**ORIGINAL PAPER** 



# Amino acid-imprinted polymers as highly selective CO<sub>2</sub> capture materials

Sreedipta Chaterjee<sup>1</sup> · Reddithota J. Krupadam<sup>1</sup>

Received: 3 May 2018 / Accepted: 28 June 2018 / Published online: 12 July 2018 © Springer Nature Switzerland AG 2018

#### Abstract

The recent atmospheric concentration of  $CO_2$  increase to 400 ppm is a cause of global climate change. There is therefore an urgent need for selective and cost-effective  $CO_2$  capture technologies. Fossil fuel consumption during energy production and transportation are two major sources of  $CO_2$  emission into the atmosphere. The capture of  $CO_2$  selectively from gaseous mixtures using reusable adsorbent is thus a challenge. In this article, we report that nanoparticles functionalized with imprinting of amino acids exhibit a significant increase in the selective adsorption capacities of  $CO_2$  in a gaseous mixture. Molecular imprinting of taurine in the vinylbenzyl chloride-*co*-divinyl benzene polymer formed cavities of 1–3 nm size and introduced –SOOH and –N–H functionalities, resulting in a very high  $CO_2$  adsorption capacity of 5.67 mmol g<sup>-1</sup> at 30 °C/1 bar. The selectivity of  $CO_2$  over N<sub>2</sub> and  $CH_4$  was 87–91% and 83–87%, respectively. The isosteric heat of adsorption ( $Q_{st}$ ) for  $CO_2$  at 298 and 303 K showed an increase in  $Q_{st}$  from 36.8 to 47.6 K kJ mol<sup>-1</sup>, and this would be responsible for high  $CO_2$  adsorption energies and faster kinetics. This study reports first-time imprinting of  $CO_2$ -philic templates in the polymers to capture small gas molecules at ambient conditions, and the results demonstrated that the polymers have a wide scope for real-life applications of  $CO_2$  capture.

Keywords Carbon dioxide capture · Adsorbents · Selective CO<sub>2</sub> adsorption · Molecular imprinting · Nanoporous polymers

## Introduction

Since 1970, the atmospheric  $CO_2$  concentration has steadily increased from 310 to 400 ppm. The responsible factors for such sharp rise in  $CO_2$  concentration are industrial stacks and fugitive emissions, auto exhausts, thermal power stations, natural wetlands and ruminates. The single largest source of  $CO_2$  emission is thermal power plants (Edenhofer 2011). During the past decade, different kinds of dry adsorbents such as zeolites, metal–organic frameworks and microporous organic polymers have been explored as alternatives to the current commercial absorption technology (Xu and Hedin 2014; Abanades et al. 2015). In designing solid adsorbents for  $CO_2$  capture, the adsorbents should have (1) an adsorption capacity greater than 3.0 mmol g<sup>-1</sup> at pressure 1 bar/temperature between 313 and 353 K, (2) reasonable rate of CO<sub>2</sub> adsorption, and (3) high selectivity toward CO<sub>2</sub>. Some of the classical examples of polymer adsorbents reported in the literature are: (1) Hyper-cross-linked polymers containing tetraphenylmethane showed CO<sub>2</sub> adsorption capacity of 2.5 mmol g<sup>-1</sup>; and the hyper-cross-linked polymers formulated with binaphthol reported CO<sub>2</sub> adsorption capacity of 4.00 mmol g<sup>-1</sup> (Errahali et al. 2014). (2) Benzimidazole-linked showed very good CO<sub>2</sub> uptake, i.e., 5.34 mmol g<sup>-1</sup> at 1.0 bar (Altarawneh et al. 2014). (3) Poly (melamine-formaldehyde) materials showed a CO<sub>2</sub> uptake capacity of 4.54 mmol g<sup>1</sup> at 273 K (Tan et al. 2013). (4) A coordination polymer network with exceptional CO<sub>2</sub> uptake (5.54 mmol g<sup>-1</sup>) is reported (Choi and Suk 2009).

