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Abstract

Monocrotophos, commonly named Azodrin or Nuvacron, is an organophosphate insecticide, which in spite of ban is pre-
ferred due to its high efficacy against insect pests. With a field application dose of 0.25-1.5 kg ha™!, it has median lethal dose
(LDs) of 18-20 mg kg~! for mammals and half-life of 17-96 days. Monocrotophos uncontrolled application in farming has
led to the contamination of surface and groundwater, causing neurotoxicity, genotoxicity, hyperglycaemic and stressogenic
effects on different organisms. Being readily soluble in water, it is grouped under class I: highly toxic compounds. Microbes
such as Bacillus, Pseudomonas, Aspergillus, Anabaena and Nostoc at 25-37 °C and pH 5.5-8.5 have the ability to utilize
monocrotophos as nutrient source and can tolerate up to 500—1200 mg L~ of monocrotophos, causing its complete or partial
degradation to dimethyl phosphate, phosphoric acid, valeric or acetic acid. On the other hand, generation of -OH radicals by
photoactivation of the catalyst such as TiO, and ZnO leads to complete mineralization of monocrotophos. Biodegradation
followed by photocatalytic degradation would be the most efficient and sustainable approach. This review focuses on toxicity,

fate of monocrotophos in the environment and its microbial and photocatalytic degradation.
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Introduction

Organophosphorus compounds have been extensively used
in agriculture worldwide for more than 40 years due to their
high effectiveness (Karpouzas and Singh 2006; Abraham
and Silambarasan 2015), broad-spectrum action against vari-
ous pests and biodegradability. They account for approxi-
mately 34% of total world insecticide market (Singh and
Walker 2006) and are used in agriculture to combat crop
pests, in domestic to control mosquitoes and other insects
and in veterinary to control mites and flies of cattle. Out of
the total applied pesticide, approximately 0.1% reaches its
target, rest remains in the environment, resulting in reduc-
tion in crop yield, poor agricultural products, worsening
soil quality and soil enzyme activity (Riah et al. 2014),
water pollution, consequently posing harmful threat to ani-
mals and humans (Yadav et al. 2016; Buvaneswari et al.
2017). Although organophosphates are biodegradable, their
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environmental exposure causes acute and chronic toxicity to
mammals and other non-target organisms (Gill et al. 2018).
In humans, organophosphate poisoning may cause general
weakness, salivation, vomiting, nausea, diarrhoea, trem-
ors and respiratory failure in severe cases, causing death
(Kanekar et al. 2004). Annual data estimates of various
developing countries indicate that organophosphates are
responsible for 3 million poisonings with 200,000 human
deaths (Ragnarsdottir 2000; Karpouzas and Singh 2006).
Organophosphorus pesticides were first introduced dur-
ing the World War II in Germany, in the form of tetraethyl
pyrophosphate as a by-product of nerve gas development
(Kanekar et al. 2004). They are thiols or esters of phos-
phinic, phosphonic, phosphoric or phosphoramidic acid.
Chemically, organophosphates have aryl or alkyl group (R,
and R,), which are bonded to the phosphorus atom either
directly (forming phosphinates), or through sulphur or an
oxygen atom (forming phosphorothioates or phosphates)
(Fig. 1). At least one of the groups is -NH, in phosphorami-
dates, which may be mono- or bi-substituted. Phosphorus
shares double bond with either sulphur or oxygen. Finally,
X group, which is a “leaving group” (as it is released upon
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Fig. 1 General structure of organophosphorus compounds. Adapted
with permission (Karpouzas and Singh 2006)

hydrolysis of organophosphates), may be a halogen, aro-
matic, aliphatic or heterocyclic group (Sogorb and Vilanova
2002).

Monocrotophos is a nonspecific systemic organophospho-
rus pesticide used extensively to protect rice, cotton, maize,
groundnut, sugarcane, tobacco, soybeans and vegetables
against insect pests (Balamurugan et al. 2010; Abraham and
Silambarasan 2015). It was first produced in 1965 by Ciba
AG and Shell Development Co. and is registered in about
60 countries including Spain, France, Italy, Austria and
Greece. It accounts for a total sale of roughly 3% of all the
insecticides (Jia et al. 2006; Barathidasan and Reetha 2013).
Statistical data indicate Asia being the top user of monocro-
tophos, where countries like India (43%), South America
(26%), China (15%) and Southeast Asia (9%) account for
90% usage (Kumar et al. 2014). In India, monocrotophos
is registered for 14 crops by Central Insecticides Board and
Registration Committee (CIBRC) (Bhushan et al. 2013) and
the states of Punjab and Andhra Pradesh are the chief con-
sumers of monocrotophos (Kumar et al. 2014). However,
European Union and the USA have withdrawn the product
for use, in India despite its ban, it is still being used on a
large variety of crops and vegetables owing to its high effi-
ciency in controlling pests, low cost and lack of alternative
replacements (Kodandaram et al. 2013; Sidhu et al. 2015).

Being readily soluble in water, it easily gains entry to water
sources or industrial effluents during manufacturing process,
which has led to several incidents of monocrotophos con-
tamination. Waste effluent of monocrotophos manufacturing
factory near Pune, India, contained 0—125 mg L~ monocro-
tophos (Bhadbhade et al. 2002c). In other studies, 4 pg L™!
and 0.165 ug L™! of monocrotophos residues were detected in
rainwater (Kumari et al. 2007) and tap water in China (Kang
et al. 2000). Tariq et al. (2004) reported the presence of up
to 8.3 ug L™ monocrotophos in shallow well water samples
collected from four cotton-growing districts in Pakistan. Sev-
eral cases of presence of monocrotophos above the maximum
residue limits (MRL) have been reported (Sawaya et al. 1999;
Kumari et al. 2004). Monocrotophos residues were found
at a mean concentration of 0.063 +0.022 mg kg~! in toma-
toes (Darko and Akoto 2008). In a study conducted by Arora
(2009), 0.4 mg kg~! monocrotophos was reported in okra sam-
ples. The residues were also detected at a mean concentration
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level of 1.63 ng g~! in human breast milk (Sharma et al.
2014). Monocrotophos residues at an average concentration
of 0.79 ng mL~! in human blood (Sharma et al. 2015) pose
high risk. Owing to the toxicity and its persistent nature, it
is necessary to eliminate monocrotophos from the environ-
ment. Current review summarizes and presents assessment of
various studies and reports on monocrotophos, its fate in the
environment, quantification of its toxicity and degradation.

Monocrotophos

Monocrotophos, a dimethyl oxon compound sold under trade
names Azodrin, Apadrin, Pillardrin, Plantdrin, Crisodrin,
Nuvacron, Monocron and Bilobran is a commonly used
organophosphorus insecticide and acaricide (Mackay et al.
2006; Jose et al. 2015). It is a nonspecific, systemic foliar
insecticide used to protect crops from mites, ticks, leaf hop-
pers, aphids and other insects (Singh and Walker 2006).
Monocrotophos refers to a cis-isomer with its nomencla-
ture based on its crotonamide structure. The technical grade
monocrotophos contains 75-80% of the cis-isomer and 9%
of the trans-isomer along with a range of compounds includ-
ing N-methyl acetoacetamide (2%) and dimethyl phosphate
(5%) (Beynon et al. 1973). Trimethyl phosphate and mono-
chloro-monomethyl acetoacetamide are also used for manu-
facturing monocrotophos (Bhadbhade et al. 2002b).

Monocrotophos (dimethyl(E)- 1-methyl-2-(2-methylcar-
bamoyl)vinyl phosphate) is colourless in its pure form, and
its technical grade exists as reddish brown solid/liquid state
(Mackay et al. 2006) (Table 1). It is classified as class (I)
highly toxic compound by the Environmental Protection
Agency (Sidhu et al. 2015), with median lethal dose (LDs)
of 1820 mg kg™! for mammals (Singh and Walker 2006)
and 0.9-6.5 mg kg~! for birds (Goldstein et al. 1999). Mono-
crotophos is readily soluble in water with 100% solubility,
but due to its hydrophilic nature, it is weakly sorbed by soil
particles (Subhas and Singh 2003; Mackay et al. 2006), pos-
ing threat to groundwater contamination due to leaching. It
has a half-life of 17-96 days depending upon pH and tem-
perature (Mackay et al. 2006). When stored in polyethylene
and glass containers, technical grade monocrotophos is sta-
ble and has half-life of 2500 days at 38 °C (JMPR 1972).
The formulation of monocrotophos registered in India is
36% SL (Kodandaram et al. 2013) with application rates
0.25-1.5 kg ha™! for cotton (Beynon et al. 1973).

