REVIEW

Recent developments on gas-solid heterogeneous oxidation removal of elemental mercury from flue gas

Wei Yang¹ · Yusuf G. Adewuyi² · Arshad Hussain³ · Yangxian Liu¹

Received: 7 June 2018 / Accepted: 2 July 2018 / Published online: 14 July 2018 © Springer Nature Switzerland AG 2018

Abstract

Mercury is a toxic and persistent environmental pollutant which has been recognized as a global threat to human health and our ecosystem because mercury bio-accumulates in the food chain and can be transformed into the more neurotoxic methylmercury. Among current and emerging abatement technologies for elemental mercury in flue gas, gas–solid heterogeneous oxidation is nowadays gaining increasing attention due to several inherent advantages. The catalysts and adsorbents are key materials that control the heterogeneous catalytic oxidation and adsorption of Hg⁰ from flue gas. Here we present a review of the recent developments on several catalysts and adsorbents, including noble metal-based catalysts, non-noble metal-based catalysts (transition metal oxides and selective catalytic reduction catalysts), activated carbon/coke-based sorbents, biochar-based sorbents, fly ash-based sorbents, mineral material-based sorbents and other novel catalysts. The key process parameters and kinetic reaction mechanisms and advantages and disadvantages of various emerging catalysts/adsorbents and technologies of Hg⁰ removal are described in detail.

Graphical abstract

Keywords Flue gas \cdot Hg⁰ removal \cdot Gas-solid heterogeneous oxidation \cdot Sorbents or catalysts

⊠ Yusuf G. Adewuyi adewuyi@ncat.edu

Yangxian Liu liuyx1984@126.com

Extended author information available on the last page of the article

Introduction

Mercury is an environmental persistent pollutant of great public concern because of its well-known high neurological toxicity, and well-documented food chain transport and bioaccumulation in its different forms, such as methylmercury with its concomitant adverse effects on our ecosystem and human health (Li et al. 2009). Human exposure to mercury occurs primarily by consumption of contaminated

fish, resulting in such detrimental effects on human health, including neurological disorders, kidney damage, and birth defects. Therefore, United States Environmental Protection Agency (US EPA) identified mercury as a toxic and hazardous air pollutant under Title III of the 1990 Clean Air Act Amendments (CAAA) (Qiao et al. 2009). The total amount of anthropogenic mercury emission is about 1000-6000 tons per year (Yang et al. 2007). Combustion activities such as the burning of fossil fuels, municipal solid wastes, and medical wastes are the largest source of mercury emissions, which accounts for more than 90% of all anthropogenic mercury emissions (Reddy et al. 2012). To abate mercury emissions, some countries and regions have developed very stringent laws. In 2011, the United States Environmental Protection Agency (US EPA) promulgated the first national standard for mercury emissions, namely the Mercury and Air Toxics Standards (MATS), which aims to limit emissions of mercury and other toxic substances in power plants (Gao et al. 2013b). Also, in 2013, the United States Environmental Protection Agency updated the national emission standard (MATS), stipulating mercury emission limit below $0.003 \text{ lb GWh}^{-1}$ (Zhao et al. 2015b). In July 2011, the State Environmental Protection Administration of China (SEPA) released a new national standard (GB 13223-2011) of air pollutants for power plants, which requires new coal-burning power plants' atmospheric mercury emissions should be less than 30 μ g/m³ (Ancora et al. 2016). Therefore, the need and knowhow to curb mercury emissions are nowadays gaining significant global attention.

To reduce the emission of air pollutants, most coal-fired power plants have been installed some air pollution control devices (APCDs). Fabric filters (FF) and electrostatic precipitators (ESP), wet flue gas desulfurization (WFGD) system, and selective catalytic reduction (SCR) devices can effectively control particulate matter, SO₂ and NO_x in flue gas, respectively. During the combustion process, the elemental mercury in fuel is released into the flue gas in the form of vapor. This gaseous elemental mercury is subsequently oxidized partially to Hg^{2+} by heterogeneous (gas-solid) and homogeneous (gas-gas) reactions (Lee et al. 2002). Therefore, mercury in typical flue gas consists of three forms: elemental mercury (Hg⁰), oxidized mercury (Hg²⁺) and particulate-bound mercury (Hg^p) (Chi et al. 2009). Some studies have reported that the existing conventional air pollution control devices (APCDs) for reducing emissions of SO₂, NO_x and particulate matter can achieve a certain degree of mercury removal (Zheng et al. 2011; Wang et al. 2010b). For example, the Hg^{2+} can be efficiently removed by the existing wet flue gas desulfurization (WFGD) equipment due to its high water solubility (Li et al. 2011a). Fabric filters (FF) and/or electrostatic precipitators (ESP) can easily capture Hg^p from flue gas (Cao et al. 2008). In contrast, Hg⁰ with high volatility and low solubility in water is very difficult to be effectively removed by existing APCDs (Gutiérrez et al. 2007; Galbreath and Zygarlicke 1996). To reduce operating costs, the use of existing conventional APCDs to remove elemental mercury from flue gas is considered as an effective option for mercury abatement. Therefore, one of the core issues of mercury emission control is the efficient oxidation of elemental mercury (Hg⁰) into the oxidized form (Hg²⁺).

To effectively control mercury emissions from coalfired boilers, many Hg⁰ control technologies have been developed over the past few decades, including adsorptive removal (Vidic and Siler 2001; Tan et al. 2012a; Chung et al. 2009), catalytic oxidation (Wang et al. 2010a; He et al. 2013), advanced oxidation (Wang et al. 2010c; An et al. 2014; Xu et al. 2008), and traditional chemical oxidation technologies (Wang et al. 2007; Hutson et al. 2008; Stergarsek et al. 2010). Adsorption processes utilizing modified and supported sorbents can effectively remove Hg⁰ in flue gas by converting it to Hg^p and Hg²⁺ (Pavlish et al. 2004; Wu et al. 2012). In addition, catalytic oxidation processes such as selective catalytic reduction (SCR) and using catalysts composed of noble metals, metal oxides, and multi-metal oxides can simply, efficiently, and cost-effectively oxidize Hg^0 to Hg^{2+} (Kamata et al. 2009; Yang et al. 2010). Among technologies for Hg⁰ removal from flue gas, the gas-solid heterogeneous adsorption and catalytic oxidation are recognized as the most promising (Pavlish et al. 2004; Wu et al. 2012; Kamata et al. 2009; Yang et al. 2010). While some reviews on mercury control have been published in the past few decades, these reviews appear to be limited in scope and/or outdated due to the prolific research productivity in this field, and hence, there is a need for a more comprehensive review of the recent developments and emerging technologies. (Gao et al. 2013b; Zheng et al. 2012; Pavlish et al. 2003; Fu et al. 2010). This exhaustive review discusses the emerging catalysts and adsorbents, including noble metal-based catalysts, non-noble metal-based catalysts (transition metal oxides and SCR catalysts), activated carbon- and coke-based sorbents, biochar-based sorbents, fly ash-based sorbents, mineral material-based sorbents, and other novel catalysts, in detail. Some challenges, problems, and future research directions of Hg⁰ removal using these catalysts and adsorbents are also discussed. The key process parameters, advantages, and disadvantages of current and emerging technologies are summarized, and the reaction kinetics and mechanistic aspects of gas-solid heterogeneous catalytic oxidation and adsorption of Hg⁰ from flue gas are described in detail.

Gas-solid heterogeneous oxidation of mercury

It is well known that Hg^0 in flue gas is very difficult to be captured due to its low solubility in water and high volatility. However, Hg^p can be removed in particle controllers, and the oxidized mercury (Hg^{2+}) can be easily captured by the wet flue gas desulfurization (WFGD) system due to its high water solubility. Therefore, a combination of wet flue gas desulfurization (WFGD) system and elemental mercury heterogeneous oxidation is considered as a promising method for Hg^0 control. To date, a number of heterogeneous catalyst and adsorption systems have been developed for Hg^0 oxidation or removal and categorized into seven groups, namely noble metal-based catalysts, non-noble metal-based catalysts, activated carbon-/coke-based sorbents, biomass char-based sorbents, fly ash-based sorbents, mineral material-based sorbents, and other novel catalysts.

Noble metal-based catalysts

Noble metals such as Au, Pd, Ag, Ru, and Ir have been considered as potential Hg⁰ oxidation catalysts due to their regeneration performance and excellent mercury adsorption capacity. To obtain a high mercury removal capacity, the

noble metals are usually supported on materials with welldeveloped pore structures and large Brunauer–Emmet–Teller (BET) surface areas, such as alumina, silica, zirconia, titania, carbons, and zeolite. The modification conditions and Hg⁰ removal capacities of the investigated noble metal catalysts are summarized in Table 1.

