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Abstract
Herein, we describe a simple and inexpensive protocol for the hydrothiolation of alkynes. In this context, water extract of 
rice straw ash (WERSA) has been proven to be a green, mild and efficient solvent for the preparation of vinyl thioethers. 
Generally, it was found that alkyne and thiol derivatives were excellent reaction partners, producing the corresponding 
products with good yields and good stereoselectivity with the predominant formation of the Z isomer. Moreover, WERSA 
was recovered and reused for further catalytic reactions without a significant loss of activity.
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Introduction

Water extract of agro-waste ashes (AWEs) have recently 
attracted considerable attention in modern organic synthesis 
since these solvents are non-toxic, inexpensive and biode-
gradable (Sarmah et al. 2017). In this context, AWE have 
been successfully used as green catalytic media in several 
organic transformations (Konwar et al. 2016; Chia et al. 
2018), such as the Suzuki–Miyaura (Boruah et al. 2015a, 
b; Sarmah et al. 2016) and Sonogashira reactions (Dewan 
et al. 2016). More specifically, water extract of rice straw ash 
(WERSA) has become the most powerful solvent for organic 
synthesis (Saikia et al. 2015). This solvent is primarily con-
stituted by SiO2 (74.31%), K2O (11.30%), P2O5 (2.65%), 
MgO (1.89%), Na2O (1.85%), CaO (1.61%), Al2O3 (1.40%), 
Fe2O3 (0.73%) and TiO2 (0.02%) (Jenkins et al. 1996). The 
unique properties of WERSA make this solvent particularly 

valuable in a series of transformations (Mahanta et al. 2016; 
Boruah et al. 2015a, b), including the Dakin (Saikia and 
Borah 2015) and Henry reactions (Surneni et al. 2016).

Furthermore, organosulfur derivatives have become a valu-
able class of compounds that are useful intermediates in the 
preparation of target molecules with synthetic (Silveira et al. 
2017) as well as biological applications (Li et al. 2013). In this 
regard, vinyl thioethers have been efficiently applied in several 
transformations (Palomba et al. 2016), including total synthe-
sis (Pearson et al. 2004). Due to the extremely wide range of 
applications of vinyl thioethers, several research groups have 
reported suitable methodologies for obtaining vinyl thioethers 
(Singh et al. 2013; Rodygin et al. 2017). For example, these 
compounds can be prepared through metal-catalyzed cross-
coupling reactions of vinyl halides with either thiols (Reddy 
et al. 2009) or diorganyl disulfides (Kundu et al. 2013; Gon-
çalves et al. 2013). However, the most useful and atom-eco-
nomical method for the preparation of vinyl thioethers is the 
hydrothiolation of alkynes (Strydom et al. 2017). Among 
these, catalytic hydrothiolation techniques have emerged as a 
conveniently alternative to afford vinyl thioethers which can 
be obtained by either anti-Markovnikov- or Markovnikov-type 
addition (Malyshev et al. 2006; Beletskaya and Ananikov 
2007, 2011). Generally, this strategy can yield the respec-
tive products at different levels of stereo- and regioselectivity 
under different conditions (Dondoni and Marra 2014; Palacios 
et al. 2016). In particular, the selective preparation of vinyl 
thioethers through the anti-Markovnikov pathway has received 
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special attention and has been prominently described in the 
literature (Kondoh et al. 2005; Liao et al. 2013; Silva et al. 
2008; Chun et al. 2016). In this context, vinyl thioethers have 
been efficiently obtained by transition-metal-catalyzed reac-
tions (Modem et al. 2016; Zhao et al. 2012), for instance, using 
iron (Rocha et al. 2017), copper (Riduan et al. 2012; Yang 
and Rioux 2014; Trostyanskaya and Beletskaya 2012), indium 
(Sarma et al. 2012) and gold (Corma et al. 2010).

In spite of these advances, most of these protocols have 
different drawbacks such as air sensitivity and the use of 
expensive metals and toxic solvents. Very recently, we have 
reported an effective method for the hydrothiolation of alkenes 
and alkynes under more green conditions (Rosa et al. 2017). 
Nevertheless, the development of an alternative method for 
obtaining vinyl thioethers with high selectivity is still highly 
desirable.

Despite the high effectiveness of WERSA in a wide range 
of reactions, to the best our knowledge, it has not been applied 
as a solvent in the hydrothiolation transformations. Thus, 
herein, we report a straightforward and useful methodology 
for the synthesis of vinyl thioethers using WERSA as a natural 
feedstock solvent (Scheme 1).

