
technique lately, wherein nanoemulsions are subjected to 
spray drying (Kyriakoudi and Tsimidou 2018). Authors 
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have reported suitability of modified starch (Hi-Cap) and 
whey protein for nanoentrapment of various bioactives 
(Taylor et al. 2007; Jafari et al. 2008, 2016; Mahdi et al. 
2008). Apart from all, a compiled review about all omega-
3-fatty acid-rich oil by spray drying for encapsulation has 
been studied and elaborately reported by Chang et  al. 
(Nickerson 2018). Also, research has revealed catechin 
nanoparticles (80 nm diameter) being formed by spray 
drying in a carbohydrate coat matrix, rendering enhanced 
bioavailability and stability to the core material (Ferreira 

et al. 2007; Majeed et al. 2015). Duet of emulsification 
evaporation and spray drying has also been explored by the 
said authors for encapsulation of β-carotene in n-octenyl 
succinate starch, forming encapsulates with particle size 
of 300–600 nm having about 90% entrapment efficiency. 
Pharmaceutical drugs are encapsulated using spray-drying 
technique for better stability, penetrating efficiency with-
out any structural change of the molecule, as reported by 
Cordin et al. (Arpagaus et al. 2018).

Fig. 5  Steps of spray-drying process. (1) Atomization, (2) spray–hot air contact, (3) evaporation of moisture, (4) product separation Adopted 
with permission from: Clark and Doona (2015) and Anandharamakrishnan and Ishwarya (2015)

Fig. 6  Working mechanism for 
a spray dryer
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Conclusion

Nanoencapsulation has played a key role in determining 
the path for the advancement of administration of bioac-
tives including therapeutic supplements in food, pharma, 
and allied fields, during recent times. The approach par-
ticularly benefits from the nanoscale size of the parti-
cles which can penetrate the target sites, be in the case 
of drugs, nutraceuticals or generic food and therapeutic 
supplements. The research conducted so far has been 
overwhelming and the opinion is that in near future more 
avenues of versatile applications of nanoparticles with 
specific objectives would be explored, which aids utiliza-
tion of the potential of the bioactives to their best. Future 
researchers are advised to focus more on effective entrap-
ment and release of the bioactives, which are otherwise 
difficult to work with, owing to their unstable nature.
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