Pd has been recognized as a promising catalyst for mercury removal (Granite et al. 2006). In the study by Hou et al. (2014a), the Pd catalyst exhibited high mercury removal efficiency in the operating temperature range of 200-270 °C. reporting that, up to 270 °C, a catalyst containing 8% Pd provided 90% Hg⁰ removal efficiency and retained good stability at mid-temperatures. Li et al. (2014a) also tested the effects of three operating temperatures, 250, 300, 350 °C, on mercury adsorption capacity and found the mercury adsorption efficiency at 250 °C was higher than those at 300 and 350 °C, confirming the positive effects of operating at mid-temperatures. Hou et al. (2014a) and Han et al. (2012, 2016) tested the effects of H_2 and CO on mercury removal and observed that H_{2} and CO could enhance the removal efficiency of elemental mercury as a result of the reduction of PdO to Pd metal. Hou et al. (2014a) also studied the effect of HCl on Hg⁰ removal over Pd based catalyst and found that HCl promoted mercury removal. Yue et al. (2015) examined the effects of H₂S on mercury removal over Pd/ AC catalyst and showed that H_2S significantly inhibited Hg^0

 Table 1 Reaction conditions and Hg⁰ removal performance of noble metal catalysts

Raw sorbents	Name of modified sorbents	Simulated flue gas	RT* (°C)	MRE**(%)	AC*** (μg/g)	References
Al ₂ O ₃	Pd/Al ₂ O ₃	H ₂ /CO/H ₂ S/HCl/Hg ⁰	270	>90	_	Hou et al. (2014a)
Activated carbon (AC)	Pd/AC	H ₂ /CO/H ₂ S/N ₂ /Hg ⁰	250	94	4.84	Li et al. (2014a)
γ-Al ₂ O ₃	1Pd3Fe/y-Al ₂ O ₃	N ₂ /Hg ⁰	250	> 80	-	Han et al. (2012)
Activated carbon (AC)	1Pd5Fe/AC	N ₂ /H ₂ S/Hg ⁰	200	> 80	-	Han et al. (2016)
	Pd/AC	N ₂ /H ₂ S/H ₂ /Hg ⁰	200	91.4	-	Yue et al. (2015)
Activated carbon (BAC)	BAC ^{Cl-Au}	Air/Hg ⁰	_	>97	10.0	Song and Lee (2016)
Carbon	Au/C	SO ₂ /CO ₂ /N ₂ /Hg ⁰	120	-	38.7	Gómez-Giménez et al. (2015)
Carbon	MC-Au-red	N_2/Hg^0	75	_	23	Ballestero et al. (2013)
TiO ₂	Ag-Mo-TiO ₂	N ₂ /O ₂ /HCl/Hg ⁰	150	>90	-	Zhao et al. (2015d)
Selective catalytic reduc- tion (SCR)	Ru-SCR	N ₂ /O ₂ /HCl/Hg ⁰	350	95	-	Chen et al. (2014)
TiO ₂	RuO ₂ /TiO ₂	N ₂ /CO ₂ /O ₂ /SO ₂ /NO/ NH ₃ /HCl/Hg ⁰	350	>90	-	Liu et al. (2016b)
		N ₂ /CO ₂ /O ₂ /SO ₂ /NO/ NH ₃ /HBr/Hg ⁰		>90		
Rutile TiO ₂	RuO ₂ /rutile TiO ₂	N ₂ /CO ₂ /H ₂ O/O ₂ /NO/ NH ₃ /HCl/Hg ⁰	350	>90	-	Liu et al. (2017)
$\operatorname{Ce}_{x}\operatorname{Zr}_{1-x}\operatorname{O}_{2}$	$IrO_2/Ce_xZr_{1-x}O_2$	O2/SO2/HCl/N2/Hg0	150	97	-	Chen et al. (2016)

*Reaction temperature

**Hg⁰ removal efficiency

***Adsorption capacity

Fig. 1 Schematic diagram of the pathways of mercury removal over the Pd/activated carbon samples in N_2 -Hg-H₂S atmosphere. The possible product in the N_2 -Hg-H₂S atmosphere, PdS, is difficult to reduce to Pd⁰, suggesting that this product could be inhibitory to the mercury removal process (reproduced with permission from Li et al. 2014a)

adsorption and removal efficiency, possibly due to the reaction of H_2S with the PdO to form PdS. Li et al. (2014a) suggested two Hg^0 removal pathways over the Pd/AC catalyst in N_2 -Hg-H₂S atmosphere, reaction of Hg^0 with elemental palladium (Pd⁰) to produce Hg-Pd amalgam or the reaction of some oxygen-containing functional groups on the surface of activated carbon (AC) with Pd⁰ to form PdO. However, as shown in Fig. 1, the possible product in the N_2 -Hg-H₂S atmosphere, PdS, is difficult to reduce to Pd⁰, suggesting that this product could be inhibitory to the mercury removal process.

Gold-based catalysts are also considered as promising alternatives for Hg⁰ removal because gold has the ability to adsorb and react with Hg⁰ on its surface to form amalgam (Presto and Granite 2009; Zhao et al. 2006). Song and Lee (2016) synthesized a gold (Au)-based catalyst via an impregnation method and found the catalyst to achieve a 97% elemental mercury oxidation. Gómez-Giménez et al. (2015) studied the effect of SO₂ and O₂ on mercury removal and showed that these flue gas components promoted mercury removal in the presence of gold nanoparticles, attributable to the catalytic activity of Au. Ballestero et al. (2013) examined the regenerability of the Au-based catalyst through several cycles of Hg⁰ capture regeneration and found that when the regeneration temperature was 220 °C, the Aubased catalyst maintained a high mercury removal efficiency in several regeneration cycles. In the process of elemental mercury oxidation, some reactants such as chlorine atoms have been shown to play an important role since gold could dissociate the adsorbed Cl₂ molecule into Cl atoms, which subsequently could react with Hg⁰ to form HgCl₂, enhancing Hg⁰ removal (Dranga and Koeser 2015). Lim and Wilcox (2013) examined the Hg⁰ oxidation via a Langmuri–Hinshelwood (L-H) mechanism and suggested that the adsorbed Cl₂ (or HCl) could react with Hg⁰ to produce HgCl and $HgCl_2$, as shown in Fig. 2, illustrating that the Hg^0 oxidation on the surface of Au is a step-by-step Hg⁰ oxidation $(Hg \rightarrow HgCl \rightarrow HgCl_2)$ rather than a direct oxidation of Hg^0 to HgCl₂.

Fig. 2 Reaction pathways of mercury oxidation on the surface of Au. The Hg⁰ oxidation on the surface of Au is a step-by-step Hg⁰ oxidation (Hg \rightarrow HgCl \rightarrow HgCl₂) rather than a direct oxidation of Hg⁰ to HgCl₂ (reproduced with permission from Lim and Wilcox 2013)

Other noble metals such as Ag, Ru, and Ir also have been reported to be effective catalysts for mercury removal from flue gases (Karatza et al. 2011; Yan et al. 2011). Zhao et al. (2015d) prepared a Ag-based catalyst by an impregnation method and demonstrated its excellent performance for mercury removal in a simulated flue gas. Rungnim et al. (2015) synthesized Ag/TiO₂ catalyst samples by loading 5% Ag on TiO₂ powder and investigated possible synergistic effects between Ag and TiO₂ toward Hg⁰ removal using periodic density functional theory (DFT) calculations. They showed an improved Hg⁰ removal, suggesting the synergy resulted from the promotion of electron transfer from adsorbed elemental mercury to Ag/TiO₂ catalyst, with the concomitant effect of greatly enhancing the mercury removal.

It has been reported that RuO₂ is an excellent mercury oxidation catalyst and that halogen gases play an important role in the mercury oxidation process (Chen et al. 2014; Liu et al. 2016b, 2017). Liu et al. (2016b, 2017) studied the effect of halogen gas on mercury removal using RuO₂/TiO₂ catalyst in the presence of HCl or HBr, and the results showed 85 and 90% mercury removal in the presence of 10 ppm HCl and 1 ppm HBr, respectively, and that HgCl₂ and HgBr₂ were the main respective oxidation products. Liu et al. (2017) also found that the RuO_2/TiO_2 catalyst exhibited a good resistance to SO₂ poisoning under bituminous coal flue gas (SO₂ > 2000 ppm in flue gas). It was suggested that the oxidation reaction mechanism of elemental mercury follows the Deacon process as shown in Fig. 3. Chen et al. (2016) prepared the IrO_2 -based catalyst via a sol-gel method and also found that the novel IrO₂-modified catalyst displayed a higher catalytic activity for mercury oxidation in a flue gas system, and the mechanism also followed the Deacon reacting scheme illustrated in Fig. 3.

Fig.3 Schematic diagram of Hg^0 oxidation reaction over RuO_2 catalyst in the presence of HCl or HBr. In the presence of HCl or HBr gas, the RuO_2 catalysts follow the Deacon process (reproduced with permission from Liu et al. 2016b)

Non-noble metal-based catalysts

Transition metal oxides-based catalysts

Transition metal oxides, including mainly Fe_2O_3 , CuO, MnO_2 , and CeO₂, commonly supported on carriers such as alumina, silica, titania, have been tested as potential elemental mercury oxidation catalysts. The advantages of these oxides compared with the noble metal catalysts, include the lower cost, widely available sources, and the relatively high catalytic oxidation activity. These supporters not only could increase the dispersion degree of metal oxides, but in some cases, also participate in the mercury removal process. Typical modification conditions and the resulting Hg^0 removal capacities are summarized in Table 2.

Copper-based catalysts are considered as promising mercury removal catalysts due to their abilities to store/ release oxygen via the redox reaction between Cu²⁺ and Cu⁺ (Tsai et al. 2013; Li et al. 2013c; Du et al. 2015). Liu et al. (2015b) synthesized Cu/Al₂O₃ catalyst via a wetness incipient method and reported that with optimal loading of 10 wt% Cu, more than 95% Hg⁰ oxidation efficiency was attained during the first 20 h at 140 °C. It was also observed that the loading value of CuCl₂ has a significant effect on the activity of the catalyst. At low CuCl₂ loadings, it was speculated that CuCl₂ could react with Al₂O₃ to form copper aluminate (CuAlO₂) which was inactive for mercury oxidation, while high loadings of CuCl₂ would be expected to be present in a highly dispersed amorphous state on the surface of the CuAlO₂, which contributed to mercury removal. It was also observed that high loading of Cu into the Al₂O₃ support exhibited excellent SO₂ poisoning resistance under 10 ppm HCl (Yamaguchi et al. 2008). Zhou et al. (2014) tested the effect of HCl on Hg⁰ removal using CuCl₂/TiO₂ catalyst, and they also found that the Cl atoms in HCl had a positive effect on Hg⁰ removal. Xu et al. (2014a) suggested that CuO had showed a good performance for Hg⁰ removal in the presence of low level HCl, and with a CuO/TiO2 catalyst prepared by

a wetness impregnation method, they reported Hg^0 removal efficiency of nearly 100% obtained with HCl concentration of 5 ppm. The positive effect of HCl was attributed mainly to the production of active atomic chlorine species.