The high-adsorption-capacity adsorbents with non-selectivity restrict application of adsorbents for real-life situations. The non-selective materials are difficult to regenerate, and the adsorbed gases cannot be reused due to the presence of non-targeted gases. For example, stack emissions from thermal power plants contain 14–16% CO<sub>2</sub>, 75–80% N<sub>2</sub> and 10% other gases. Such situations demand precisely designed materials with exceptionally high capability to recognize target molecule in complex mixtures/matrices. Adsorbents

Reddithota J. Krupadam rj\_krupadam@neeri.res.in

<sup>&</sup>lt;sup>1</sup> Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India

prepared with metal ions and organic linkers emerged as highly selective CO<sub>2</sub> adsorption adsorbents at ambient conditions (Li et al. 2013). Lu et al. (2011) developed a group of high-surface-area polymers by grafting with sulfonic acid and its lithium salt exhibited high selective CO<sub>2</sub> adsorption capacities. The iminebenzothiazole polymer prepared via Schiff's base condensation reaction showed good CO<sub>2</sub> uptake (7.8 wt% at 273 K/1 bar). The polymer also reported selectivity for  $CO_2$  in the gaseous mixtures  $N_2$  (51) and  $CH_4$  (6.3) (Rabbani et al. 2017). The benzimidazole-linked polymers are another group of adsorbents that showed CO<sub>2</sub> selectivity in the presence of  $N_2$  (70) and  $H_2$  (10) (Zhu et al. 2013a, b). McDonald et al. (2014) reported CO<sub>2</sub> capture by amino acid ionic liquids, and impact of water on CO<sub>2</sub> capture. The ionic liquids—tetramethylammonium glycinate ([N1111][Gly]) and tetraethylammonium prolinate ([N2222] [Pro])-with CO<sub>2</sub> under wet conditions form carbamate by the aminefunctionalized anions of these salts. By adding CO<sub>2</sub> to these salts, the carbamate releases the covalently bound  $CO_2$ . Liu et al. (2018) reported 3D network structures of nanofibers of hydrogels with adsorption capacity of 1.78 mmol  $g^{-1}$  and regenerable for about 10 times.

Another desired parameter of adsorbents for real-life application is thermodynamic efficiency of regeneration. Polyethyleneimine adsorbents are regenerable; however, formation of carbamate reduces the adsorbent performance in thermal swing regeneration (Drage et al. 2009). Triazine-based benzimidazole-linked polymers showed CO<sub>2</sub> uptake capacity (5.19 mmol  $g^{-1}$ ) (Sekizkardes et al. 2014). The porous azo-linked polymers showed high CO2 uptake of 5.37 mmol  $g^{-1}$ , and these polymers reported  $Q_{st}$  values (28-30 kJ/mol) for CO<sub>2</sub> capture (Arab et al. 2015).

Our earlier studies report that the naturally occurring solid amino acids with CO2-philic functionality are good candidates of  $CO_2$  adsorption (Chatterjee et al. 2016). In this study, the polymer has been imprinted with amino acid taurine to increase surface area considerably, and the cavities are decorated with CO<sub>2</sub>-philic functionalities. The size of the cavities in the polymer ranges between 1 and 3 nm. The size of CO<sub>2</sub> is 0.21 nm, and the pores with size 1.0 nm

are desired for effective  $CO_2$  adsorption (Wilmer et al. 2012; Hudson et al. 2012). It is also presumed that the  $Q_{st}$  for CO<sub>2</sub> can be improved by incorporating polar functionality of amino acids that interact with CO<sub>2</sub>.

# **Experimental**

## Chemicals

Vinylbenzyl chloride and divinylbenzene were purchased from Sigma-Aldrich (St. Louis, USA). Amino acid taurine and the solvents dichloromethane and acetonitrile were purchased from Merck (Potsdam, Germany). High-purity (99.999%) gases CO<sub>2</sub>, N<sub>2</sub> and CH<sub>4</sub> were purchased from Nikhil Gases (Nagpur, India). Helium high-purity gas was used as the purge gas in simultaneous thermal analyzer during CO<sub>2</sub> adsorption-desorption experiments. All other chemicals were used as purchased.