Experimental

General procedure

Thiol 1 (0.5 mmol) and terminal acetylene 2 (0.6 mmol) were 
placed in a round-bottom flask, followed by the addition of 
the solvent (1 mL). The mixture was stirred at room tempera-
ture for 2 h, and the progress of the reaction was monitored 
by thin-layer chromatography (TLC). After the reaction was 
completed, the product was extracted with diethyl ether and 
water (3 × 5 mL). The organic phase was dried over MgSO4 
and filtered, and the volatiles were completely removed under 
a vacuum. The crude product was purified by column chro-
matography with a mixture of ethyl acetate/hexane (01:99) to 
afford the desired vinyl thioether 3.

Preparation of WERSA 1 g of rice straw ash was suspended 
in 10 mL of distilled water in an Erlenmeyer and it was stirred 
for 1 h at room temperature. Subsequently, this mixture was fil-
tered through a sintered glass crucible and the filtrate was used 
as WERSA. Recyclability experiments After completion of 
the synthesis, the reaction mixture was extracted with diethyl 
ether (5 × 2 mL) and the organic phase, containing the crude 

product, was separated from WERSA. The residue of WERSA 
was reused directly for the next experiment.

Results and discussion

To optimize the reaction conditions, 4-methylbenzenethiol 
1a and phenylacetylene 2a were selected as standard sub-
strates (Table 1). Initially, the reaction was carried out 
under inert atmosphere conditions in the presence of water 
extract of rice straw ash (WERSA), affording thioether 3a 
with a 69% yield and very poor stereoselectivity (entry 
1). However, when the reaction was carried out in the air 

R2 SR1

R2
WERSA

R1SH +

Scheme 1   Hydrothiolation of alkynes by water extract of rice straw 
ash (WERSA)

Table 1   Optimization of the reaction conditions

SH SSolvent
T(°C), time

2a1a 3a

The reaction was performed by using 4-methylbenzenethiol 1a 
(0.5 mmol), phenylacetylene 2a (0.6 mmol) and solvent
WERSA water extract of rice straw ash; THF tetrahydrofuran; DCM 
dichloromethane; WEB water extract of banana peel ash; WEPAB 
water extract of papaya peel ash
a Yields for isolated products
b Determined by 1H NMR spectroscopy
c The reaction was carried out under inert atmosphere
d Under acidic conditions
e Under basic conditions, in the presence of K2CO3
f The formation of PhSSPh as a by-product was detected in the crude

Entry Solvent Time (h) Tempera-
ture (°C)

Yielda (%) (Z:E)b

1 WERSA 1 25 69 51:49c

2 WERSA 1 25 89 76:24
3 WERSA 1 0 75 85:15
4 WERSA 1 50 91 87:13
5 WERSA 1 100 91 82:18
6 WERSA 2 25 93 83:17
7 WERSA 3 25 89 82:18
8 WERSA 0.5 25 76 86:14
9 WERSA 2 50 96 80:20
10 WERSA 2 100 89 56:44
11 Toluene 2 25 51 85:15
12 THF 2 25 72 62:38
13 DCM 2 25 80 69:31
14 CH3CN 2 25 76 60:40
15 H2Od 2 25 64 75:25
16 H2Oe 2 25 85 86:14
17 WEB 2 25 90f 75:25
18 WEPAB 2 25 80 84:16
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Table 2   Scope of the 
hydrothiolation reaction of 
terminal thiols 1 with alkynes 2 

Entry Thiol Alkyne/Alkene Product Time (h) Yielda %(Z:E)b

1 2 93 (83:17)

2 2 70 (68:32)

3 3 54 (88:12)

4 3 92 (81:19)

5 2 47 (66:34)

6 4 71 (87:13)

7 4 32 (81:19)

8 2 96c (71:29)

9 2 65 (68:32)

10 2 56 (93:07)

11 7 Traces

12 4 Traces

13 2 42

14
2 76
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atmosphere, the desired product was achieved with an 89% 
yield and a Z/E ratio of 76:24 (entry 2). Next, we inves-
tigated the most appropriate temperature for the reaction. 
Room temperature proved to be the best choice since no 
improvement in the chemical yield of 3a was achieved when 
this parameter was modified (entries 3–5).

After identifying the best temperature, we then evalu-
ated the influence of the reaction time on the reaction sys-
tem (entries 6–8). A screening of this parameter revealed 
that 2 h was the best option, furnishing the desired product 
with a 93% yield and Z/E ratio of 83:17 (entry 6). Having 
determined the optimal time and temperature, the influence 
of several solvents was next investigated in detail (entries 
11–16). However, no enhancement in the yield value of 
product 3a was achieved in the presence of any other solvent. 
It was also observed that the basic nature of WERSA (pH 
12) seems to be essential for this hydrothiolation reaction, 
since better results were obtained under alkaline conditions 
(compare entries 6, 15 and 16).