Manganese-based catalysts are attractive potential alternatives for Hg⁰ capture from flue gas due to their low cost and expected excellent oxidation performance, stemming from their inherent multiple oxidation states (Xu et al. 2015a; Li et al. 2010). Yu et al. (2015) investigated the performance of Hg⁰ removal using M/Al catalysts ($M = Mg^{2+}$, Zn^{2+} , Cu^{2+} , and Mn^{2+}), and they found that compared with Mg/Al, Zn/Al, and Cu/Al catalysts, Mn/Al catalysts exhibited the highest Hg⁰ removal performance at 300 °C. They concluded that Mn⁴⁺ species, which was the main active sites, played a very important role in the removal process of Hg^0 . Xu et al. (2015b) reported that the improved removal of Hg⁰ from flue gas, achieved with heterogeneous reaction between Hg⁰ and Mn⁴⁺, resulted from the transition of high valence (Mn^{4+}) to low valence Mn $(Mn^{3+} \text{ and } Mn^{2+})$. Xie et al. (2013) also obtained similar results in the investigation of Hg⁰ removal using Mn-based catalysts. Zhang et al. (2015a) examined the influence of calcination temperature in the 200–800 °C range on Hg^0 capture using MnO_x/TiO_2 sorbents. It was observed that the calcination temperature had an important effect on the activity and structure of the MnO_v/TiO₂ catalysts. The catalyst exhibited excellent performance for Hg⁰ removal at high temperature of 400 °C; however, BET surface area, pore volume, and the content of Mn⁴⁺ of the catalyst decreased at calcination temperatures greater than 400 °C. Scala and Cimino (2015) studied the effect of flue gas composition on Hg⁰ capture using manganese-based catalysts, and their results showed that both CO and CO₂ reduced the Hg⁰ capture performance, while NO had no detectable effect, and 50 ppm HCl significantly improved the Hg⁰ removal. Zhang et al. (2014a, 2015c) proposed that the Hg⁰ oxidation by HCl over manganese-based catalyst followed the Hg \rightarrow HgCl \rightarrow HgCl₂ pathway, rather than the direct production of HgCl₂.

Scala and Cimino (2015) and Xie et al. (2012) examined the effect of SO₂ on Hg⁰ removal both MnO_x-based and Mn-TiO₂ catalysts, and the results showed that SO₂ had a negative effects on the performance of both catalysts, mainly due to the competitive adsorption between Hg⁰ and SO₂. Zhang et al. (2017b) also reported that the presence of SO₂ weakened the Hg⁰ removal capacity of the MnO_x-based catalyst. To further enhance the Hg⁰ removal effectiveness of Mnbased catalysts in the presence of SO₂, some metal elementals (Cu, Fe, Ce, Mo) have been utilized to modifying agents. Wang et al. (2013) prepared CuO–MnO₂–Fe₂O₃/Al₂O₃ catalyst by an improved impregnation method and studied the effect of SO₂ concentration on Hg⁰ removal, reporting that SO₂ has little effect on Hg⁰ removal due to the larger affinity between Cu and sulfur. Zhao et al. (2016a) examined

Raw sorbents	Name of modified sorbents	Simulated flue gas	CT* (°C)	RT** (°C)	MRE*** (%)	AC**** (µg/g)	References
Al ₂ O ₃	$CuCl_2/\alpha - Al_2O_3$	N ₂ /O ₂ /SO ₂ /HCl/Hg ⁰	_	140	>90	_	Li et al. (2013c)
Al ₂ O ₃	CuO _x -Al ₂ O ₃	N ₂ /NO/SO ₂ /HCl/ H ₂ O/CO ₂ /O ₂ /Hg ⁰	500	140	>65	-	Du et al. (2015)
γ -Al ₂ O ₃	CuCl ₂ /γ-Al ₂ O ₃	N ₂ /Hg ⁰	_	140	>95	-	Liu et al. (2015b)
TiO ₂	CuO/TiO ₂	N ₂ /HCl/O ₂ /Hg ⁰	400	150	>90	-	Zhou et al. (2014)
TiO ₂	CuO/TiO ₂	O2/HCl/N2/Hg0	500	300	98	-	Xu et al. (2014a)
-	Mn–Al–CO3	-	200	300	90	294.88	Yu et al. (2015)
-	α -MnO ₂	N ₂ /O ₂ /Hg ⁰	-	150	92	_	Xu et al. (2015b)
	β -MnO ₂				>10		
	γ -MnO ₂				>70		
-	$Zr_{0.5}Mn_{0.5}O_y$	N ₂ /O ₂ /Hg ⁰	500	100	-	5 mg/g	Xie et al. (2013)
TiO ₂	Mn/Ti-200	N ₂ /O ₂ /CO ₂ /Hg ⁰	200	150	-	587	Zhang et al. (2015a)
	Mn/Ti-400		400			866	
γ -Al ₂ O ₃	$MnO_x/\gamma-Al_2O_3$	N ₂ /CO/CO ₂ /NO/O ₂ / SO ₂ /Hg ⁰	550	50-250	-	-	Scala and Cimino (2015)
TiO ₂	Mn-TiO ₂	Air/Hg ⁰	400	300	95	1.6 mg/g	Xie et al. (2012)
TiO ₂	Mn0.6Ti	O ₂ /CO ₂ /HCl/H ₂ O/ SO ₂ /NO/NH ₃ /Hg ⁰	500	200	> 80	_	Zhang et al. (2017b)
γ -Al ₂ O ₃	CMFA	O ₂ /CO ₂ /HCl/NO/ SO ₂ /H ₂ O/Hg ⁰ /N ₂	500	300	>70	_	Wang et al. (2013)
MoO ₃ /CNT	Mn-Mo/CNT	O ₂ /N ₂ /SO ₂ /Hg ⁰	400	150	>90	_	Zhao et al. (2016a)
γ -Al ₂ O ₃	MnCe	O ₂ /CO ₂ /HCl/NO/ SO ₂ /H ₂ O/Hg ⁰ /N ₂	550	250	> 80	-	Wang et al. (2014)
TiO ₂	CeTi	O ₂ /H ₂ O/CO ₂ /HCl/ NO/SO ₂ /N ₂ /Hg ⁰	500	250	>90	-	Li et al. (2011b)
TiO ₂	CeTi	HCl/NO/O2/Hg0/N2	500	200	96.1	-	Li et al. (2013a)
CS	MnO ₂ /CeO ₂ -MnO ₂	$O_2/N_2/Hg^0$	450	150	89	-	Ma et al. (2017)
TiO ₂	CeTi	H ₂ /CO/H ₂ S/HCl/ NH ₃ /N ₂ /Hg ⁰	500	120	> 80	-	Zhou et al. (2013)
TiO ₂	CeTi	H ₂ /CO/H ₂ S/HCl/N ₂ / Hg ⁰	500	150	> 80	-	Hou et al. (2014b)
TiO ₂	VCeTi	$O_2/N_2/Hg^0$	500	250	81.55	-	Zhang et al. (2015e)
TiO ₂	CuCeTi	NO/NH ₃ /O ₂ /N ₂ /Hg ⁰	500	200	90	-	Li et al. (2017d)
V ₂ O ₅ -WO ₃ /TiO ₂	VWTiCe	NO/SO ₂ /O ₂ /CO ₂ /N ₂ / Hg ⁰	500	250	88.93	_	Zhao et al. (2015c)
Selective catalytic reduction (SCR)	WO ₃ -V ₂ O ₅ /TiO ₂	N ₂ /O ₂ /HCl/Hg ⁰	-	350	98.5	-	Gao et al. (2013a)
TiO ₂	V ₂ O ₅ -WO ₃ /TiO ₂	CO ₂ /O ₂ /N ₂ /Hg ⁰	500	250	> 80	-	Wang et al. (2015a)
TiO ₂	TVM	O ₂ /N ₂ /Hg ⁰	400	350	> 80	_	Zhao et al. (2014)
TiO ₂	TV ₅ M ₅	O ₂ /CO ₂ /CO/NO/ NO _x /SO ₂ /H ₂ O/HCl/ Hg ⁰	400	370	>90	-	Zhao et al. (2015a)
Selective catalytic	Fe ₂ O ₃ /SCR	HCl/O ₂ /N ₂ /Hg ⁰	400	350	>90	-	Huang et al. (2016)
reduction (SCR)	Ce-Cu/SCR	N ₂ /O ₂ /NO/NH ₃ /Hg ⁰	500	250	> 80	-	Chi et al. (2017)
	MnO _{x-} 5%/ catalyst	CO ₂ /H ₂ O/O ₂ /HCl/ SO ₂ /NO/NH ₃ /N ₂ / Hg ⁰	-	350	83.8	-	Chiu et al. (2015)

 Table 2 Reaction conditions and Hg⁰ removal performance of non-noble metal-based catalysts

*Calcination temperature

**Reaction temperature

***Hg0 removal efficiency

****Adsorption capacity

the effect of SO_2 on Hg^0 capture using Mo-doped Mn/CNT catalyst, showing that the presence of SO_2 improved Hg^0 removal, and attributing this to Mo promoting of the conversion of SO_2 to SO_3 , with concomitant improvement in Hg^0 removal efficiency. Wang et al. (2014) also investigated the effect of SO_2 on Hg^0 removal using MnO_x –CeO₂/Al₂O₃ catalyst, and found that the addition of Ce effectively resisted the poisoning effect of SO_2 on the catalysts.