Distribution and fate of monocrotophos
in the environment

With regular field application of pesticides, they remain in
soil and sediments and even percolate to the groundwater/
surface water and enter the food chain directly or indirectly.
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Table 1 Characteristics of monocrotophos

S. no. Properties Values
1 Common name Monocrotophos
2 IUPAC name Dimethyl(E)- 1-methyl-2-(2-methylcarbamoyl)vinyl phosphate
3 CAS registry no. 6923-22-4
4 Molecular formula C,H;,;NOsP
5 Structural formula \ 0 HN—
O\r|>|
\O/ \0 / \)
6 Molecular weight 223.164 g mol™!
7 Colour Colourless (pure)
Reddish brown solid and liquid (Technical grade)
8 Odour Mild ester like
Melting point (°C) Pure 54-55
Technical 25-30
10 Boiling point (°C) 125
11 Density at 20 °C (g cm™) 1.22
12 Vapour pressure at 25 °C (Pa) 9.33%107
13 Henry’s law constant at 25 °C (Pa m® mol™!) 2.08x107°
14 Octanol/water partition coefficient (log Kqy,) —-197t0-0.2
15 Hexane/water partition coefficient <0.1
16 Solubility (20 °C)
Water 1 kg kg™!
Acetone 700 g kg™
Dichloromethane 800 g kg™!
Methanol 1 kg kg™!
Octan-1-ol 250 g kg™
Toluene 60 g kg™!
17 Stability Stable on storage in polyethylene and glass containers.
Half-life at 20 °C at different pH:
pH 5—96 days
pH 7—66 days
pH 9—17 days
Half-life in soil—30 days
18 Acute oral LDy
Male rats 17-18 mg kg™!
Female rats 20 mg kg !

References: IMPR (1972), Beynon et al. (1973), Mackay et al. (2006), Sidhu et al. (2015)

Their fate is governed by different factors, which determines
their persistence, mobility and potential for volatilization,
leaching, run-off or plant uptake (Gavrilescu 2005; Pam
2015). These factors include properties of pesticide such as
soil adsorption, water solubility and half-life and physico-
chemical properties of soil such as pH, soil texture, depth,
slope and permeability. Interaction of all these factors along
with environmental conditions determines the fate and
behaviour of a pesticide (Gavrilescu 2005; Yang et al. 2018).

Monocrotophos is a fast-acting and highly toxic cholinest-
erase-inhibiting organophosphorus insecticide (Bhadbhade
et al. 2002c; Sidhu et al. 2015). Being readily water soluble

and highly mobile in soil, it quickly contaminates ground-
water and penetrates into plant tissues, hence making its
removal impossible (Tomlin 1994; Balamurugan et al. 2010;
Barathidasan and Reetha 2013). In a study conducted by
Imran et al. (2016), less than 0.02 mg L™! monocrotophos
residues were found in all 106 samples of different paddy
varieties. Among 50 samples analysed, monocrotophos
was detected in two samples each of eggplant and toma-
toes at mean concentrations of 0.060+0.022 mg kg~ and
0.063 mg kg~!, respectively (Darko and Akoto 2008). Resi-
dues of monocrotophos were found in different fruits such
as apple, grapes, mango and melon (Hussain et al. 2002;

@ Springer



1302

Environmental Chemistry Letters (2019) 17:1299-1324

Asi 2003; Khan 2005), vegetables (Asi 2003; Parveen et al.
2005; Khan 2005) and green tea (Huang et al. 2019). In
another study, 0.6748—1.3648 mg kg~! of monocrotophos
residues (above maximum residue limit 0.2 mg kg™!) was
detected in market samples of grapes (Reddy et al. 2000).
In the USA and Europe, organophosphates are one of the
causes reported for intoxication of wild birds due to inges-
tion of grains treated with insecticides. A study conducted
on total of 182 dead birds from 2010 to 2013 revealed the
presence of 0.6-7557 mg kg™' of monocrotophos in 57 dead
birds (Kim et al. 2016).

Uptake of monocrotophos by plants

Pesticide residues in air, water and soil are the major source
of pesticide residues in plants (Zhang et al. 2011). Mono-
crotophos is a foliar insecticide mainly used on cotton crop.
Studies on distribution and breakdown of monocrotophos
in plants have been reported by Lindquist and Bull (1967)
and Beynon and Wright (1972). Individual leaf was treated
topically with 40 ug of monocrotophos, whereas 0.5 mg of
32p_labelled monocrotophos was applied to cotton seeds.
For stem treatment, 5 mg of *?P-labelled monocrotophos
mixed with 95 mg of lanolin was spread around the stem in
a 1-inch band. Volatilization caused the loss of 85% of active
ingredient in foliar treatment. Degradation of monocro-
tophos occurred both inside and on surface of treated leaves
mainly by hydrolysis. Monocrotophos metabolism in case of
seeds was comparatively slower with a half-life of 7 days.
90% of radioactivity in the lanolin was removed 21 days
after stem treatment, indicating its stability in lanolin. In
general, plants with green waxy stems took greater amount
of insecticide than plants having some bark (Bariola et al.
1970). '*C-labelled monocrotophos dissolved in acetone
(100-1000 pg mL™") were further used to study monocro-
tophos’s behaviour in maize, cabbage and apple. Twenty-
two days after foliar treatment, 20-27% of the total applied
monocrotophos remained unchanged in case of maize,
whereas in case of apple leaves half-life of monocrotophos
was estimated to be 6-9 days (Beynon and Wright 1972).
Approximately 2.8% (i.e. 0.81 ppm) of the total applied
100 ppm of active ingredient (**C) was translocated into the
fruits. Under greenhouse conditions, on injecting *>P mono-
crotophos into the stem of bean plants, it was rapidly trans-
located to the foliage, where it persisted for several weeks
(Menzer and Casida 1965), with estimated half-life to be
14 days. Half-life was further decreased under outdoor con-
ditions and in rains (Beynon and Wright 1972). The break-
down products are mainly hydrophobic compounds such as
dimethyl phosphate, which are not cholinesterase inhibitor
and have low toxicity.

Metabolism of monocrotophos in different crops
was studied using different radiolabels. Monocrotophos
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degradation studies in beans (Menzer and Casida 1965) and
cotton plants (Lindquist and Bull 1967) used *?P-labelled
monocrotophos, whereas studies on maize, cabbage and
apple trees (Beynon and Wright 1972) used both O-['*C]
methyl and N-['*C]methyl-monocrotophos. By the use of
different radiolabels, different metabolites were detected in
all plants. Eight days after injecting *>P-monocrotophos to
bean plants, Menzer and Casida (1965) detected unchanged
monocrotophos, N-methylol and the amide, whereas after
32 days only monocrotophos residues were detected. Find-
ings by Lindquist and Bull (1967) suggested dimethyl phos-
phate, phosphoric acid and O-desmethyl monocrotophos
as major products along with small amounts of methylol
and other polar materials. *C-labelled monocrotophos
was metabolized mainly to hydrophilic compounds such as
O-desmethyl monocrotophos and dimethyl phosphate along
with N-methylacetoacetamide, N-hydroxymethyl derivative
(free and conjugated with sugar), alcohol and amides (Bey-
non and Wright 1972) (Fig. 2).

Three different metabolic pathways are involved in the
mineralization of monocrotophos in different plants:

(1) Breakdown of P-O-CHj; linkage

(2) Hydrolysis of the P-O-vinyl bond

(3) Hydroxylation of N-methyl group, followed by
N-dealkylation.