Furthermore, we also evaluated the activity of differ-
ent ash water extracts such as water extract of banana peel 
ash (WEB) and water extract of papaya peel ash (WEPAB). 
However, a slight decrease in the yield value of vinyl 
thioether 3a was observed by using these ash water extract 
variants (entries 17 and 18).

Having optimized the reaction conditions, we then evalu-
ated the substrate scope using different thiols 1 and alkynes 

2 (Table 2). Initially, we focused particularly on the influ-
ence of several aromatic thiols on the reaction (entries 1–5). 
Regarding the electron effects, it was found that the reaction 
proceeded efficiently in the presence of electron-donating 
groups, affording the respective products with good yields 
and appreciable stereoselectivity (entries 1 and 2). Never-
theless, when an aromatic thiol containing a withdrawing 
group attached at the para position of the aromatic ring was 
used, a significant decrease in the yield value was observed 
(entry 3). To our delight, it was also observed that thio-
phenol reacted very smoothly with phenyl acetylene, fur-
nishing the corresponding product 3d with a 92% yield and 
Z/E ratio of 81:19 (entry 4). Regarding the steric effects, it 
was observed that steric hindrance at the ortho-substituted 
thiol affected the reaction course since compound 3e was 
achieved with a lower yield and stereoselectivity under opti-
mized conditions (entry 5).

Furthermore, we also investigated whether the reaction 
could be applied for the preparation of vinyl thioethers start-
ing from aliphatic thiols (entries 6–7). Gratifyingly, when 
cyclohexanethiol was used, product 3f was obtained with 
a 71% yield and a Z/E ratio of 87:13 (entry 6). However, 
a decrease in the yield value was observed when 1-dode-
canethiol was employed as the sulfur source (entry 7).

Next, we evaluated the influence of different alkynes on 
the reaction system (entries 8–13). Generally, 4-methylben-
zenethiol reacted well with different alkynes derivatives, fur-
nishing the corresponding products with satisfactory yields 
and reasonable stereoselectivities. It was found that termi-
nal alkynes bearing electron-releasing substituents were less 
reactive than their withdrawing analogs (entries 8–9). For 
instance, when 1-chloro-4-ethynylbenzene 2b was treated 
with 4-methylbenzenethiol, the desired product 3h was 
achieved with a 96% yield and a Z/E ratio of 71:29 (entry 
8). However, when a phenylacetylene derivative containing 
a methyl group at the para position was used, the respective 
product was obtained with a lower yield and stereoselectiv-
ity (entry 9).

However, 3-ethynylanisole 2d reacted smoothly with 
4-methylbenzenethiol, affording the respective product with 
a reasonable yield and very high stereoselectivity (entry 
10). Nevertheless, the reaction was not applicable for the 
hydrothiolation of aliphatic alkynes since only traces of the 
products 3k and 3l were observed under similar conditions 
(entries 11 and 12).

Table 2   (continued) Reaction conditions: terminal thiol 1 (0.5 mmol), alkyne 2 (0.6 mmol) in WERSA (1 mL) at room tem-
perature
a Yields for isolated products
b Determined by 1H NMR spectroscopy
c The reaction was carried out at 50 °C
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Fig. 1   Recyclability of water extract of rice straw ash (WERSA)
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It is well recognized that the preparation of thioethers 
through the hydrothiolation of alkenes via the anti-Marko-
vnikov addition has also received particular attention and has 
been well described (Banerjee et al. 2010). Thus, inspired 
by the results obtained in the preparation of vinyl thioethers, 
we also attempted to treat thiols with alkenes under similar 
conditions (entries 13–14). Gratifyingly, the reaction of phe-
nylstyrene with thiols 1a and 1c afforded the corresponding 
products with reasonable yields (entries 13–14).

To investigate whether the present approach is an envi-
ronmentally benign strategy for the preparation of vinyl 
thioethers, we also studied the recyclability of WERSA 
(Fig. 1).

Therefore, after carrying out the reaction under optimized 
conditions, the solvent was easily recovered from the reac-
tion media and reused for further transformations. Notably, 
WERSA conserved its activity up to the fourth cycle, fur-
nishing the respective thioether 3a with a very good yield 
and high stereoselectivity (Fig. 1).

Conclusion

In summary, we successfully developed an efficient and 
easy-to-perform method for obtaining vinyl thioethers by 
the hydrothiolation of alkynes with thiols using WERSA as 
a recyclable solvent. Generally, the corresponding products 
were obtained with good to excellent yields and good ste-
reoselectivity. Remarkably, WERSA was easily recovered 
from the reaction media and reused for up to four cycles 
without a significant loss of activity. We believe that the 
chemistry described herein represents an environmentally 
friendly alternative for the hydrothiolation of alkynes. Stud-
ies on elucidating the mechanism of this transformation are 
still in progress in our laboratory.
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