## **Preparation of amino acid-imprinted** and non-imprinted polymers

The hyper-cross-linked polymers prepared with the composition of vinylbenzylchloride (VBC) and divinylbenzene (DVB) reported high surface area (Errahali et al. 2014), and the same composition is used in imprinting of taurine to create CO<sub>2</sub>-philic functionality. This is a new approach to create specific functionality in high-surface-area polymers. The imprinted polymers were prepared using the composition given in Table 1. The procedure followed for synthesis of the non-imprinted polymer is described in Krupadam et al. (2014). Briefly, the polymer precursors with DVB given in Table 1 were heated to 340 K for about 8 h under nitrogen, and the polymerization was controlled with methanol. The polymer monolith was separated from the solvent by filtration, and the monolith was thoroughly washed with methanol. Using analytical ball mill, the polymeric monolith was made into fine particles of size between 70 and 100 µm. The polymer particles were cleaned by Soxhlet extraction

Table 1 Polymer composition and surface properties Polymer composition

| Polymer                      | Polymer composition    |                         |                      |              | Surface properties      |                       |         |
|------------------------------|------------------------|-------------------------|----------------------|--------------|-------------------------|-----------------------|---------|
|                              | FM,<br>DVB [mmol (mg)] | X-L,<br>VBC [mmol (mg)] | <i>T</i> [mmol (mg)] | Solvent (mL) | $SA_{BET} (m^2 g^{-1})$ | APV ( $cm^3 g^{-1}$ ) | APD (Å) |
| Non-<br>imprinted<br>polymer | 4.0 (0.53)             | 20 (30.6)               | 0                    | 100          | 1020                    | 0.316                 | 13      |
| Imprinted polymer            | 4.0 (0.53)             | 20 (30.6)               | 1 (0.13)             | 100          | 650                     | 0.059                 | 56      |

P polymer, IP imprinted polymer, FM functional monomer, DVB divinylbenzene, X-L cross-linking monomer, VBC vinylbenzylchloride, T template (taurine, an amino acid), SABET Brunauer-Emmett-Teller (BET) surface area, APV average pore volume, APD average pore diameter

using methanol for 24 h and then dried in vacuum at 70 °C overnight. The other polymer, imprinted polymer, was prepared by following the same procedure; however, taurine was added before the addition of formaldehyde dimethyl acetal (FDA) and FeCl<sub>3</sub>. After polymerization, taurine was removed from the polymer using Soxhlet extraction using methanol for 24 h, and then, water was used as the solvent for Soxhlet extraction for another 24 h. After the removal of template, the polymer was dried in vacuum at 70 °C overnight. These polymers were used for adsorption of CO<sub>2</sub> and other gases.

#### **Characterization of polymers**

Surface area, pore volume and average pore diameter of the polymers were determined using N2-adsorption isotherms in Micromeritics ASAP 2420 at 77 K. Nitrogen adsorption surface area of IP was computed by Brunauer-Emmett-Teller equation (Walton and Snurr 2007), and pore volumes were calculated from the Dubinin-Radushkevich equation based on N<sub>2</sub>-adsorption isotherms (Carrasco-Martin et al. 1993). Polymers prepared were kept under vacuum at 373 K for about 7 h. Surface topology of the polymers was viewed using atomic force microscope (FlexAFM, Nanosurf AG, Switzerland). Tapping tips were procured from Silicon AFM Probes (Tap 300, Ted Pella, Inc) whose resonant frequency was between 290 and 410 kHz. The micrograph of the imprinted polymer was analyzed with Easyscan 2 Software. Furthermore, laser Raman microscope (Alpha 300 RA, WITec, Germany) equipped with a frequency-doubled Nd:YAG laser for 532 nm excitation to observe morphology of the polymers. The Raman imaging was integrated with spectral lines of CH<sub>2</sub> stretching using 1 s with accumulation of 10. The measurements were acquired using the WITec Control Software. The attenuated total reflectance infrared spectra of polymers were recorded on a Digilab FTS equipped with an HgCdTe detector. The wave numbers scan ranges from 600 to 4000 cm with  $4 \text{ cm}^{-1}$  of spectral resolution.

## CO<sub>2</sub> adsorption experiments

The adsorption experiments for  $CO_2$  adsorption and desorption were conducted in a simultaneous thermal analyzer (STA; PerkinElmer 6000), and the detailed procedure is reported in our earlier article (Chatterjee et al. 2016). The adsorption isotherms were drawn at 273 and 303 K at different pressures (up to 10 bar). After adsorption of  $CO_2$ , the adsorbed  $CO_2$  was flushed with He gas at 473 K for 5 min. Once the polymer was degassed,  $CO_2$  gas was passed till saturation to record the adsorption capacity. These adsorption–desorption cycles were repeated for 50 cycles. For selectivity measurements, equimolar concentration of gaseous mixtures (CO<sub>2</sub> and N<sub>2</sub>; and CO<sub>2</sub> and CH<sub>4</sub>) was passed through the simultaneous thermal analyzer. The  $Q_{st}$ of CO<sub>2</sub> was measured in the Micromeritics ASAP 2420, and data from the adsorption isotherm were also used.