Routes (1) and (2) represent major metabolic pathways in
all the investigated crops and are essentially detoxification
reactions, whereas route (3) is a minor metabolism pathway
leading to potent cholineesterase inhibitors (methylol, amide
and the conjugates) (Lindquist and Bull 1967; Beynon et al.
1973).

Fate of monocrotophos in mammals

Mode of action of organophosphates involves inhibition of
acetylcholine esterase (AChE), an enzyme that catalyzes
the hydrolysis of a neurotransmitter acetylcholine (Abra-
ham and Silambarasan 2015). After transmitting nerve
impulse to various parts of the body, AChE must hydrolyse
acetylcholine into acetyl CoA and choline by binding at its
active site (serine 203) and forming an enzyme—substrate
complex. This prevents overstimulation of the nervous
system. Organophosphorus compounds covalently bind
to active site serine 203 amino acid of AChE, thereby
modifying its structure and function and inhibiting it. The
leaving group breaks off the phosphate by binding to the
His 447 at its positive hydrogen and leaving the enzyme
phosphorylated (Fukuto 1990; Ragnarsdottir 2000; Singh
and Walker 2006). Therefore, nerves are overstimulated
and jammed, as regeneration of phosphorylated AChE
being very slow may take hours or days, accumulating
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Fig.2 Proposed pathway for metabolism of monocrotophos in
plants and animals, modified after Beynon et al. 1973, Miicke 1994,
and Lindquist and Bull 1967. Initial step of breakdown of mono-
crotophos is the oxidative N-demethylation leading to the formation
of N-demethylated monocrotophos via formation of N-methylol.
Hydrolysis at O-methyl group leads to the formation of O-desmethyl

acetylcholine at synapses which in turn causes confusion,
hypersalivation, agitation, convulsion, respiratory failure
and ultimately death of insects and mammals (Karpouzas
and Singh 2006).

Studies on metabolic fate of monocrotophos have been
conducted in different mammals (Menzer and Casida 1965;
Bull and Lindquist 1966) by using **P or '*C radiolabelled
monocrotophos. Elimination of intraperitoneally admin-
istered **P-monocrotophos in rats was rapid, accounting
for 45-56% of the dose excreted in urine within 6 h after
administration (Menzer and Casida 1965; Bull and Lindquist
1966). After 48 h, total 72% was excreted, urine accounting
for 65% and faeces 5%. The radioactivity results of the first
6-h urine sample were comprised of 34% monocrotophos,
34% dimethyl phosphate, 10% O-desmethyl monocrotophos,
20% methylol derivative and 2% phosphoric acid with trace
amounts of N-desmethyl (Bull and Lindquist 1966) (Fig. 2).
On killing the rats dosed with 2 mg kg™!, residues of dif-
ferent tissues, i.e. bones, blood, lungs, muscle, skin, heart,
spleen, kidneys, etc., were investigated. This indicated the
presence of a low amount of monocrotophos with butterfat,

H
O- desmethyl derivative

OH— (fH—CHZ—C —N

Unidentified metabolite
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~
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derivative. Major metabolic pathway proceeds by cleavage of vinyl
phosphate bond leading to the formation of N-methylacetoacetamide,
following reduction of keto group to unidentified metabolite. Dime-
thyl phosphate is another major product formed by breakdown of
P-O-C linkage, which further forms phosphoric acid via monomethyl
phosphate

liver and kidneys showing highest values (i.e. 0.07, 0.05,
0.03 ppm, respectively) (Miicke 1994).

A lactating goat was given a single oral dose of a mixture
of 2P and N—['*C] methyl-monocrotophos, 50% of it was
excreted in 16 h. After 72 h, elimination of *P-monocro-
tophos accounted for 67%, whereas N—[MC] methyl-mono-
crotophos was higher, i.e. 90%. Rest 1.4% of 3*P-monocro-
tophos and 2.9% of N—['*C] methyl-monocrotophos were
excreted with milk (Menzer and Casida 1965). In a simi-
lar study where two lactating goats fed with oral dose of
0.5 mg kg~! "*C-monocrotophos for three consecutive days,
elimination of monocrotophos in urine, faeces, milk and but-
terfat accounted for 66%, 13%, 1.8% and 0.5%, respectively.
A small amount (0.03-0.16 ppm) was also detected in body
tissues. In cows, out of total fed 45 ppm >*P-monocrotophos,
3.6 ppm was eliminated in milk (Miicke 1994).

Zichu et al. (1988) reported penetration of '*C-mono-
crotophos to human skin and pigs, skin of cheek having
the highest penetration rate. 15% of the total 4 ug cm™
“C-monocrotophos applied topically on the forearms
of six male human subjects was excreted with urine in
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5 days confirming monocrotophos absorption in humans
(Feldmann and Maibach 1974). When same six males
were given *C-monocrotophos dose intravenously, 68%
was eliminated with urine in 5 days indicating half-life to
be 20 h in humans. The renal elimination was the highest
4-8 h after administration and declined afterwards. In a
recent study conducted on five male patients who ingested
unknown quantity of monocrotophos, there was a rapid
clearance of monocrotophos from plasma with a median
renal elimination half-life of 3.3 h (Jose et al. 2015). A
large amount of unchanged monocrotophos is excreted in
urine probably due to its water-soluble nature.

Quantification of the toxicity
of monocrotophos

Acute toxic effects of monocrotophos on different mam-
mals have been studied by different researchers; however,
the effects resulting from long-term exposure to low doses
are often difficult to quantify and distinguish. Effect of
regular intake of foods having pesticide residues is also
difficult to detect. Several indices of residue levels are
used to predict level of pesticide residues in the human
body. Maximum residue limits (MRL) corresponds to
maximum concentration of a pesticide residue (mg kg™!),
which is recommended by Codex Alimentarius Commis-
sion and is legally permitted in food commodities and
animal feeds (Darko and Akoto 2008). The acceptable
daily intake (ADI), which is the estimated amount of a
substance in food (expressed on a body weight basis) that
can be ingested daily over a lifetime without appreciable
health risk to the consumer, could also be used to predict
the dietary intake of pesticide residues. The dietary intake
of a pesticide residue in a given food can be estimated by
multiplying the residue level in the food with the amount
of that food consumed. The estimated average daily intake
(EADI) of pesticide residues should be less than its estab-
lished ADI (WHO 1997).

To evaluate the toxicity of organophosphates to humans,
single-spot urine samples have often been used to deter-
mine the levels of common organophosphate metabo-
lites used as biomarkers of organophosphorus exposure
(Ito et al. 2019). Monocrotophos toxicity can be studied
by estimating its residues in urine samples by detecting
the purplish blue colour complexes, which results from
the reactions of organophosphates and 4-(4-nitrobenzyl)
pyridine (NBP) in urine (Namera et al. 2000). However,
evaluation of toxicity by animal testing is long and costly;
therefore, alternative modelling of quantitative struc-
ture—activity relationships (QSARS) is developed to pre-
dict acute toxicity of pollutants (Satpathy 2019).
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Toxicity of monocrotophos

Monocrotophos dose that kills half of the test organisms, i.e.
half maximal inhibitory concentration (ICs), for male and
female rats is 17-18 mg kg~! and 20 mg kg™, respectively.
The ICs, value for dermal exposure for male rats, female rats
and rabbits is 126 mg kg™', 112 mg kg~! and 354 mg kg~!,
respectively (Chakravarthi et al. 2009). In India, monocro-
tophos has been used as intentional self-harm chemical for
committing suicides (Rao et al. 2005a, b; Peter et al. 2010).