Cerium oxide and Ce-based catalysts have gained widespread attention due to the unique redox cycle between Ce^{4+} and Ce^{3+} , excellent oxygen storage capacity and high oxidation capacity, and resistant to SO₂ poisoning (Li et al. 2011b). In the process of redox reaction of Ce^{4+} and Ce^{3+} , bulk oxygen species and surface oxygen vacancies with high mobility are easily produced, which facilitate the effectiveness of Hg⁰ removal. Li et al. (2013a) synthesized Ce-based catalysts using TiO₂ nanoparticles by an ultrasonic-assisted impregnation method, and reported that the addition of 1200 ppm SO₂ into a flue gas system enhanced the performance of Hg⁰ capture. In addition, the results of Ma et al. (2017) showed that the addition of CeO₂ improved the water vapor resistance of the catalyst, and even with 5% water vapor in the flue gas, the high-level removal efficiency of Hg⁰ was only slightly reduced. Considering the superior activity and the unique redox cycles of Ce^{4+}/Ce^{3+} couple, the incorporation of CeO₂ into other metal oxide catalysts is generally believed to improve their Hg⁰ removal performances.

Zhou et al. (2013) and Hou et al. (2014b) investigated the Hg^0 removal over CeO₂-TiO₂ catalysts and reported that when HCl or H₂S was present alone in the flue gas, more than 97% of Hg⁰ was captured, while the simultaneous presence of HCl and H₂S resulted a prohibitive effect on the effectiveness of Hg⁰ capture. Zhou et al. (2013) also found that the presence of H₂ and CO have a negligible effect on the capture of Hg⁰ at 150 °C. Zhang et al. (2015e) synthesized a series of Ce-based V2O5/TiO2 catalysts by an ultrasound-assisted impregnation method and found that the V(1)Ce(10)Ti catalyst had the best Hg^0 oxidation performance. Li et al. (2017d) examined the synergistic effect of CeO₂ and CuO using CuTi, CeTi and CuCeTi catalysts prepared by a sol-gel method. They found that, unlike the CuTi and CeTi catalysts, the Hg⁰ removal efficiency of CuCeTi catalyst at 200 °C was about 99.0%, the high value ascribed to the combined effect of the presence of both CeO₂ and CuO.

Selective catalytic reduction catalysts

Recently, selective catalytic reduction (SCR) systems have been applied in many coal-fired power plants for NO_x removal due to its higher economy of scale, efficiency, and selectivity. Typical selective catalytic reduction (SCR) catalysts usually apply TiO₂ and some catalytically active components (such as WO₃, V₂O₅ and/or MoO₃) as precursors and activators, respectively. The modification conditions and Hg⁰ removal capacities of SCR type catalysts are summarized in Table 2. V_2O_5 is the major active ingredient of the selective catalytic reduction (SCR) catalyst, which can be employed not only to control the emission of NO_x but also to remove Hg^0 from flue gas. Zhao et al. (2015c) reported that the V₂O₅-rich SCR catalyst exhibited a superior Hg⁰ removal performance in the range of 250–350 °C. For WO₃–V₂O₅/TiO₂ catalysts, the Hg⁰ oxidation in the presence of both O₂ and HCl was found to follow the Eley-Rideal mechanism (Gao et al. 2013a). Wang et al. (2015a) also investigated the Hg⁰ removal in CO₂-enriched flue gas using WO₃-V₂O₅/TiO₂ catalysts, and they found that high concentration of CO_2 (80 vol%) promoted the capture efficiency of Hg⁰, but inhibited the removal of NO. MoO₃ is often introduced into the catalyst's formulation to improve its resistance to SO₂ poisoning. Zhao et al. (2014) found that the V_2O_5 -MoO₃/TiO₂ catalyst was excellent Hg⁰ oxidation, and the Hg⁰ removal process could be explained by the Mars-Maessen mechanism. To further study the Hg⁰ capture performance of this catalyst system in actual flue gas, Zhao et al. (2015a) performed a test in a coal-fired power plant, and reported higher than 90% Hg⁰ removal efficiency.

Selective catalytic reduction (SCR) system is widely applied in coal-fired power plant to simultaneously control the emissions of NO_x and Hg⁰. However, the conventional selective catalytic reduction catalysts are not effective enough for the removal of Hg⁰ in the presence of low HCl concentrations and are often suppressed by the presence of SO_2 and NH_3 in the flue gas (Kamata et al. 2008). Therefore, some metal oxides are usually used to modify the selective catalytic reduction (SCR) catalysts. Huang et al. (2016) prepared the Fe₂O₃/SCR catalyst by an impregnation method and found that the introduction of Fe₂O₃ could significantly improve the Hg⁰ removal ability of the SCR catalyst. The active temperature window of Fe₂O₃/SCR catalyst was found to range from 150 to 450 °C, which is wider than that of conventional SCR catalysts. They suggested that the Fe³⁺ could react with HCl to release active Cl species by the Mars-Maessen mechanism and then the generated active Cl species could participate in the Hg⁰ removal by the L-H mechanism. The proposed plausible Hg⁰ oxidation mechanism is shown in Fig. 4.

Chi et al. (2017) prepared a series of Ce-Cu-modified selective catalytic reduction (SCR) catalysts by ultrasonicassisted impregnation method for simultaneous removal of Hg^0 and NO_x and found that a 7%Ce–1%Cu/SCR catalyst showed a superior performance at 200–400 °C. The catalyst also exhibited higher resistance to water vapor and SO₂. The Hg^0 removal performance of MnO_x -treated commercial SCR catalysts was also evaluated (Chiu et al. 2015), and the

Fig. 4 Schematic of the possible Hg^0 oxidation mechanism in HCl-O₂ on over the Fe₂O₃/SCR catalyst. The active chlorine species generated by the reaction of Fe³⁺ and HCl can react with adsorbed Hg^0 to form HgCl₂. The gas-phase O₂ in flue gas regenerated the chemisorbed oxygen and lattice oxygen (reproduced with permission from Huang et al. 2016)

results showed that both 5 and 10% MnO_x -impregnated SCR catalysts had higher Hg⁰ oxidation efficiency.

Activated carbon/cokes based sorbents

Activated carbon/cokes have been proven to be effective sorbents for Hg^0 removal, and sulfur, halogens, and metal oxides are the most common additives/modified reagents, which have been widely studied for the modifications of these sorbents to improve their removal efficiencies for Hg^0 . The modification conditions and Hg^0 removal capacities of activated carbon-/coke-based sorbents are summarized in Table 3.

Sulfured carbon sorbents

Sano et al. (2017) performed a laboratory-scale test of Hg^0 removal over sulfur-impregnated activated carbon and raw activated carbon and reported that S (sulfur) impregnation resulted in 50 times higher Hg^0 removal than the performance of the raw activated carbon. Hsi and Chen (2012) studied the effects of acidic/oxidizing gases, O₂, HCl, SO₂, and NO which are commonly found in the flue gas, on Hg^0 removal using simulated flue gas over sulfur-impregnated activated carbon. They observed the flue gas components had strong positive effect on the catalyst's performance, with the largest Hg^0 removal capacity of 2310 µg/g obtained in the presence of O₂, HCl and NO.

Ie et al. (2013) synthesized a series of innovative composite powdered activated carbon (PACs) by an impregnation method using aqueous-phase sodium sulfide (Na₂S) and vapor-phase elemental sulfur (S⁰) in different sequences and investigated their performances in the removal of Hg⁰ or HgCl₂. They found that the Hg⁰ and HgCl₂ removal capacities of powdered activated carbon (PACs) impregnated with aqueous Na₂S solution followed by gaseous sulfur (S⁰), respectively, were 1.98 and 1.42 times higher than those of the samples impregnated in the opposite sequence. Yao et al. (2014) also studied the performance of activated carbon fibers functionalized with sulfur-containing groups and reported that sulfur impregnation decreased the pore volume and surface area of activated carbon fibers. However, compared with the raw activated carbon fiber samples, the Hg⁰ removal capacity of sulfur-treated activated carbon fibers increased due to the incorporation of the sulfur groups.

Halogenated carbon sorbents

Zhou et al. (2015) prepared Br-based activated carbon by an impregnation method and evaluated the in-flight Hg⁰ capture performance in an entrained flow reactor. They found that the Hg⁰ removal efficiency of raw activated carbon was significantly enhanced by the NH₄Br impregnation. Yao et al. (2013) also prepared Br-based activated carbon fibers using KBr solution, and by KBr impregnation, bromine vapor, and electrochemical modification methods, respectively. For the brominated activated carbon fibers, the introduction of Br atoms promoted the Hg⁰ oxidation process. They also found that the brominated activated carbon fibers modified by bromine vapor and electrochemical methods using KBr solution exhibited stable Hg⁰ removal capacity (30–33% capture), which was retained up to 3 months. Rupp and Wilcox (2014) examined the effects of flue gas components (NO_x, SO_2) on Hg⁰ removal using brominated activated carbon fibers and reported that while NO_x promoted the oxidation of Hg⁰, SO₂ prevented the Hg⁰ adsorption, and the interaction of NO_x and SO₂ with Br decreased sorbent's performance.