# **Results and discussion**

Molecular imprinting is used to create molecule-specific cavities in terms of both geometry and functionality in the polymer to selectively recognize and capture the targeted molecule (Wulff 1995). In this study, molecular imprinting technique was used to create cavities of size between 1 to 3 nm, and these cavities are decorated with  $CO_2$ -philic functionality in the polymers. Earlier reports indicate that pores bigger than 5 times of the adsorbate molecular size are required criteria for effective adsorption of gases, and this conclusion was derived from the study of mathematical simulations by Salles et al. (2008). The molecular size of CO<sub>2</sub> is 0.21 nm, and the pores with size less than 1.0 nm are required for  $CO_2$  adsorption (Wahby et al. 2010). The introduction of CO<sub>2</sub>-philic functional groups improves the  $Q_{\rm st}$ , which influences capacity and selectivity of adsorbents for CO<sub>2</sub>. Banerjee et al. (2009) reported a drastic increase in  $Q_{st}$  of CO<sub>2</sub>/N<sub>2</sub> adsorption selectivity by introducing polar functionalities; however, this procedure reduces the surface area of the adsorbents significantly. The probable strategy to address this issue is to use high-surface-area polymers as the base materials, and then, the surfaces can be functionalized with CO<sub>2</sub>-philic functional groups. The vinylbenzyl chloride-co-divinylbenzene polymer was imprinted with taurine which forms small pore (size 1-3 nm) with sulfonate and amine functionalities. Such specific imprinted pores selectively adsorb  $CO_2$  compared to  $N_2$  and  $CH_4$  in gaseous mixtures.

The adsorption of N<sub>2</sub> was performed at 273 K to evaluate the existence of permanent porosity and nature of isotherms of imprinted and non-imprinted polymers. The adsorption isotherms are type I, and the imprinted polymer has permanent microporosity (Fig. 1a). Hence, imprinted polymer showed rapid N<sub>2</sub> adsorption at low pressures. Adsorption isotherms of CO2 for imprinted and non-imprinted polymers have been plotted for 273 and 303 K, at different pressures up to 1 bar (Fig. 1b). The CO<sub>2</sub> adsorption capacity of imprinted polymer is compared with other adsorbents such as porous polymers (6.0 mmol  $g^{-1}$ ) (Popp et al. 2015), benzimidazole-linked polymers (5.3 mmol  $g^{-1}$ ) (Zhu et al. 2013a, b) and Tröger's base-derived covalent organic polymers (5.16 mmol  $g^{-1}$ ) at 273 K (Byun et al. 2014). It would be clear from the adsorption isotherms that the taurine-imprinted polymer has the functionality of amine and sulfonic acid in the micro/nanocavities. Infrared spectra of the imprinted polymer before and after adsorption of

Fig. 1 Gas adsorption and desorption isotherms a N2 adsorption and desorption isotherms of imprinted and non-imprinted polymers at 273 K and b CO<sub>2</sub> adsorption and desorption isotherms of imprinted and non-imprinted polymers at 273 and 303 K. The adsorption isotherms are type I which represents that imprinted polymers contain permanent micro/ nanoporosity. The adsorption capacity of imprinted polymer for  $CO_2$  is 5.67 mmol g<sup>-1</sup> at 303 K



CO<sub>2</sub> provide further evidence of role of taurine-imprinted polymer (Fig. 2a). The stretching vibrations of functional groups, -CH<sub>2</sub> and -CH, in the polymer showed peaks 2900 and 2850  $\text{cm}^{-1}$  that correspond to C=C stretching vibration in the aromatic ring of divinylbenzene and vinylbenzyl chloride of the non-imprinted polymer. A quite small band at 1260 cm<sup>-1</sup> corresponds to C-Cl stretching in vinylbenzyl chloride. The -S=O functionality peak at 1190 cm<sup>-1</sup> and peaks at 1410 and 1510 cm<sup>-1</sup> for -C-N (stretch) and -N-H (bend) are due to taurine functionality left during molecular imprinting (Ohno et al. 1992). The decrease in peak intensity at 1190, 1410 and 1510 cm<sup>-1</sup> after adsorption of CO2 would be seen. Furthermore, laser Raman microscopy provided clear evidence of existence of nanocavities created during taurine imprinting in the polymer, and also the Raman spectra of the polymer shows the specific functionality of -C-S-, -C-N-, -C-O- and -CH<sub>2</sub> vibrational spectra at 1080, 1610, 1760 and 2970  $\text{cm}^{-1}$ , respectively, evidenced taurine imprinting (Fig. 2b).