Monocrotophos poisoning in humans is characterized
by blurred vision, muscular weakness, profuse perspira-
tion, confusion, vomiting, small pupils and even death
due to respiratory failure (Yaduvanshi et al. 2010). Most
of the monocrotophos’s toxicity and mutagenicity stud-
ies in humans have been conducted using cultured blood
lymphocytes. Tripathi et al. (2017) studied the neurotoxic
effects of monocrotophos on cultured neural and glial cells,
where monocrotophos exposure triggered the apoptotic cell
death. Comet assay conducted using cultured human blood
lymphocytes revealed that monocrotophos exposure led to
DNA damage due to increase in comet tail length indicat-
ing monocrotophos capable of altering the genetic mate-
rial (Jamil et al. 2004; Das et al. 2006; Chakravarthi et al.
2009). Banu et al. (2001) reported similar results in mice
model. Monocrotophos induced oxidative DNA damage
along with lipid peroxidation in rat tissues (Yaduvanshi et al.
2010). Zahran et al. (2005) reported induction of structural
and numerical chromosomal mutations in both germ and
somatic cells of male liver and embryos of pregnant mice on
monocrotophos exposure, confirming its mutagenic action.
It exerts neurobehavioural effects in rodents by affecting
their noncholinergic functions that involve serotonergic and
dopaminergic systems associated with increased oxidative
stress (Mandhane and Chopde 1995; Sankhwar et al. 2013).
Monocrotophos treatment caused an increase in WBC count
along with mutagenicity in birds and male rats (Siddiqui
et al. 1991, 1993) and induced bone marrow depression
along with splenic hyperplasia, which caused significant
decrease in haemoglobin count, total RBC and platelet
count, erythrocyte sedimentation rate and haematocrit value
in mice (Gupta et al. 1982).

Earlier studies revealed exposure of monocrotophos-
induced transient hyperglycaemia in rats in acute conditions
(Joshi and Rajini 2012; Velmurugan et al. 2013; Nagaraju
et al. 2014). It also led to an increase in the weight of key
white adipose pads, pancreatic islet diameter and activity
of enzymes involved in gluconeogenesis, thereby caus-
ing hyperglycaemia, hyperinsulinemia and dyslipidaemia
(Nagaraju et al. 2014). Findings of the same group indi-
cated the probability of beta-cell compensation responses
under monocrotophos exposure (Nagaraju and Rajini 2016).
Velmurugan et al. (2013) studied the cardiotoxicology of
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prolonged monocrotophos intake. Wistar rats administered
orally with 1/50th of lethal dosage of monocrotophos exhib-
ited mild cardiac oxidative stress leading to cardiotoxicity,
which was evidenced by the accumulation of lipid peroxida-
tion, protein carbonyls and glutathione production.

Monocrotophos has histopathological effect on kidney,
liver and muscles of both fish and rats, which were studied
on the tissues of kidney, gills and intestines of fish Cirrhinus
mrigala by light microscopy (Velmurugan et al. 2007). Cyto-
toxic effects of monocrotophos on different aquatic organ-
isms have also been widely studied (Agrahari et al. 2007;
Anbumani and Mohankumar 2015; Binukumari et al. 2016;
Mundhe et al. 2016; Zhang et al. 2017).

Monocrotophos is a potential endocrine-disrupting
chemical with significant oestrogenic properties, which sig-
nificantly induces both secretion and vitellogenin mRNA
expression in male Goldfish (Tian et al. 2009). Oestrogenic
effects of monocrotophos are exerted via interfering with
the reproductive axis at multiple sites leading to increased
17p-estradiol plasma levels and decreased plasma testoster-
one concentrations (Tian et al. 2010). This caused severe
reproductive abnormalities in fish Poecilia reticulata (Tian
et al. 2012). It is genotoxic to Meretrix ovum and induces
retardation of somatic growth of the mussel (Revankar and
Shyama 2009).

Monocrotophos has proved to be extremely toxic to
birds. Monocrotophos contamination was held responsible
for mass deaths of raptors, owls, Swainson’s hawks (Buteo
swainsoni), Sarus cranes (Grus antigon) and peafowls
reported in different parts of the world (Mendelssohn and
Paz 1977; Goldstein et al. 1999; Pain et al. 2004; Narang
et al. 2016). Prolonged exposure of monocrotophos is also
toxic to termites (Rao et al. 2005a), earthworms (Rao and
Kavitha 2004; Govindarajan 2014) and roundworms (Salim
and Rajini 2017).

Detection and monitoring
of monocrotophos

Several techniques have been developed to monitor the
presence of monocrotophos and its degraded residues in
the environment. Quantification of monocrotophos in food
items including fruits and vegetables is often performed
by liquid chromatography (LC) or gas chromatography
(GC) coupled with several detectors such as flame ioniza-
tion detector (FID), electron capture detector and nitro-
gen phosphorus detector (Chandra et al. 2014; Mao et al.
2019). In recent years, LC and GC are equipped with mass
analysers for pesticide residue analysis, such as LC-MS,
GC-MS, LC-MS/MS, GC-MS/MS (Mao et al. 2019).
QuEChERS (quick, easy, cheap, effective, rugged and

safe) methodology has been widely employed for moni-
toring pesticide residues in fruits and vegetables, edible
fungi (Cao et al. 2016), chicken eggs (Li et al. 2016) and
edible oils (Mao et al. 2019).

Ismail et al. (2000) have developed a simple reversed-
phase column liquid chromatographic method using Cg
column and UV detection at wavelength 218 nm for the
determination of cis and trans isomers of monocrotophos.
A new method of molecularly imprinted solid-phase
extraction coupled with high-performance liquid chroma-
tography was reported for the determination of monocro-
tophos in vegetables, reporting 1.2 ng g~! limit of detec-
tion (Wang et al. 2014). Similar method was developed for
determining trace monocrotophos in fruits, giving limit
of detection 0.015 mg kg~! (Li et al. 2017). In a green tea
sample, spiked with 50 ug kg~! monocrotophos, 95.7%
of the insecticide was recovered with a modified QuECh-
ERS protocol, coupled to HPLC-MS/MS (Huang et al.
2019). Thin-layer chromatography (TLC) is also used for
the detection of monocrotophos in biological samples by
the use of diazotized sulphanilamide or sulphanilic acid
(Patil and Shingare 1994).

Since these conventional chromatography methods are
expensive, time-consuming and require a well-trained
technician for instrument handling, nanotechnology-
based electrochemical biosensors are another promising
technique used these days. They are user-friendly, rapid,
stable and very sensitive (Sundarmurugasan et al. 2016;
Srivastava et al. 2018). Since monocrotophos can inhibit
ACHhE, the enzyme has been chosen by several research-
ers for the detection of monocrotophos. AChE catalyzes
the hydrolysis of acetylthiocholine to thiocholine, which
produces oxidation peak proportional to concentration of
insecticide present (Liu and Wei 2014; Sundarmurugasan
et al. 2016). Dimcheva et al. (2013) achieved monocro-
tophos detection with detection limit 1 uM and a linear
range of 50-400 nM, using AChE immobilized on gold
nanoparticles. Liu and Wei (2014) developed a sensitive
and stable AChE biosensor based on platinum—carbon
aerogels composite which showed 2.7 x 10712 M detection
limits for monocrotophos and exhibited good reproduc-
ibility. Multi-walled carbon nanotubes (MWCNT), surface
modified by several functional groups, hydrophobic alkyl
groups and ionic groups were employed as AChE carrier
for monocrotophos detection in various vegetable sam-
ples. Ionic liquid (-IL,)-modified MWCNT was the best
carrier for the enzyme with detection limit 3.3 x 107! M
and recovery 90-104% (Bin et al. 2018). Some of the
ACHhE biosensors are inert silica nanoparticle or magnetic
nanoparticle based, which exhibit good stability (Du et al.
2007; Sun et al. 2008; Wu et al. 2011; Bagheri et al. 2019).

@ Springer



1306

Environmental Chemistry Letters (2019) 17:1299-1324

Degradation of monocrotophos

Monocrotophos reaches the soil and aquatic environment
directly or indirectly, upon its application to the target
crops, where it undergoes degradation by various chemi-
cal, photochemical and microbiological processes. Degra-
dation is also influenced by various distribution processes
such as adsorption/desorption, volatilization, leaching,
run-off, plant and aquatic life uptake.