Tsai et al. (2017) investigated CuCl₂-impregnated activated carbon for Hg⁰ removal using a fixed-bed reactor system. Results from the tests showed that the Cl-impregnated samples achieved better Hg⁰ removal capacity than nonimpregnated samples, with the Hg⁰ removal capacity of the 8% CuCl₂-impregnated sample reported to be 631.1 μ g/g. Li et al. (2017a) prepared NH₄Cl-modified activated carbons for Hg⁰ removal by an impregnation method, and they found that Cl-doped activated carbons exhibited a good performance for Hg⁰ capture. De et al. (2013) impregnated activated carbons using various halogens such as ammonium and potassium halides. They observed that the introduction of halide ions greatly enhanced the capacity of the activated carbons for Hg⁰ removal. For the same loading values of halide (I, Cl and Br) ions, the Hg⁰ capture performance of ammonium halide-modified activated carbon was higher than those of potassium halide-modified activated carbon. Also, the I-impregnated sample exhibited the highest Hg⁰

Raw sorbents	Name of modified sorbents	Simulated flue gas	RT* (°C)	MRE**	AC*** (mg/g)	References
		A : /TT ()	140	(,*)	01	
Activated carbon (AC)	AC-S	Air/Hg°	140	-	21	Sano et al. (2017)
AC	AC-400S	CO ₂ /H ₂ O/O ₂ /HCl/N ₂ / NO/Hg ⁰	150	-	2.31	Hsi and Chen (2012)
Powdered activated carbon (PAC)	$Na_2S + S^0$ -PAC	N ₂ /Hg ⁰	150	-	33.789	Ie et al. (2013)
ACF	NaSH-ACF	Air/Hg ⁰	-	-	>14	Yao et al. (2014)
AC	NH ₄ Br-AC	O ₂ /CO ₂ /CO/NO/SO ₂ / Hg ⁰	-	90.5	_	Zhou et al. (2015)
Activated carbon fiber	Br(v)-ACF	Air/Hg ⁰	-	-	64	Yao et al. (2013)
(ACF)	KBr-ACF				100	
	eBr-ACF				50	
	Br-ACF	CO ₂ /H ₂ O/N ₂ /O ₂ /Hg ⁰	140	97	_	Rupp and Wilcox (2014)
AC	HCAC	N ₂ /Hg ⁰	150	_	0.631	Tsai et al. (2017)
AC	ACNC15	O2/SO2/HCl/NO/N2/Hg0	180	71.9	_	Li et al. (2017a)
AC	KCl-AC	N ₂ /Hg ⁰	135	26	_	De et al. (2013)
	KBr-AC			85	_	
	KI-AC			100	_	
	NH ₄ Br-AC			> 50	_	
	NH ₄ I-AC			100	_	
AC	KI-AC	N ₂ /Hg ⁰	120	>90	_	Tong et al. (2017)
AC	CuO/AC-Hz	N ₂ /O ₂ /Hg ⁰	120	>72	-	Zhao et al. (2016b)
Semi-coke (SC)	Ce/SC	Air/N ₂ /Hg ⁰	260	95	_	Zhang et al. (2017a)
SC	Ce/SC	Air/N ₂ /Hg ⁰	260	>95	-	Zhao et al. (2017a)
AC	CeO ₂ -Mn/AC	N ₂ /Hg ⁰	120	90	-	Wu et al. (2017)
AC	MnCe/AC	N ₂ /O ₂ /Hg ⁰	190	>90	-	Xie et al. (2015)
SC	Mn/Ce-SC	N ₂ /O ₂ /Hg ⁰	260	>90	_	Zhang et al. (2016d)
AC	CoCe/AC	O ₂ /CO ₂ /NO/SO ₂ /N ₂ /Hg ⁰	170	>80	-	Wu et al. (2015b)
AC	Fe ₂ O ₃ -CeO ₂ /AC	O ₂ /CO ₂ /NO/SO ₂ /N ₂ /Hg ⁰	110	90	-	Wang et al. (2016c)
AC	AC-A30	N ₂ /Hg ⁰	30	>70	_	Zhang et al. (2015b)
AC	AC-020	N ₂ /Hg ⁰	25	> 50	37.05 μg/g	Zhang et al. (2016e)
AC	AC-C15T60	N ₂ /Hg ⁰	30	>96	_	Zhang et al. (2016c)

Table 3 Reaction conditions and Hg⁰ removal performance of carbon sorbents

*Reaction temperature

**Hg⁰ removal efficiency

***Adsorption capacity

removal capacity compared to Cl- and Br-impregnated samples.

Tong et al. (2017) synthesized the I-impregnated activated carbons using an impregnation method and investigated the Hg⁰ capture, and the adsorption mechanism and the effects of simulated flue gas components. They found that the formation of I₂ molecules on the surface of I-impregnated activated carbons significantly promoted Hg⁰ removal and proposed the plausible adsorption mechanism shown in Fig. 5. They also observed that low concentrations of SO₂ had a promotional effect on Hg⁰ oxidation, but high concentrations of SO₂ had a negative impact on Hg⁰ capture. They also found that the Hg⁰ removal efficiency significantly increased with increasing NO concentration from 0 to

100 ppm, while high NO concentration of 300 ppm showed antagonistic effects.

Metal oxides-modified carbon sorbents

Zhao et al. (2016b) studied the use of activated coke impregnated with CuO (a CuO/AC-H sample), focusing on the effects of the copper loading, reaction temperature, calcination temperature, and flue gas components (NO, O_2) on Hg⁰ capture, and found the optimal reaction temperature, copper loading value, and calcinations temperature to be 160 °C, 8%, and 300 °C, respectively, and that NO and O_2 showed positive effects on Hg⁰ capture. CeO₂ has been widely investigated as one of the catalysts for selective

Fig. 5 Possible adsorption mechanism for Hg^0 under simulated flue gas. The formation of I_2 molecules, SO_3^{2-}/SO_4^{2-} active species and NO₂ active species on the surface of I-impregnated activated carbons significantly promoted Hg^0 removal (reproduced with permission from Tong et al. 2017)

catalytic reduction (SCR) of NO_x, and Hg⁰ removal due to its large oxygen storage capacity and unique redox couple Ce^{3+}/Ce^{4+} , and excellent ability to shift between CeO₂ and Ce₂O₃ under oxidizing and reducing conditions, respectively (Zhang et al. 2017a; Zhao et al. 2017a). Zhang et al. (2017a) prepared CeO₂-supported semi-coke (SC) sorbents by an impregnation method and observed much better Hg⁰ removal capacity than that of unmodified semicoke (SC) but high concentration of H₂O vapor showed inhibitory effects. It was demonstrated that the Ce-OH groups formed by the reaction of CeO₂ and H₂O vapor consumed lattice oxygen on the surface of samples, with the concomitant effect of decreasing the Hg⁰ removal efficiency. Zhao et al. (2017a) also obtained similar results in studying the effect of water vapor on Hg⁰ removal performance over CeO₂-supported semi-coke (SC) sorbents. Wu et al. (2017), Xie et al. (2015), and Zhang et al. (2016d) prepared Ce-Mn-co-modified activated carbons (AC), Mn-Ce-mixed oxides-modified activated coke (MnCe/ AC), and Mn/Ce-modified semi-coke (Mn/Ce-SC) by an impregnation method, respectively, and found the modified sorbents to exhibit excellent Hg⁰ capture capability. Wu et al. (2015b) investigated the performance of CoCe/ AC sorbents prepared by an impregnation method for Hg⁰ capture from flue gas at 110-230 °C and reported superior performance compared to Ce/AC, Co/AC, and virgin AC, with a 92.5% Hg⁰ removal achieved at 170 °C. Based on the results obtained from XPS and TGA analyses, the valence transitions of Co^{3+}/Co^{2+} and Ce^{4+}/Ce^{3+} produced lattice oxygen, promoting Hg⁰ oxidation and removal. Wang et al. (2016c) also reported that activated coke (AC) impregnated with CeO2 and Fe2O3 (denoted Fe2O3-CeO2/ AC), significantly improved Hg⁰ removal capacity.

Plasma-treated carbon sorbents

In recent years, plasma modification has received widespread attention in research for functionalizing catalyst and sorbents. For example, non-thermal plasma produces energetic electrons, ions, and active radicals, which could improve the pore structure of sorbents and increase the active functional groups on the surface of the sorbents. Some investigators (Zhang et al. 2015b, 2016c, e) have shown that plasma modification could form multiple functional groups on the surface of sorbents, ameliorating the Hg⁰ removal process.

Zhang et al. (2015b) used a non-thermal plasma technology to modify activated carbon (AC) in air environment and found the modified sample to have a higher Hg^0 removal efficiency than the corresponding raw sample. The results of XPS showed that the modification by non-thermal plasma increased the content of ester groups (C(O)-O-C)and carbonyl groups (C=O) on the activated carbon, which played a key role in Hg⁰ removal. Zhang et al. (2016e) also obtained the similar results in studying the effect of oxygen non-thermal plasma modification, reporting that the modified activated carbon (AC) exhibited a high removal performance for Hg⁰ from flue gas. Zhang et al. (2016c) modified activated carbon (AC) by Cl₂ non-thermal plasma method and found the sample to greatly enhance Hg⁰ removal by increasing the chlorinated (Cl) active sites on the surface of the activated carbon (AC). The corresponding XPS analysis indicated that a large number of C-Cl groups resulted from the treatment, which could have oxidized the Hg^0 to $HgCl_2$, as illustrated in Fig. 6.