Morphologically, the size of imprinted pores is about 5 times higher than that of  $CO_2$  (0.209 nm) which could be another probable reason to retain CO<sub>2</sub> molecules in the pores followed by forming number of double and multiple interactions between the polymer pore functionality and CO<sub>2</sub>. The IP showed surface area of  $1020 \pm 10 \text{ m}^2 \text{ g}^{-1}$  and pore volume  $0.316 \text{ cm}^3 \text{ g}^{-1}$  compared with P (non-imprinted polymer). The size distribution curves were calculated by non-local density functional theory (Jagiello and Olivier 2009), where the median value of the pore size of taurineimprinted polymers was 1 nm. An increase in the surface area 370 m<sup>2</sup> g<sup>-1</sup> was noticed due to molecular imprinting of taurine. As shown in Table 1, the total pore volume of imprinted polymer was 0.316 cm<sup>3</sup> g<sup>-1</sup> which is considerably more compared with porous polymer networks (0.07 cm<sup>3</sup> g<sup>-1</sup>), hyper-cross-linked polymer (0.08 cm<sup>3</sup> g<sup>-1</sup>) and molecularly imprinted polymers  $(0.067 \text{ cm}^3 \text{ g}^{-1})$  (Zhao et al. 2012). The pores formed in the non-imprinted polymer were larger (average pore diameter 40 nm) than the pores in the imprinted polymer (average pore diameter, 1 nm); this lower pore diameter in imprinted polymer would be responsible for increase in surface area and pore volume (Fig. 2c). The morphology of imprinted polymer has been viewed using atomic force microscope. The external surface of this polymer is seen to be a continuous distribution of micro/nano-cavities (Fig. 2d). Remarkably, at 273 K, imprinted polymer adsorbs 5.67 mmol g<sup>-1</sup> of CO<sub>2</sub>; this quantity is about 40% higher than the hyper-cross-linked polymers formulated with bis(chloromethyl) monomers (Fontanals et al. 2015).

Practically, the fuels combusted in thermal power plants emit flue gases at ambient conditions typically containing CO<sub>2</sub> concentration which is lower than 15%. Similarly, natural gas reservoirs constitute about 20% of CO<sub>2</sub> and 80% of CH<sub>4</sub>. Such instances require selective CO<sub>2</sub> separation from CH<sub>4</sub> and other gases which is a challenging task to provide clean fuel and reusable CO2. The selective adsorption of CO<sub>2</sub> from the gaseous mixture under low thermodynamic conditions is a great challenge. In this study, imprinted and non-imprinted polymers were used to evaluate the selectivity toward CO<sub>2</sub> in the presence of N<sub>2</sub> and CH<sub>4</sub>. The performance of imprinted polymer for uptake of CO<sub>2</sub> in the presence of N<sub>2</sub> and CH<sub>4</sub> is depicted in Fig. 3a. The imprinted polymer showed significantly higher selectivity and capacity compared with P, which would be due to small pore size and functionality created in the imprinted sites. Compared to non-imprinted polymer, the pore diameter of imprinted polymer is quite small (i.e., 1 nm) and would be the cause of high-selectivity adsorption of CO2. The selectivity of imprinted polymer at 303 K and 10 bar for the adsorption of  $CO_2$  in the presence of N<sub>2</sub> and  $CH_4$  is 91 and 87%, respectively. The selectivity reported by the imprinted polymer is better than the high-selectivity materials reported in the literature such as benzimidazole-linked polymers (Popp



**Fig.2** a Infrared spectra, **b** Raman image with spectra, **c** pore size distribution in imprinted and non-imprinted polymers and **d** atomic force microscope image of imprinted polymer (inset: 3D view showing the existing imprinted cavities in the polymer)