To investigate degradation behaviour of monocrotophos
in soil, several experiments were conducted on different
types of soils under aerobic and anaerobic conditions. On
application of 1.5 kg a.i. ha™! of 5% granular monocro-
tophos formulation to clay soil (Agnihotri et al. 1981),
it rapidly disappeared from O to 15 cm soil layer, esti-
mating a half-life of 10.3 days. Small traces were also
detected in 15-30 cm layer due to its vertical movement,
but 45 days after the treatment, no detectable residues
were found. Gundi and Reddy (2006) studied degrada-
tion of 10 and 100 pg g~! monocrotophos in two Indian
agricultural soils (black vertisol and red alfinsol) at 60%
water holding capacity, under aerobic conditions. The deg-
radation in both the soil samples was rapid and accounted
for 96-98% of the total application with half-lives 9.2
and 11.4 days, respectively, following first-order kinetics.
Metabolism studies of '*C-radiolabelled monocrotophos
showed its rapid decomposition into N-methylacetoacet-
amide, O-desmethyl monocrotophos, N-(hydroxymethyl)
monocrotophos, 3-hydroxy-N-methylbutyramide, mono-
methyl, and dimethyl phosphates and '*CO, (Dutton et al.
1974; Lee et al. 1990).

Monocrotophos degradation is greatly affected by the
presence and absence of soil microbial biomass. Decrease
in degradation rate was observed in soils that were either
air-dried (Schuler and Held 1964) or sterilized (Lee et al.
1980), indicating that the absence of or reduction in micro-
bial biomass decreases the rate of monocrotophos degra-
dation in soil. Anaerobic conditions also decreased the
rate of degradation with a half-life time of approximately
8 days compared with a 4-day half-life under aerobic con-
ditions in the same soil (Hernandez et al. 1986; Lee et al.
1990).

Biodegradation of monocrotophos

Microbial diversity plays a significant role in degradation
of synthetic contaminants present in the environment by
utilizing them as carbon and energy source. Monocro-
tophos is characterized by an amide bond and P-O-C
linkage. It has been reported to be utilized as sole source
of carbon or phosphorus in soil or aqueous medium (Singh

@ Springer

and Walker 2006; Abraham and Silambarasan 2015).
Monocrotophos degradation using the different soil micro-
flora has been widely studied in several enrichment cul-
tures (Table 2).

Bacterial degradation of monocrotophos

Several bacterial species showing capability to utilize
monocrotophos as nutrient source and degrading it in lig-
uid medium or soil have been isolated and characterized.
Monocrotophos metabolization by different bacteria has
been reported through catabolic mechanisms, where mono-
crotophos provides carbon or phosphorus source to the
degrading micro-organisms (Singh and Walker 2006). It
acts as carbon source for Pseudomonas sp., Arthrobacter
sp., Arthrobacter atrocyaneus, Bacillus megaterium (Bhadb-
hade et al. 2002b) and as phosphorus source for Clavibacter
michiganense SBL11 and Pseudomonas aeruginosa F10B
(Subhas and Singh 2003).

In several studies, microbes have been employed for the
degradation of monocrotophos (Table 2). Due to the pres-
ence of novel catabolic enzymes, bacteria can survive in
diverse ecological niches. Rhodococcus phenolicus strain
MCP1 along with Rhodococcus ruber strain MCP-2, isolated
from groundnut soils, was able to utilize monocrotophos
as a carbon source by hydrolysis leading to the formation
of N-methylacetoacetamide, indicating the decomposition
of parent compound (Srinivasulu et al. 2017). Different
Bacillus sp. including Bacillus licheniformis, Bacillus sub-
tilis (Acharya et al. 2015; Sidhu et al. 2015; Buvaneswari
et al. 2017), Bacillus coagulans, Bacillus brevis (Bhadbhade
et al. 2002a), Bacillus megaterium MCM B-423 (Bhadbhade
et al. 2002b) and Lactobacillus bulgaricus (Zhao and Wang
2012) have been widely studied to metabolize monocro-
tophos present in the soil. Degradation of monocrotophos
by various Pseudomonas strains, viz. Pseudomonas stutzeri
(Barathidasan and Reetha 2013; Buvaneswari et al. 2017),
Pseudomonas moraviensis JAS18 (Abraham et al. 2014),
Pseudomonas synxantha (Sidhu et al. 2015), Pseudomonas
aeruginosa (Subhas and Singh 2003; Balamurugan et al.
2010) and Pseudomonas mendocina (Bhadbhade et al.
2002a), has been widely reported.

Serratia marcescens JAS16 isolated from prolonged
exposure of soil to monocrotophos was able to use it as
carbon source and degraded 1000 mg L~ of the insecti-
cide in aqueous medium at a degradation rate constant
of 136 per day with a half-life of 3.7 days. Degradation
rate constant in soil inoculated with bacteria was 105
per day with a half-life of 4.8 days. The bacteria could
tolerate 1200 mg L' of the insecticide. Phytotoxicity of
degraded metabolites to seeds of Vigna unguiculata, Vigna
radiata and Macrotyloma uniflorum and its genotoxicity
to Allium cepa bulbs were found to be low (Abraham and
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Silambarasan 2015). Another bacterial isolate, YW6, char-
acterized as Starkeya novella could utilize monocrotophos
for its growth as the sole carbon and nitrogen source.
Within 36 h, it degraded 0.2 mM monocrotophos with no
lag period. The initial rate of monocrotophos degrada-
tion was slowed down by the addition of carbon source,
whereas the presence of a more favourable nitrogen source
enhanced the degradation of monocrotophos (Sun et al.
2016). In another research, Paracoccus sp. M1 was able to
mineralize 300 mg L™! of monocrotophos along with other
organophosphorus insecticides and amide herbicides under
different culture conditions. The key enzyme responsible
for the initial breakdown of monocrotophos was a consti-
tutively expressed cytosolic protein (Jia et al. 2006).

Subhas and Singh (2003) studied two bacterial isolates
Pseudomonas aeruginosa F10B and Clavibacter michigan-
ense subsp. insidiosum SBL 11 capable of degrading 98.9%
and 86.9% technical monocrotophos, respectively, under
laboratory conditions and 79% and 80% of pure monocro-
tophos within 24 h at 37 °C, where 500 ppm was the opti-
mal monocrotophos concentration required for their normal
growth by the production of enzyme phosphotriesterase
(PTE). Purified PTE isolated from Clavibacter michigan-
ense subsp. insidiosum SBL11 was found to be a mono-
meric enzyme (molecular mass—43.5 kDa; pI—7.5), while
PTE from Pseudomonas aeruginosa F10B was a heterodi-
meric enzyme (molecular mass—43 and 41 kDa; pI—7.9
and 7.35). The enzyme isolated from strain F10B was more
thermostable (half-life 7.3 h) than that from SBL11 (half-
life 6.4 h at 50 °C), while both the enzymes showed the
same temperature optimum of 37 °C (Das and Singh 2006).
Similar research was conducted by a research group, where
they isolated 17 bacterial isolates (16 different Bacillus sp.
and Arthrobacter atrocyaneus) (Bhadbhade et al. 2002b).
Among them, Bacillus megaterium and Arthrobacter atro-
cyaneus were selected for further studies on monocrotophos
degradation and its metabolic pathway. Within 8 days,
the isolates degraded monocrotophos to an extent of 93%
and 83%, respectively, from synthetic media spiked with
1000 mg L~! monocrotophos. Enzymes are the key fac-
tors responsible for bioremediation of pesticides including
monocrotophos (Table 3).

Phosphatases (mono and dimethyl) and esterases are the
enzymes involved in the biodegradation of monocrotophos
into ammonia, carbon dioxide, and phosphates through for-
mation of intermediate compounds as valeric acid or ace-
tic acid, methylamine and other metabolites (Bhadbhade
et al. 2002b). The first step of monocrotophos degradation
involves hydrolysis, producing N-methyl acetoacetamide
along with dimethyl phosphate (Beynon et al. 1973). In the
next step, degradation of N-methyl acetoacetamide produces
valeric acid in Arthrobacter atrocyaneus and acetic acid in
Bacillus megaterium (Bhadbhade et al. 2002b) (Fig. 3).

Acetic acid is the key intermediate of the metabolic path-
ways in different microbes.