Biomass char-based sorbents

The results of some studies (Hua et al. 2010; Lee et al. 2006; Diamantopoulou et al. 2010) have indicated that injection of activated carbon into the flue gas system is a promising method for Hg⁰ removal from flue gas. However, large activated carbon (AC)/Hg⁰ ratio and high operation costs have limited large-scale applications (Hsi et al. 2002; Scala et al. 2011). Biomass char is the by-product of biomass pyrolysis under oxygen-free conditions. With the low costs and the simplicity of preparation, it could be considered as an attractive alternative to activated carbon (AC) (Liu et al. 2011). Therefore, pyrolysis chars, which are made from cheap and renewable resources, have been extensively studied recently in the field of Hg⁰ removal (Hsi et al. 2011; Klasson et al. 2010; Fuente-Cuesta et al. 2012). However, they require physical techniques to modify pore structure such as specific surface area, pore volume, and pore size and/or chemical modification to increase active functional groups on the surface. For example, the use of active ingredients such as halogens, metal oxides, and acid to modify biochars has

Fig. 6 Mechanism of modified activated carbon (AC) for Hg^0 removal. A large number of C–Cl groups generated by the Cl_2 non-thermal plasma treatment can oxidize Hg^0 to $HgCl_2$, thus promoted the removal of Hg^0 (reproduced with permission from Zhang et al. 2016c)

been reported to improve their performance for Hg⁰ removal. The modification conditions and Hg⁰ removal capacities of modified biochars are summarized in Table 4.

The results of a number of studies (Johari et al. 2016a, b; Klasson et al. 2014) have suggested that the pyrolysis conditions could also substantially influence the yield and physicochemical properties of chars. Johari et al. (2016b) prepared a series of coconut pith (CP) chars at different pyrolysis temperatures and found the Hg⁰ removal capacity to increase with increasing pyrolysis temperature, with the highest removal capacity of 6067.49 μ g/g obtained at 900 °C. Klasson et al. (2014) prepared four different biochars (almond shells, cottonseed hulls, lignin, and chicken manure) at different pyrolysis temperature and reported that chicken manure exhibited the best Hg⁰ removal performance of 95% from flue gas at 650 and 800 °C.

Halogens-modified biochar

Many studies have reported that chemical modifications of sorbents using halogens could significantly enhance the Hg⁰ removal from flue gas (Li et al. 2015a, b; Shen et al. 2015a). The halogens (chloride, bromide, and iodide) have been demonstrated as effective reagents for modification of sorbents to improve their performance in Hg⁰ removal from flue gas. Li et al. (2015a) and Shen et al. (2015a) prepared low-cost sorbents using municipal solid waste and medicinal residues by a chloride impregnation method and reported that NH₄Cl-modified sorbents showed improved performance for Hg⁰ removal. Li et al. (2015b) investigated the effects of flue gas composition on Hg⁰ removal using NH₄Cl-impregnated medicine residue biochars and reported that the presence of O₂ and NO increased Hg⁰ removal, but water vapor suppressed the removal process. A dual effect of SO₂ concentration was observed on Hg⁰ capture, that is, low SO₂ concentration enhanced Hg⁰ removal while high SO₂ concentration was antagonistic.

Li et al. (2015c) carried out a comparative study of NH_4Cl modified biochars from three solid wastes (medicinal residues, municipal solid wastes, and cotton straw), showing that the chemically modified biochars, especially the modified

cotton straw char exhibited higher Hg⁰ removal capacity than modified activated carbon (AC). In addition, the biochar derived from waste tire also demonstrated an excellent Hg⁰ removal performance, resulting from generated mercury sulfide chemisorption sites on the surface of the biochar (Li et al. 2017b). Shen et al. (2017) studied NH₄Cl-modified biochar sorbents derived from waste tea and found that the generated C-Cl and C=O groups on the surface of the biochar promoted the oxidation of Hg⁰, resulting in an excellent Hg⁰ removal. Xu et al. (2016c) synthesized a novel Cl-Char composite by the co-pyrolysis of biomass (wood and paper) and polyvinyl chloride (PVC) and reported a 90% Hg⁰ removal capacity at 140 °C, which was more than 2.5–5 times than that of a raw char. In addition, biochars modified by metal chlorides have been evaluated for their Hg⁰ capture performances from flue gas (Shu et al. 2013; Tan et al. 2015). Shu et al. (2013) studied mulberry twig chars (MT) modified by ZnCl₂, H₂O₂, and NaCl, respectively, and reported that the ZnCl₂-impregnated char was better than the other chemically treated samples for Hg⁰ removal. Tan et al. (2015) also compared Hg⁰ capture performance of bamboo charcoal (BC) impregnated by ZnCl₂ and FeCl₃ and found that the impregnated BCs was better than raw bamboo charcoal (BC), with the FeCl₃-impregnated BCs showing the highest Hg⁰ removal efficiency (>99.9%) at 140 °C.

It is well known that chemical modification of sorbents with bromine plays a key role in the adsorption and oxidation of Hg⁰ (Yang et al. 2018a, b; Tang et al. 2017; Zhu et al. 2016). Yang et al. (2018a, b) reported that sargassum chars' effectiveness for Hg⁰ removal was greatly improved after NH₄Br and NH₄Cl impregnation, with the NH₄Br-modified samples showing improved performance attributable to the generation of C-Br and C=O groups on the surface of the sorbents. Tang et al. (2017) developed a low-cost sorbent based on rice husk char (RHC) using HBr impregnation method and demonstrated that the modified rice husk char (RHC-HBr) had higher Hg⁰ removal capacity $(57.84 \,\mu g/g)$ than those of activated carbon (AC). Zhu et al. (2016) evaluated the performances of chemically treated samples of rice husk char (RHC) and commercial coalbased activated carbon (CAC) and found that modification of

Table 4	Reaction conditions and Hg ⁰	removal performance of t	oiochars
	reaction containions and rig	removal periormanee or o)ioenaio

Raw sorbents	Name of modified sorbents	Simulated flue gas	PT* (°C)	RT** (°C)	MRE*** (%)	AC**** (µg/g)	References
Biomass chars	PW1	O ₂ /SO ₂ /NO ₂ /HCl/Hg ⁰ /N ₂	_	150	_	172	Fuente-Cuesta et al. (2012)
Coconut pith chars	CP700	N ₂ /Hg ⁰	700	-	_	2395.98	Johari et al. (2016a, b)
	CP900	-	900			6067.49	
Chicken manure	/	HCl/NO _x /SO ₂ /O ₂ /CO ₂ / Hg ⁰ /N ₂	800	150	_	250	Klasson et al. (2014)
Municipal solid waste	C6WN5	N ₂ /O ₂ /Hg ⁰	600	80	_	157.7	Li et al. (2015a)
Medicine residue	M6WN5	$N_{2}O_{2}/Hg^{0}$	600	120	-	869.6	Shen et al. (2015a) and Li et al. (2015b)
Municipal solid wastes	W6WN5	N ₂ /O ₂ /Hg ⁰	600	120	_	160	Li et al. (2015c, 2017b)
Cotton straw char	C6WN5					11400	
Medicinal residues	M6WN5					840	
Waste tire	T6WN5			_	83.2	_	
Waste tea	HCU-5	N ₂ /O ₂ /Hg ⁰	500	120	>90	_	Shen et al. (2017)
Paper/Wood	Paper/PVC	N ₂ /Hg ⁰	700	140	90	_	Xu et al. (2016c)
	Wood/PVC	2 -					
Mulberry twig chars	MT873-A-Z5	N2/NO/SO2/Hg0	600	90	_	29.55	Shu et al. (2013)
Bamboo charcoal	B1/B2	O ₂ /SO ₂ /NO/CO ₂ /Hg ⁰ /N ₂	_	140	88/92	_	Tan et al. (2015)
	B3/B4				99.9		
Sargassum chars	S8Br5	N ₂ /SO ₂ /NO/O ₂ /H ₂ O/Hg ⁰	800	160	93.96	952.4	Yang et al. (2018a, b)
-	S8C15				91.67	625.0	
Rice husk char	RHC-HBr	O2/CO2/SO2/NO/N2/Hg0	600	150	_	57.84	Tang et al. (2017)
Rice husk char	RBr	N ₂ /SO ₂ /NO/Hg ⁰	600	150	>70	> 30	Zhu et al. (2016)
	RCl				>60	> 25	
Bamboo charcoal	BC-I	O2/SO2/NO/CO2/Hg0/N2	_	140	99.9	_	(Tan et al. 2012b)
				180	>90	_	
Sargassum chars	S8KI3	N ₂ /SO ₂ /NO/O ₂ /H ₂ O/Hg ⁰	800	160	94.1	_	Liu et al. (2018)
Enteromorpha chars	E8KI3				95.7		
Cotton straw char	C6WNC11	N ₂ /Hg ⁰	600	120	_	1239.2	Li et al. (2016a, 2017c)
	C6WNBr1	-				2781.9	
	C6WNI1					7752.0	
Sawdust	Fe _{1.5} MBC ₆₀₀	N ₂ /O ₂ /Hg ⁰	600	120	>90	1279.6	Yang et al. (2016a)
Wheat straw char	WS8Fe0.1	N ₂ /H ₂ O/O ₂ /Hg ⁰	600	50	>80	_	Zhou et al. (2017)
Wheat straw char	MnCe0.12(2/1)/WSU250	N ₂ /H ₂ O/O ₂ /NO/SO ₂ /Hg ⁰	600	150	83.6	_	Yang et al. (2017b)
Rice straw char	CuCe0.18(1/5)/RSU(260)	N ₂ /H ₂ O/O ₂ /NO/SO ₂ /Hg ⁰	600	150	79.93	_	Xu et al. (2018)
Peanut shells	6Mn-6Zr/PSC-I3	N ₂ /O ₂ /Hg ⁰	600	150	>90	5587.0	Zeng et al. (2017)
Bamboo char	BC2	N ₂ /O ₂ /Hg ⁰	_	160	>70	294.1	Xu et al. (2016a)
Waste tire	T6 N	N ₂ /O ₂ /Hg ⁰	600	120	_	_	Li et al. (2015d)
	T6S						
Leather industry waste	BCT0.33	N ₂ /O ₂ /Hg ⁰	750	150	_	2007	Lopez-Anton et al. (2015)
Corn stalk char	BC-50-9	N ₂ /Hg ⁰	700	140	_	269.4	Niu et al. (2017)
Tobacco straw	T6C1	Air/Hg ⁰	600	150	84.2	583.0	Wang et al. (2018)
Rice straw	R6C1	-			83.9	445.1	- · ·
Millet straw	M6Cl				81.1	444.3	
Wheat straw	W6C1				52.7	217.6	
Corn straw	C6C1				42.7	150.8	
Black bean straw	B6C1				5.3	12.6	