**Fig. 3** a Adsorption capacity of imprinted and non-imprinted polymers for  $CO_2$ ,  $N_2$  and  $CH_4$ , **b** isosteric heat of adsorption for  $CO_2$  calculated from the isotherms measured at 273 and 303 K for imprinted and non-imprinted polymers and **c**  $CO_2$  adsorption after regeneration of imprinted polymer



et al. 2015). The benzimidazole-linked polymers with the highest CO<sub>2</sub> adsorption showed lowest selectivity (CO<sub>2</sub>/N<sub>2</sub>, 32:1). With the surface area 1020 m<sup>2</sup> g<sup>-1</sup>, imprinted polymer showed a significant CO<sub>2</sub> adsorption at 1 bar and 273 K (up to 5.67 mmol g<sup>-1</sup>); however, the CO<sub>2</sub> adsorption at 10 bar by the imprinted polymer was 26.3 mmol g<sup>-1</sup>. The high CO<sub>2</sub> adsorption at low pressure could be due to well-formed pore in imprinted polymer which condenses more CO<sub>2</sub> molecules in the polymer. When compared with 3D coordination polymers, the imprinted polymer showed lower adsorption of CO<sub>2</sub> at high pressures. This would be due to the existence of vacant space in 3D-coordinated polymer and other such materials (Choi and Suk 2009).

The isosteric heat of adsorption ( $Q_{st}$ ) is an indicative of adsorption equilibrium achieved under controlled conditions such as pressure and temperature for a given adsorbate. The  $Q_{st}$  of adsorption of polymer was calculated form Langmuir isotherm fits of CO<sub>2</sub> adsorption at 273 and 303 K. The  $Q_{st}$ value calculated for CO<sub>2</sub> adsorption for imprinted polymer was 39.8 kJ mol<sup>-1</sup>, which represents that CO<sub>2</sub> uptake by imprinted polymer was predominantly by physical adsorption. Figure 3b shows a plot of  $Q_{st}$  as a function of CO<sub>2</sub> capture. The presence of sulfur and nitrogen atoms in the polymer would be responsible for reduction in the  $Q_{st}$  value (4.0 kJ mol<sup>-1</sup>), thereby improving the affinity toward  $CO_2$ of imprinted polymer compared with non-imprinted polymer. Initially, the  $Q_{st}$  was decreased and then stabilized with the CO<sub>2</sub> uptake which represents that imprinted sites with high energy are filled initially, and then reached a saturation level after adsorption of  $CO_2$  to a certain amount. It is important to observe the existence of amine and sulfonic acid functionalities in the imprinted cavities of imprinted polymer that had showed slightly higher  $Q_{st}$  which represents stronger CO<sub>2</sub> interaction with imprinted polymer compared with non-imprinted polymer. The heat of adsorption  $Q_{\rm st}$  of imprinted polymer is higher than the microporous polycarbazoles (27-31 kJ mol<sup>-1</sup>) or benzimidazole-linked polymers (20–27 kJ mol<sup>-1</sup>) or conjugated microporous polymers (25-33 kJ mol<sup>-1</sup>) or hyper-cross-linked polymers (20–24 kJ mol<sup>-1</sup>) (Martin et al. 2011; Zhu et al. 2013a, b). The  $Q_{\rm st}$  values of imprinted polymer are below 50 kJ mol<sup>-1</sup>, the interaction between CO2 and polymers are reasonably weak, and this facilitates regeneration of polymers with quite low energy.

Regeneration of adsorbent is an important aspect which influences the affordability, and multiple cycles of use reduces the cost of  $CO_2$  capture (Abanades et al. 2004). The regeneration of imprinted polymer was evaluated in simulated temperature and pressure-controlled ASAP 2020 analyser. It was found that even after 50 cycles, there was no considerable change in capacity (Fig. 3c). The imprinted polymer reported lower regeneration energies compared to amine solutions. The polymer designed with synergistic approach of hyper-cross-linking and molecular imprinting has high potential for commercial applications due to its selective adsorption of  $CO_2$  and physical–chemical robustness and stability.

## Conclusion

In conclusion, taurine-imprinted polymer formulated with divinylbenzene and vinyl benzyl chloride showed high adsorption capacity of 5.67 mmol g<sup>-1</sup> and selectivity. Furthermore, the adsorbent showed no apparent loss in the CO<sub>2</sub> adsorption capacity till 50 cycles. The polymer prepared using molecular imprinting of CO<sub>2</sub>-philic templates demonstrated applicability of adsorbents for real-life CO<sub>2</sub> capture applications. Further studies are underway to establish physical–chemical robustness and stability under different industrially relevant conditions.

Acknowledgements The financial support of the Ministry of Science and Technology, Government of India, under National Program on Carbon Capture and Sequestration Research [Grant No. DST/IS-STAC/ CO<sub>2</sub>-SR-162/13(G)] is acknowledged.