Fungal degradation of monocrotophos

Fungi are important part of the environment due to their sig-
nificant role in biogeochemical cycles and their capacity to
degrade xenobiotics including pesticides. Results of different
published studies showed that fungi are capable of causing
minor changes in the chemical structure of the applied pes-
ticide resulting in the formation of bio-transformed products
which are further taken up and degraded by other potential
soil microbes (Magbool et al. 2016). Benefits of better tol-
erance, oxidizing ability and mycelial niche are offered by
fungi, and they do not require prior exposure to any specific
pollutant and are cost-effective bioremedial agent (Jain et al.
2014).

Among twenty-five isolated strains, isolate M-4, i.e.
Aspergillus oryzae ARIFCC 1054, degraded 500 mg L™
of monocrotophos, where monocrotophos concentration
reached undetectable levels (< 1 mg L™!) in 168 h (Bhalerao
and Puranik 2009) (Table 2). Complete enzymatic minerali-
zation of monocrotophos by Aspergillus sp. in 8 days was
reported by Anitha and Das (2011). Monocrotophos was
broken down into non-toxic volatile fatty acids (stearic acid,
palmitic acid and behenic acid) and other unknown metabo-
lites. In another study, Aspergillus fumigatus was able to
degrade 1% monocrotophos, whereas it was unable to grow
at higher concentration (2% and 3%). However, the pres-
ence of 1% Tween 80 enhanced monocrotophos degrada-
tion and increased fungal growth (Pandey et al. 2014). Also,
Aspergillus niger and Trichoderma viride isolated from
monocrotophos-contaminated soil showed monocrotophos
(12 mg L") degradation (Thirugnanam and Senthilkumar
2016). Aspergillus sojae strain JPDA1 isolated from sug-
arcane fields could degrade 500 mg L~! of monocrotophos
in 72 h in minimal media. Two types of trials were carried
out in this study, where soil was spiked with 500 mg L™!
of monocrotophos. In the first trail, soil was amended with
nutrients, whereas in the second trail soil was devoid of
nutrients. In the former trail, the strain degraded the insecti-
cide in 144 h, whereas in the latter, it took 168 h for degrada-
tion (Abraham et al. 2016).

Jain and Garg (2015) studied biomineralization of mono-
crotophos by Aspergillus niger JQ660373. After an incu-
bation of 15 days, the resulting residual concentration was
64.94 +0.42 ug mL~!, following first-order kinetics with the
rate constant of 0.002 per day and half-life of 12.64 days.
Rate of monocrotophos degradation by fungus was com-
pared with degradation by enzymatic method. Various
enzymes, viz. hydrolases and acid phosphatases, isolated
and purified from the various fungal isolates like Penicillium
aculeatum, Aspergillus flavus, Fusarium pallidoroseum,

@ Springer
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Fig.3 Proposed pathway of microbial degradation of monocro-
tophos. Mineralization takes place by hydrolysis of P-O alkyl bond
by phosphatase forming dimethyl phosphate, which further produces
phosphoric acid. Cleavage of vinyl phosphate bond forms N-methyl
acetoacetamide via O-desmethyl derivative. Esterase or phosphotri-

Macrophomina sp., Penicillium aculeatum ITCC 7980.10,
Fusarium pallidoroseum ITCC 7785.10, Aspergillus niger
ITCC 7782.10 and Aspergillus niger JQ660373 (Jain and
Garg 2013, 2015; Jain et al. 2013a, b) showed different
capacity to degrade monocrotophos.

Algal degradation of monocrotophos

Different algal species have been studied for the biodegra-
dation of monocrotophos (Table 2). Among various algal
isolates, Nostoc muscorum ARM 221 and Aulosira fertilis-
sima ARM 68 used monocrotophos as phosphorus source
and could tolerate it up to100 ppm. Monocrotophos induced
acid phosphatase activity (Subramanian et al. 1994), and
0.5-2 kg ha™! of the compound triggered germination of
different resting algal species (Chlorococcum humicola,
Chlorella vulgaris, Nostoc linckia, Gloeocystis gigas, N.
punctiforme, Scenedesmus bijugatus, Phormidium sp. and
Synechococcus elongatus). On using 5 kg ha™! of monocro-
tophos, it increased algal population by sixfold (Megharaj
et al. 1986a). Lower concentration of monocrotophos
(5-10 pg mL~") enhanced cell number along with chloro-
phyll a content of all algae. Blue-green algae S. elongatus

Valeric Acid

l

CO,

esterase cleaves C-N bond of monocrotophos forming methylamine,
which is oxidized into ammonia by methylamine dehydrogenase.
Acetic acid, valeric acid, phosphates and carbon dioxide are produced
along with an unidentified metabolite

could grow at 100 pg mL~!, whereas other algal isolates S.
bijugatus, Phormidium tenue, and Nostoc linckia could not
tolerate even 20 ug mL~! monocrotophos (Megharaj et al.
1986b). After 30 days of incubation with different algal
isolates (Scenedesmus bijugatus, Chlorella vulgaris, Phor-
midium tenue, Nostoc linckia (Roth) B and F and Synechoc-
occus elongatus Nageli), monocrotophos level decreased to
16.7%, confirming their efficiency to degrade the insecticide
(Megharaj et al. 1987). Other algal isolates, viz. Anabaena
variabilis, Lyngbya gracilis, Nostoc punctiforme and Phor-
midium foveolarum, utilized 1 and 2 kg ha~! of monocro-
tophos, and no toxicity was observed (Megharaj et al. 1988).

Factors affecting biodegradation of monocrotophos

The degradation ability of microbes is influenced by several
factors. The operating parameters like pesticide concentra-
tion, temperature, pH, moisture content, and available nutri-
ents have been extensively studied for effective biodegrada-
tion of monocrotophos. The available literature shows that
degradation efficiency of microbes decreases with higher
initial concentration of pesticide. Samal and Kotiyal (2013)
assessed the growth of Bacillus sp. in Bushnell Haas media

@ Springer
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spiked with different monocrotophos concentration (0.5%,
1%, 1.5%). Bacteria showed the best growth in media spiked
with 0.5% monocrotophos. Paracoccus sp. (M1) could easily
degrade 300 mg L' of monocrotophos, whereas 500 mg L™!
monocrotophos was toxic for its growth (Jia et al. 2006).
Bacillus megaterium, Arthrobacter atrocyaneus and Pseu-
domonas mendocina were able to tolerate 2500 mg L™
monocrotophos and use it as carbon source (Bhadbhade
et al. 2002c¢).

Most of the research conducted shows the optimum tem-
perature for monocrotophos degradation by bacteria ranges
from 30 to 37 °C (Abraham et al. 2014; Abraham and Silam-
barasan 2015; Acharya et al. 2015). Optimum degradation
temperature for fungus ranges from 25 to 30 °C (Balamu-
rugan et al. 2010; Jain et al. 2014; Abraham et al. 2016),
whereas for algae it is 27-30 °C (Megharaj et al. 1986a,
1987; Subramanian et al. 1994). Different microbes degrade
monocrotophos in the pH ranging from 5.5 to 8.5; however,
the conclusions are divergent. Bacillus megaterium, Arthro-
bacter atrocyaneus and Pseudomonas mendocina showed
maximum degradation of monocrotophos (100-500 mg L™
at varying temperature 30-35 °C, pH 7.0-8.0 and inoculum
density 10® cells/mL under aerated conditions (Bhadbhade
et al. 2002¢).

The decomposition of pesticides by micro-organisms
is greatly affected by the availability of both macro- and
micro-nutrients (C, N, O, H, P, etc.) in the soil (Yadav et al.
2016). KaviKarunya and Reetha (2012) reported maximum
growth of Pseudomonas fluorescens, Bacillus subtilis and
Klebsiella sp. at pH 6 and 35 °C. Bacteria showed maximum
growth in the presence of dextrose as carbon source and
malt extract as nitrogen source, whereas lesser growth in the
case of mannose (carbon source) and beef extract (nitrogen
source). Starkeya novella effectively decomposed 0.2 mM
monocrotophos in 36 h with no lag phase. Supplementing
media with more carbon source slowed down the initial rate
of monocrotophos degradation, whereas monocrotophos
transformation was enhanced by addition of more favourable
nitrogen source, which was ammonium chloride (Sun et al.
2016). Monocrotophos degradation in soil was enhanced by
light (UV/sunlight), moisture content (more in flooded soil)
and the type of water (more in tap water than the distilled
water) (Dureja 1989). Proper aeration and shaking condi-
tions are better for monocrotophos removal than the static
conditions (Bhadbhade et al. 2002c).