*Pyrolysis temperature

**Reaction temperature

***Hg⁰ removal efficiency

****Adsorption capacity

 NH_4Cl and NH_4Br significantly increased the Hg^0 removal efficiency of rice husk char compared to CAC and that the NH_4Br -modified rice husk char exhibited the highest Hg^0 removal performance.

Tan et al. (2012b) reported that KI modification of bamboo charcoal (BC) by an impregnation method, while it resulted in the decrease in the total volume and BET surface area, the modified BC (BC-I) exhibited superior capacity for Hg⁰. The results of XPS analysis of the used samples appear to support the generations of C-I_x compounds and I₂ and subsequent reactions with Hg⁰ to form iodated mercuric compounds, thus contributing to a higher Hg⁰ removal efficiency. Liu et al. (2018) also obtained similar results in their study of the removal of Hg⁰ using the KI-modified sargassum and enteromorpha chars. Li et al. (2016a, 2017c) synthesized cotton straw char sorbents using three different ammonium halides to capture Hg⁰ from flue gas and found that the Hg⁰ removal efficiency was in the order of $NH_4I > NH_4Br > NH_4Cl$. It was also noted that high reaction temperature improved the Hg⁰ removal performance of the NH₄I-modified sorbents.

Metal oxides-modified biochar

In recent years, metal oxides have been widely studied as effective sorbent modifiers for Hg^0 capture due to their low costs and high activities. Among metal oxides used to modify biochars-based sorbents for Hg^0 capture are FeO_x , CeO_x , CuO_x , MnO_x , and ZrO_2 (Yang et al. 2016a, 2017b; Zhou et al. 2017; Xu et al. 2018; Zeng et al. 2017). Yang et al. (2016a) prepared a novel magnetic sorbents (MBC) based on sawdust char by one-step pyrolysis of FeCl₃-laden method and showed that the modified sample has improved

Hg⁰ removal capacity compared with those of raw biochar. XPS analysis indicated that the generated Fe₃O₄ and C=O groups were the major active oxidation/adsorption sites for Hg⁰ removal. The plausible mechanism of Hg⁰ removal proposed is depicted in Fig. 7.

Zhou et al. (2017) studied Hg⁰ removal by wheat straw char impregnated with K₂FeO₄ reagent, and the results appeared to show that K₂FeO₄ impregnation effectively improved pore structure of the wheat straw char, leading to enhancement in Hg⁰ removal. Yang et al. (2017b) further studied the Hg⁰ removal performance of wheat straw char modified by Mn-Ce-mixed oxides and found that the Mn/Ce redox cycle played an important role in Hg⁰ removal. Xu et al. (2018) modified rice straw char (RS) by impregnation with Cu-Ce-mixed oxides to remove Hg⁰ from flue gas and reported significant enhancement up to 95.26% efficiency. Zeng et al. (2017) prepared metal oxides (MnO_x and ZrO_2) and halide ions (I⁻) modified peanut shells char (6Mn-6Zr/PSC-I3) and demonstrated that the sample exhibited superior Hg⁰ removal capacity (15028.4 µg/g). Based on XPS analysis, two reaction stages could be detected in the Hg⁰ removal process. As shown in Fig. 8, at the initial reaction stage, Hg⁰ was first removed by the chemical adsorption sites of C-I groups. The Hg⁰ oxidation caused by the hydroxyl (OH) oxygen and lattice oxygen played a key role at the final reaction stage.

Other modification

In addition to the modification of biochar sorbents with halogens and metal oxides, other chemical modification methods involving the use of acid and alkali to increase surface activity, and physical modification such as plasma mainly to

Fig. 7 Mechanism of magnetic sorbents for Hg^0 removal. The generated Fe_3O_4 and C=O groups on the surface of novel magnetic sorbents (MBC) by one-step pyrolysis of FeCl₃-laden method significantly promoted Hg^0 removal (reproduced with permission from Yang et al. 2016a)

Fig.8 Reaction mechanism of 6Mn-6Zr/PSC-I3 for Hg^0 removal at different reaction stages. At the initial reaction stage, Hg^0 is first removed by the chemical adsorption sites of C-I groups. And the Hg^0

change pore structure, are also employed to improve the Hg⁰ removal performance of sorbents derived from biomass char (Xu et al. 2016a; Li et al. 2015d; Lopez-Anton et al. 2015; Niu et al. 2017; Wang et al. 2018). Xu et al. (2016a) modified bamboo char (BC) using an oxidizing agent (HNO₃) and showed that the modification by HNO_3 increased the Hg^0 capture efficiency from the flue gas. The improvement was ascribed to the oxygen functional groups (such as carboxylate, carboxyl, and carbonyl groups) on the modified bamboo. In addition, the presence of water vapor improved the Hg⁰ removal performance. Li et al. (2015d) modified pyrolyzed char from waste tire by H₂SO₄ and HNO₃, respectively. The results showed that the raw pyrolyzed char (T6) exhibited superior Hg⁰ removal performance compared with those of acid-modified char (T6 N and T6S), attributable to the loss of sulfide functional groups on the modified samples.

Lopez-Anton et al. (2015) developed a low-cost sorbent based on leather industry waste by KOH activation and showed that the modified samples achieved the highest Hg⁰ removal capacity under the N_2/O_2 atmosphere. Niu et al. (2017) treated corn stalk samples by the dielectric barrier discharge (DBD) plasma method under N₂/O₂/H₂O atmosphere and found the DBD plasma-treated corn stalk sorbents to have a higher Hg⁰ removal capacity compared with that of a raw corn stalk. The XPS analysis indicated that oxygencontaining functional groups increased significantly on the surface of the samples after the dielectric barrier discharge (DBD) plasma treatment, which played an important role in the removal of Hg^0 . Wang et al. (2018) treated six straw chars by Cl₂ non-thermal plasma method and found that the Hg⁰ removal efficiency increased from 10% to over 80% after the treatment. For example, as shown in Table 4, the Hg⁰ removal capacity of T6Cl was more than 36 times than that of T6 (tobacco straw). The improved results could be

oxidation caused by the hydroxyl (OH) oxygen and lattice oxygen played a key role at the final reaction stage (reproduced with permission from Zeng et al. 2017)

ascribed to the generated C–Cl groups on the samples, which served as activated sites for Hg⁰ removal.

Fly ash-based sorbents

Many investigators (Wang et al. 2016b; Hower et al. 2010) have identified fly ash (FA), a by-product of coal combustion as a promising alternative to activated carbon (AC) due to its very low cost and abundance. Related studies indicated that the fly ash has the ability to oxidize and adsorb Hg⁰ in flue gas because of the presence of some oxides such as CaO, TiO₂, Fe₂O₃, CuO, Al₂O₃, and unburned carbon as part of its composition (Borderieux et al. 2004; Guo et al. 2010; Dunham et al. 2003). However, compared with activated carbon (AC), the Hg⁰ removal performance of the fly ash is relatively poor (Cao et al. 2009) and requires some physical and chemical modification methods including the use of halogens and metal oxides to improve its capacity for Hg⁰ (Zhao et al. 2010; Bisson et al. 2013). The modification conditions and Hg⁰ removal capacities of raw fly ash and modified sorbents are summarized in Table 5.