## References

- Abanades JC, Rubin ES, Anthony EJ (2004) Sorbent cost and performance in CO<sub>2</sub> capture systems. Ind Eng Chem Res 43:3462–3466. https://doi.org/10.1021/ie049962v
- Abanades JC, Arias B, Lyngfelt A, Mattisson T, Wiley DE, Li H, Ho MT, Mangano E, Brandani S (2015) Emerging CO<sub>2</sub> capture systems. Int J Green Gas Control 40:126–166. https://doi. org/10.1016/j.ijggc.2015.04.018
- Altarawneh S, Behera S, Jena P, El-Kaderi HM (2014) New insights into carbon dioxide interaction with benzimidazole-linked polymers. Chem Commun 50:3571–3574. https://doi.org/10.1039/ C3CC45901B
- Arab P, Parrish E, Islamoglu T, El-Kaderi HM (2015) Synthesis and evaluation of porous ago-linked polymers for carbon dioxide capture and separation. J Mater Chem A 3:20586–20594. https://doi. org/10.1039/C5TA04308E
- Banerjee R, Furukawa H, Britt D, Knobler C, O'Keefee M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877. https://doi. org/10.1021/ja809459e
- Byun J, Je SH, Patel HA, Coşkun A, Yavuz CT (2014) Nanoporous covalent organic polymers incorporating Troger's base

functionalities for enhanced CO<sub>2</sub> capture. J Mater Chem A 2:12507–12512. https://doi.org/10.1039/C4TA00698D

- Carrasco-Martin F, Lopez-Ramon MV, Moreno-Castilla C (1993) Applicability of the Dubinin–Radushkevich equation to carbon dioxide adsorption on activated carbon. Langmuir 9:2758–2760. https://doi.org/10.1021/la00035a002
- Chatterjee S, Rayalu S, Kolev SD, Krupadam RJ (2016) Adsorption of carbon dioxide on naturally occurring solid amino acids. J Environ Chem Eng 4(3):3170–3176. https://doi.org/10.1016/j. jece.2016.06.007
- Choi HS, Suk MP (2009) Highly selective CO<sub>2</sub> capture in flexible 3D coordination polymer networks. Angew Chem Int Ed 48:6865–6869. https://doi.org/10.1002/anie.200902836
- Drage TC, Smith KM, Arenillas A, Snape CE (2009) Developing strategies for the regeneration of polyethylenimine based CO<sub>2</sub> adsorbents. Energy Procedia 1:875–880. https://doi. org/10.1016/j.egypro.2009.01.116
- Edenhofer O (2011) The IPCC special report on renewable energy sources and climate change mitigation. IPCC working group III "mitigation of climate change". The New School for Social Research, NY
- Errahali M, Gatti G, Tei L, Paul G, Rolla GA, Canti L, Fraccarollo A, Cossi M, Comotti A, Sozzani P, Marchese L (2014) Microporous hyper-cross-linked aromatic polymers designed for methane and carbon dioxide adsorption. J Phys Chem C 118:28699–28710. https://doi.org/10.1021/jp5096695
- Fontanals N, Marce RM, Borrull F, Cormack PAG (2015) Hypercrosslinked materials: preparation, characterization and applications. Polym Chem 6:7231–7244. https://doi.org/10.1039/ C5PY00771B
- Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM (2012) Unconventional, highly selective CO<sub>2</sub> adsorption in zeolite SSZ-13. J Am Chem Soc 134:1970–1973. https://doi. org/10.1021/ja210580b
- Jagiello J, Olivier JP (2009) A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores: application to pore structural analysis. J Phys Chem C 113:19382–19385. https ://doi.org/10.1021/jp9082147
- Krupadam RJ, Korde BA, Ashokkumar M, Kolev SD (2014) Novel molecularly imprinted polymeric microspheres for preconcentration and preservation of polycyclic aromatic hydrocarbons from environmental samples. Anal Bioanal Chem 406(22):5313–5321. https://doi.org/10.1007/s00216-014-7952-z
- Li B, Duan Y, Leuke D, Morreale B (2013) Advances in CO<sub>2</sub> capture technology: a patent review. Appl Energy 102:1439–1447. https ://doi.org/10.1016/j.apenergy.2012.09.009
- Liu S, Zhang Y, Jiang H, Wang X, Zhang T, Yao T (2018) High CO<sub>2</sub> capture by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605. https://doi.org/10.1007/ s10311-017-0701-8
- Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou HC (2011) Sulfonate-grafted porous polymer networks for preferential CO<sub>2</sub> adsorption at low pressure. J Am Chem Soc 133:18126–18129. https://doi.org/10.1021/ja2087773
- Martin CF, Stockel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C (2011) Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO<sub>2</sub> capture. J Mater Chem 21:5475–5483. https://doi.org/10.1039/c0jm0 3534c
- McDonald JL, Sykora RE, Hixon P, Mirjafari A, Davis JH Jr (2014) Impact of water on CO<sub>2</sub> capture by amino acid ionic liquids. Environ Chem Lett 12:201. https://doi.org/10.1007/s1301 1-013-0435-1
- Ohno K, Mandai Y, Matsuura H (1992) Vibrational spectra and molecular conformation of taurine and its related compounds. J Mol Struct 268:41–50. https://doi.org/10.1016/0022-2860(92)85058-O