Photocatalytic degradation of monocrotophos

In recent years, photobased processes involving utilization
of light radiation (sunlight or external UV light) have been
extensively studied for the mineralization of harmful pesti-
cides, including monocrotophos. Pesticide absorbs the light
energy (photons), gets activated and transforms into other

@ Springer

chemical form through its homolytic cleavage. The excited
molecule further undergoes processes like homolysis, het-
erolysis, photoionization or itself decomposes with light
energy (Reddy and Kim 2015). This process termed as pho-
tolysis has several advantages like low cost, easy handling,
high efficiency and no waste disposal problem (Bhatkhande
et al. 2002; Reddy and Kim 2015).

Dureja (1989) studied the photolysis of monocrotophos
in soil, water and plant foliage in the presence of sunlight
as well as ultraviolet light. His study proved that sunlight
degraded monocrotophos to a greater extent. Gas liquid
chromatography analysis recovered 98% monocrotophos
from the sample exposed to dark conditions, whereas only
72.8% monocrotophos was recovered back in 8 h from
sunlight-exposed samples, indicating photodecomposition.
Experiments conducted on different types of soil proved that
alluvial soil showed the lowest monocrotophos recovery,
indicating maximum photolysis capacity. Also, monocro-
tophos degradation increased in flooded soil. Rate of mono-
crotophos degradation in tap water was twice as in distilled
water.

Photocatalysis entails the combination of radiation and
catalyst. Owing to its lower cost, structural stability, non-tox-
icity, long life span, high photocatalytic activity and its toler-
ance to both acidic and alkaline solutions, titanium dioxide
(TiO,) has been widely employed as photocatalyst (Shifu
and Gengyu 2005; Anandan et al. 2009). Among the three
forms of Titania (i.e. brookite, anatase and rutile), anatase
due to its stability has been employed most commonly in
ambient conditions. Titania photocatalysts are commercially
available under different trade names such as Degussa P25,
PC 500 and Millennium (Reddy and Kim 2015). Titanium-
mediated photocatalytic degradation of monocrotophos
along with the effect of O, and H,0, on the photodegrada-
tion was demonstrated by Hua et al. (1995). The presence of
anions CI~, C10,~, NO;~ and PO,’~ and Cu** above 107> M
showed detrimental effect on monocrotophos degradation,
whereas SO3” and Cu®* below 10~ M promoted the rate of
degradation. Addition of O, and H,0O, during the process
also enhanced the degradation rate. 0.65x 10~ mol dm~>
monocrotophos along with other organophosphates was
completely photocatalytically degraded to the final degra-
dation product PO,*~ using TiO, thin films (Mengyue et al.
1995) or TiO, supported on fibreglass cloth (Shifu et al.
1996) (Table 4).

Ku and Jung (1998) showed that monocrotophos degra-
dation by UV/TiO, photocatalysis was more effective for
acidic solutions than alkaline ones. Also, the presence of
dissolved oxygen enhanced monocrotophos decomposi-
tion to a certain limit, after which it posed no further effect.
Shankar et al. (2004) studied monocrotophos degradation
using bare TiO, and HB-supported TiO,. The latter showed
higher activity due to greater monocrotophos adsorption on
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the support and capacity to delocalize the conduction band
electrons of excited Titania. Shifu and Gengyu (2005) stud-
ied the feasibility of monocrotophos decomposition in sun-
light using floating TiO,-Si0, photocatalyst beads that were
prepared by the dip coating method by using hollow glass
microbeads as carrier along with titanium tetraisopropoxide
[Ti(iso-OC;H;),] and ethyl silicate as raw materials. As per
their results, the best heat treatment condition for TiO,-SiO,
beads was at 650 °C for 5 h and 0.20 (molecular fraction) is
the optimum amount of SiO,. Anandan et al. (2006) studied
monocrotophos degradation with different supports (Hp, HY
and HZSM-5), ZnO, supported ZnO and TiO,/Hf. HB, HY
and HZSM-5 were the H-forms of zeolites produced from
sodium forms P, Y and ZSM-5. The supported catalysts,
ZnO/HP(I), showed higher percentage of adsorption than
others.

The breakdown of monocrotophos in an aqueous suspen-
sion using synthesized La-doped ZnO nanoparticles was
studied by the same group (Anandan et al. 2007). 0.8 wt%
La-doped ZnO showed high relative photonic efficiencies
as well as high monocrotophos degradation photocatalytic
activity, which was due to small particle size, separation of
charge carriers (¢ /h™), rough and high porous surface of La-
doped ZnO. Anandan et al. (2009) showed that iodine-doped
(I0;57) TiO, has greater photocatalytic activity in monocro-
tophos decomposition in comparison with Degussa-P25. It
could also be used for the degradation of other contaminants
in water.

Avasarala et al. (2011) studied the monocrotophos
degradation with Mg-doped TiO, and pure TiO,. Maxi-
mum degradation of 50 mM monocrotophos was shown
by 0.5gm of 1.0 wt% of Mg** dopant, at pH 3, which was
due to decreased particle size and increased surface area
of Mg**~TiO,. Due to amphoteric nature of TiO,, rate of
degradation of monocrotophos is the highest at acidic pH
(Sivagami et al. 2011; Amalraj and Pius 2015). Sraw et al.
(2014) compared the photocatalytic activity of aeroxide
TiO, and LR grade TiO, both under sunlight and UV light.
At constant temperature, P25 showed maximum degrada-
tion, i.e. 86.9% and 83.55% under UV and sunlight, whereas
LR grade TiO, showed 66.21% and 72.5% degradation under
similar conditions at pH 5. The combination of ultraviolet
radiation and ultrasound irradiation along with heterogenous
or homogenous catalyst and oxidizing reagent (i.e. Fenton
reagent, H,O,, ozone) has also been used to decompose
monocrotophos (Ku and Wang 1999; Madhavan et al. 2010;
Ustiin et al. 2015; Sivagami et al. 2016). Photolytic degrada-
tion rate of monocrotophos using TiO, was lower than that
of sonolysis due to the interference of phosphate ions formed
as an intermediate, but is greater than sonophotocatalytic
degradation rate (Madhavan et al. 2010). ZnS, CdS, Si,
Sn0O,, Fe,05 are some of the other potential photocatalysts
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used (Bhadbhade et al. 2002a, b, c; Avasarala et al. 2011)
for remediation.

Mechanism of photocatalytic degradation

The principle behind photocatalysis of any compound is the
photo-excitation of a semiconductor catalyst due to the absorp-
tion of electromagnetic radiation in the presence of either
UV or visible spectrum. When a semiconductor catalyst is
illuminated with photons, electrons present in the valence
band of the semiconductor are excited to the conduction band
upon absorption of light energy, leaving a positive hole in the
valence band. This empty hole on the valence band (+ charge)
and electron on the conduction band (— charge) are capable
of inducing reduction or oxidation of monocrotophos or other
adsorbate either directly or by reacting with electron donors
like water to form hydroxyl radicals (-OH), which in turn react
with the pollutant (Reddy and Kim 2015; Goel and Seepana
2016). The photocatalytic degradation reaction of monocro-
tophos along with other organophosphates occurs on the sur-
face of catalyst TiO,, primarily in trapped holes. Oxygen (O,)
and water (H,O) are necessary components of photocatalytic
degradation, whereas -OH radicals and peroxide ion (022‘)
are proposed as the primary reactive species (Mengyue et al.
1995). On this basis, a lot of research has been done on mono-
crotophos degradation using TiO, nanoparticles as photocata-
lyst. When a photocatalyst TiO, is illuminated by photons,
electrons are ejected from the valence band to the conduction
band leaving positive holes in the valence band.

TiO, + hv — TiO, (e, + ) (1)
TiO, (h},) + H,0 — TiO, + -OH + H* )
TiO, (h},) + OH™ — TiO, + - OH 3)
TiO,(e,) + 0, — TiO, + -O; )
-0, + H" - HO,- )
.0, +HO,- - -OH + O, + H,0, (6)
2HO,- - 0, + H,0, @)
TiO, (e, ) + H,0, — TiO, + OH™+ - OH ®)

- OH + monocrotophos — intermediate metabolites

— CO, + H,0 + PO}~ ©)

Oxygen adsorbed on TiO, surface prevents the recombi-
nation of electron—hole pairs by trapping electrons, gen-
erating superoxide radical (O,7), which in turn produces
hydrogen peroxide (H,0,), hydroperoxyl (HO,-) and -OH
radicals (Avasarala et al. 2011; Reddy and Kim 2015). -OH
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Fig.4 Proposed photocatalytic pathway for the degradation of mono-
crotophos. Monocrotophos is completely mineralized into phos-
phates, nitrates, carbon dioxide and water by reacting with hydroxyl
radical produced on photonic activation of TiO, via formation of
N-formyl-N-methyl-formamide or trimethyl phosphate along with for-

radicals are formed from the holes reacting with either H,O
or OH™ adsorbed on TiO, surface. In Eqgs. (1)-(9), -OH and
O%‘ are the most important oxidants and H,0O,, O, and HO,-
are suitable for trapping electrons (Mengyue et al. 1995).
Monocrotophos undergoes breakdown to simpler com-
pounds when it reacts with -OH produced on photonic acti-
vation of TiO, (Fig. 4). The oxidizing power of the -OH
radicals is strong enough to break ester group of monocro-
tophos that has strong acidity (Mengyue et al. 1995; Shifu
and Gengyu 2005). The breakdown probably occurs in two
possible ways: by the formation of either phosphate com-
pound such as trimethyl phosphate or nitrogenous compound
such as N-formyl-N-methyl-formamide (Sraw et al. 2018).
Apart from trimethyl phosphate, other intermediate metabo-
lites formed during the process are formic acid, formamide,
acetic acid and other small organic molecules. Trimethyl
phosphate is directly photochemically degraded to phosphate
ions (PO43_) and formic acid. Formation of carbonate ions
also occurs very early during the decomposition of mono-
crotophos (Ku and Jung 1998). The intermediate compounds
are further broken down into nitrates, phosphates, CO, and

mic acid, formamide and acetic acid. N-formyl-N-methyl-formamide
undergoes hydrolysis to form glyoxylic acid and methylamine, which
further produces formic acid. Carbonate ions are also produced at the
beginning of the reaction

H,O by means of hydrolysis and redox reactions (Ku and
Jung 1998; Shifu and Gengyu 2005; Sraw et al. 2018).

Other methods for removal of monocrotophos

The degradation or removal of monocrotophos along
with other pesticides has been achieved through various
advanced oxidation processes such as ozonation (Ku et al.
1998; Ku and Wang 1999; Hongsibsong and Sapbamrer
2018), photolysis (Ku et al. 2000), photocatalysis (Sraw
et al. 2014; Aziz et al. 2017), electrolysis (Yatmaz and
Uzman 2009), Electro-Fenton process (Guivarch et al.
2003) and chemical oxidation (Wei et al. 2017a, b).
Advanced oxidation processes using gamma irradiation
(Ismail et al. 2014) and hydroxyl and sulphate radical
anions (Yang et al. 2017; Xiao et al. 2018) have gained
much attention these days. Due to the large surface area,
silica (Bapat et al. 2016) and silver (Saifuddin et al. 2011)
nanoparticles are used for decontamination of drinking
water. However, due to their small size, these nanoparti-
cles can easily enter the food chain and can induce several
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other toxicological responses (Ranjan et al. 2018). Pho-
tocatalysis offers several advantages including chemical
stability, low cost, complete mineralization, mild tempera-
ture, and pressure conditions and no waste disposal issues
(Bhadbhade et al. 2002a, b, c; Avasarala et al. 2011).
Photocatalysts such as ZnO and CdS lack long-term sta-
bility in aqueous media. Metal sulphide semiconductors
are unstable as they undergo photocathodic corrosion
(Bhadbhade et al. 2002a, b, c). Catalyst separation from
the solution is one of the major problems faced in photo-
catalytic degradation (Goel and Seepana 2016; Sivagami
et al. 2016). Though TiO, is favoured over other catalysts,
due to its high band gap (3.2 eV) it is only active under
UV light, restricting the use of visible light or sunlight.
Another issue that limits its photocatalytic activity is low
photoquantum efficiency, which is the result of high rate
of electron—hole recombination at the surface of TiO, par-
ticles (Avasarala et al. 2011). These issues are overcome
by surface immobilization of photocatalyst or doping,
which, however, lowers the efficiency (Avasarala et al.
2011; Sivagami et al. 2016).

Another most popular and efficient process that plays
important part in removal of pesticides is adsorption (Wei
et al. 2017a; Moon et al. 2019). pH- and temperature-
dependent adsorption of monocrotophos from aqueous
solution has been achieved by the use of agricultural waste
jute fibre. It showed the adsorption capacity of 124 mg L™!
(Sadasivam et al. 2010). Biopolymer (chitosan/gum ghatti/
polylactic acid)-modified montmorillonite (MMT)-CuO
composites were used for adsorption of monocrotophos,
where MMT-CuO-polylactic acid showed maximum
removal (83.99%) (Sahithya et al. 2016).

Perspectives

Degradation of monocrotophos using microbes has been
widely studied, and there is a need to further screen anaer-
obic microbes and extremophiles, which may prove to be
more effective in monocrotophos degradation. Genetic
manipulation can help in the development of efficient
enzymatic methods for pesticide degradation. Genes like
mpd and opd are highly capable of degrading organo-
phosphates (Karpouzas and Singh 2006). However, many
efforts are required to study specific genes responsible for
the degradation of specific pesticides.

Most of the reported monocrotophos remediation stud-
ies lack information on kinetics of monocrotophos biodeg-
radation. This knowledge would enhance our understand-
ing and contribute towards various processes for in situ
application of microbial communities for the biodegrada-
tion of monocrotophos. One of the major challenges is
scaling up of the laboratory results to the fields, whether
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the behaviour of microbes studied differs in the soil or still
remains same. In addition, studies on interactions between
microbes are also to be carried out, as synergistic interac-
tions may enhance remediation process. Microbial consor-
tium needs to be grown on large scale in bioreactors and
requires process development and their large-scale field
application. Nanotechnology is an emerging field, which
can also be employed in removal of contaminants along
with the use of certain polymers. Although physical and
chemical methods are fast, they are expensive and ineffi-
cient in comparison with microbial degradation, which is
cheap and eco-friendly (Bapat et al. 2016).

Conclusion

In the present scenario, the farmers are more concerned for
the agricultural yield than the environmental safety. Field
application of monocrotophos is banned, but still it is used
at the rate of 0.25-1.5 kg ha™! by the Indian farmers and in
other parts of the world. Accumulation of monocrotophos
in living tissues poses harmful threat to humans and adverse
effects on non-target living systems present in the environ-
ment. It causes histopathological, acute, genotoxic, cardio-
toxicity, hyperglycaemic and stressogenic effects to different
living organisms. There is an urgent need to completely ban
on its manufacturing, sale as well as usage and monitor its
residues in soil and water.

Bacterial systems such as Bacillus sp., Arthrobacter atro-
cyaneus, Azospirillum lipoferum, Paracoccus sp. and Pseu-
domonas sp. can catabolize monocrotophos due to their abil-
ity to grow rapidly in diverse range of pH, temperature and
other harsh conditions as compared to fungi and algae. Vari-
ous enzymes such as hydrolases and acid phosphatases have
been characterized and evaluated for their catalytic activity
in monocrotophos degradation. Photocatalytic degradation
has gained a lot of attention due to rapid mineralization of
hazardous compounds, that occurs as a result of production
of -OH radicals by photonic activation of TiO, or ZnO cata-
lysts. To combat adverse effects of monocrotophos and its
intermediates, its biodegradation would be the most promis-
ing, relatively efficient and cost-effective way followed by
photocatalytic degradation.
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