- Popp N, Homburg T, Stock N, Senker J (2015) Porous imine-based networks with protonated mine linkages for carbon dioxide separation from mixtures with nitrogen and methane. J Mater Chem A 3:18492–18504. https://doi.org/10.1039/C5TA02504D
- Rabbani MG, Islamoglu T, El-Kaderi HM (2017) Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation. J Mater Chem A 5:258–265. https://doi. org/10.1039/C6TA06342J
- Salles G, Ghoufi A, Maurin G, Bell RG, Mellot-Draznieks C, Frey G (2008) Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53 (Cr) upon thermal activation and CO<sub>2</sub> adsorption. Angew Chem Int Ed 47:8487–8491. https://doi.org/10.1002/anie.200803067
- Sekizkardes AK, Altarawneh S, Kahveci Z, Islamoğlu T, El-Kaderi HM (2014) Highly selective CO<sub>2</sub> capture by triazine-based benzimidazole-linked polymers. Macromolecules 47:8328–8334. https ://doi.org/10.1021/ma502071w
- Tan MXT, Zhang Y, Ying JY (2013) Mesoporous poly(melamineformaldehyde) solid sorbent for carbon dioxide capture. Chem Sus Chem 6:1186–1190. https://doi.org/10.1002/cssc.201300107
- Wahby A, Ramos-Fernandez JM, Martinez-Escandell M, Sepulveda-Escribano A, Silvestre-Albero J, Rodriguez-Reinoso F (2010) High surface area carbon molecular sieves for selective CO<sub>2</sub> adsorption. Chem Sus Chem 3:974–981. https://doi.org/10.1002/ cssc.201000083
- Walton KS, Snurr RQ (2007) Applicability of the BET method for determining surface areas of microporous metal-organic

frameworks. J Am Chem Soc 129:8552-8556. https://doi. org/10.1021/ja071174k

- Wilmer CE, Farha OK, Bae YS, Hupp JT, Snurr RQ (2012) Structureproperty relationships fo porous materials for carbon dioxide separation and capture. Energy Environ Sci 5:9849–9856. https://doi. org/10.1039/C2EE23201D
- Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Eds 34:1812–1832. https://doi.org/10.1002/ anie.199518121
- Xu C, Hedin N (2014) Microporous adsorbents for CO<sub>2</sub> capture—a case for microporous polymers. Mater Today 17:397–403. https://doi.org/10.1016/j.mattod.2014.05.007
- Zhao Y, Shen Y, Bai L, Hao R, Dong L (2012) Synthesis and CO<sub>2</sub> adsorption properties of molecularly imprinted adsorbents. Environ Sci Technol 46:1789–1795. https://doi.org/10.1021/es203 580b
- Zhu X, Do-Thanh CL, Murdock CR, Nelson KM, Tian C, Brown S, Mahurin SM, Jenkins DM, Hu J, Zhao B, Liu H, Dai S (2013a) Efficient CO<sub>2</sub> capture by a 3D porous polymer derived from Troger's base. ACS Macro Lett 2:660–663. https://doi.org/10.1021/ mz4003485
- Zhu Y, Long H, Zhang W (2013b) Imine-linked porous polymer frameworks with high small gas (H<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>) uptake and CO<sub>2</sub>/H<sub>2</sub> selectivity. Chem Mater 25:1630–1635. https://doi. org/10.1021/cm400019f