It is well known that the compositions of fly ash played an important role in Hg⁰ removal (Wang et al. 2016a; Yang et al. 2016e, 2017a, c). Wang et al. (2016a) investigated the Hg⁰ removal mechanism and performance of fly ash, and they found that the fly ash had a 60% Hg⁰ removal efficiency in simulated flue gas and that the presence of TiO₂, Fe₂O₃, and Al₂O₃ provided better improvement in performance compared to CaO and MgO and Al₂O₃. Furthermore, it was demonstrated that the reaction process of heterogeneous oxidation on fly ash followed an Eley–Rideal mechanism, with Fe₂O₃ considered as one of the active components on fly ash for Hg⁰ removal (Yang et al. 2017a). Yang et al. (2016e, 2017c) reported Hg⁰ removal at 100 °C of 89.5% for Fe₂O₃

Tabl	e 5	Reaction	conditions a	and Hg ^o	removal	performance of	f raw fl	ly ash an	d modified	sorbents
------	-----	----------	--------------	---------------------	---------	----------------	----------	-----------	------------	----------

Raw sorbents	Name of modified sorbents	Simulated flue gas	RT* (°C)	MRE** (%)	AC*** (μg/g)	References
Fly ash	-	NO/HCl/SO ₂ /O ₂ /CO ₂ /N ₂ /Hg ⁰	_	60	-	Wang et al. (2016a)
Fly ash	ZJM-HF	N ₂ /O ₂ /Hg ⁰	250	50	_	Yang et al. (2017a)
Fly ash	-	N ₂ /CO ₂ /O ₂ /HCl/Hg ⁰	100	89.5	_	Yang et al. (2016e, 2017c)
Fly ash	-	Air/Hg ⁰	_	-	4.5 ng/mg	Zhang et al. (2017c)
					>2.7 ng/mg	
					3.5 ng/mg	
					4.0 ng/mg	
Fly ash	A-HBr	Air/Hg ⁰	150	98.4	_	Zhang et al. (2014b)
	A-CaCl ₂			67.5		
	A-CaBr ₂			46.4		
Fly ash	-	Air/Hg ⁰	_	-	100	Song et al. (2014)
Fly ash	-	Air/Hg ⁰	150	44	_	Zhang et al. (2015f)
Fly ash	-	Air/Hg ⁰	150	66.1	_	Zhang et al. (2017d)
Fly ash	KCl-FA (Fly ash)	O2/CO2/N2/SO2/HCI/Hg0	120	> 50	_	Li et al. (2013b)
	KBr-FA (Fly ash)			>70		
	KI-FA (Fly ash)			>90		
Fly ash	CuCl2-FA (Fly ash)	N ₂ /O ₂ /SO ₂ /HCl/Hg ⁰	100	>95	_	Xu et al. (2013)
	FeCl ₃ -FA (Fly ash)			>70		
	CuBr ₂ -FA (Fly ash)			100		
Fly ash	CuCl ₂ -MF (Fly ash)	N ₂ /O ₂ /CO ₂ /HCl/SO ₂ /NO/Hg ⁰	150	90.6	_	Yang et al. (2016b, c, d)
Fly ash	Mn(2)-Fe(3)-FA	Air/N ₂ /Hg ⁰	120	98	_	Xing et al. (2012)
Fly ash	Co/FA (Fly ash)	Air/N ₂ /Hg ⁰	80	76	-	Xu et al. (2014b)

*Reaction temperature

**Hg⁰ removal efficiency

***Adsorption capacity

and investigated the Hg⁰ reaction mechanism on its surface in the presence of HCl, suggesting that the main reaction process was in accordance with: Hg⁰ \rightarrow FeHgCl(s) \rightarrow HgCl₂.

Halogens modification is considered to be an effective method to enhance the adsorption and oxidation of Hg⁰ (Zhang et al. 2017c). Zhang et al. (2014b) compared three different halogenated fly ashes in an entrained flow reactor and found that the fly ash modified by HBr exhibited better Hg⁰ removal ability as compared with metal halogens such as CaCl₂ and CaBr₂. Song et al. (2014) and Zhang et al. (2015f) also studied the Hg⁰ removal performance of HBrmodified fly ash in a fixed-bed reactor and an entrained flow reactor, respectively, and found significant improvement over unmodified fly ash. Zhang et al. (2017d) further investigated the effect of NO on Hg⁰ removal of HBr-modified fly ash in an entrained flow reactor and demonstrated that the introduction of NO improved the Hg⁰ removal performance of the fly ash, as a result of the reaction of NO and HBr in the presence of O₂. Li et al. (2013b) developed some halogenmodified fly ash by an impregnation method and found that compared to bromine and chlorine, the iodine-modified fly ash exhibited better Hg⁰ removal performance. It has been shown that both the metal ions and halogen ions contained in metal halogens acted as active sites and improved the Hg⁰ removal performance (Xu et al. 2013; Yang et al. 2016b, c, d). Xu et al. (2013) suggested that metal halogens, such as CuBr₂, CuCl₂, and FeCl₃ loaded on fly ash, promoted the removal of Hg⁰ from flue gas due to the positive role played by Cu²⁺ and Fe³⁺ cations. Yang et al. (2016b, c, d) developed a novel magnetic catalyst (CuCl₂-MF) based on CuCl₂ modified fly ash and found that the fly ash modified by 6% CuCl₂ achieved 90.6% Hg⁰ removal from flue gas at 150 °C. In addition, when HCl was introduced into the flue gas, the CuCl₂-MF catalyst exhibited an excellent resistance to SO₂ poisoning. XPS and EPR analyses suggested that Cu and Cl adsorption sites were involved in the Hg⁰ removal process. As shown in Fig. 9, the reaction between $CuCl_2$ and Hg^0 appears cyclical in the presence of HCl and O₂. In addition, the regeneration performance of CuCl2-MF catalyst was also studied. The results of this study indicated that the regenerated catalyst showed a relatively higher Hg⁰ removal capacity after thermal desorption and restoration of HCl and O₂.

In recent years, some metal oxides (e.g., manganese oxides, cobalt oxides, and iron oxides) have been used to

Fig. 9 Reaction process for Hg^0 removal over $CuCl_2$ -MF sample in the presence of HCl and/or O_2 . The Hg^0 removal over $CuCl_2$ -MF samples is attributed to the synergistic role of both Cu and Cl atoms in CuCl₂, and the reaction between $CuCl_2$ and Hg^0 appears cyclical in the presence of HCl and O_2 (reproduced with permission from Yang et al. 2016b, c, d)

modify fly ash (FA) before its use to remove Hg^0 from flue gas. Xing et al. (2012) modified fly ash by manganese oxides and iron oxides and found that modification with Mn and Fe increased the Hg^0 removal efficiency. In particular, the Mn(2)-Fe(3)-FA samples exhibited the highest Hg^0 removal efficiency compared with raw fly ash in the presence of O₂. The XPS analysis indicated that the Mn⁴⁺ and Fe³⁺, which served as active sites, could react with absorbed Hg^0 to form HgO, thereby promoting the Hg^0 removal. Xu et al. (2014b) synthesized Co-modified fly ash by a wet impregnation method and found that the sample impregnated with 9 wt% Co was very effective in Hg^0 capture, attributable to the presence of Co_3O_4 and its reaction with Hg^0 to form mercury oxides as shown in Fig. 10.

Mineral material-based sorbents

Mineral material-based sorbents have been widely studied for the treatment of Hg^0 removal in flue gas due to its low prices, abundance, and environmentally benign nature. However, various nature mineral sorbents such as zeolites, clays, and bentonites have a relatively poor capacity for Hg^0 removal, prompting the use of some agents such as halogens, metal halogens, and metal oxides under suitable modification conditions summarized in Table 6, to improve their effectiveness.

Zeolites are regarded as promising sorbents and good alternatives to activated carbon, due to their unique framework structures, favorable cation exchange properties and low cost (Wang et al. 2015b; Du et al. 2014; Chiu et al. 2014; Qi et al. 2015; Fan et al. 2012a, b). Wang et al. (2015b) investigated some zeolite sorbents for Hg⁰ removal performance and demonstrated an efficiency of over 75% within 480 min at 100 °C. Du et al. (2014) developed CuCl₂-impregnated zeolites, and in general, found their over 80% Hg⁰ removal performances were comparable to those of activated carbons. Chiu et al. (2014) further studied the effect of CuCl₂ modification on the physicochemical properties zeolites and their resulting effectiveness in the simultaneous removal of Hg⁰, NO, and SO₂. The results of this study showed that the introduction of CuCl2 decreased the pore volume and total surface area, and the CuCl₂-modified samples exhibited higher Hg⁰ removal performances compared with their unmodified equivalents under both simulated flue gas and N₂ atmospheres. Qi et al. (2015) investigated the performance of FeCl₃-modified zeolites (FeCl₃-HZSM-5) and demonstrated that the improved Hg⁰ capture efficiency obtained was due to higher surface areas and the surface-generated active Cl species. Metal oxides, with strong active and thermal stabilities, have been used as modification additives to improve the Hg⁰ removal capacity of sorbents. Fan et al.

Fig. 10 Reaction mechanism of Hg^0 removal. The generated Co^{3+} on the surface of fly ash sorbents significantly promoted Hg^0 removal and O_2 played a crucial role in oxidation reactions (reproduced with permission from Xu et al. 2014b)

Raw Sorbents	Name of modified sorbents	Simulated flue gas	RT* (°C)	MRE** (%)	AC*** (μg/g)	References
Zeolite	Sample G	H ₂ S/H ₂ /CO/N ₂ /Hg ⁰	100	>75	_	Wang et al. (2015b)
Zeolite	CuCl ₂ -Z	O ₂ /CO ₂ /H ₂ O/HCl/SO ₂ /NO/N ₂ /Hg ⁰	300	> 80	-	Du et al. (2014)
Zeolite	MCM-8%	N ₂ /Hg ⁰	150	83.4	1325	Chiu et al. (2014)
		N ₂ /NO/SO ₂ /O ₂ /HCl/CO ₂ /Hg ⁰		73.4	1133	
Zeolite	FeCl ₃ -HZSM-5	N ₂ /O ₂ /NO/HCl/SO ₂ /Hg ⁰	120	>95	-	Qi et al. (2015)
Zeolite	CeO ₂ /HZSM-5	NO/CO ₂ /SO ₂ /H ₂ O/O ₂ /Hg ⁰	200	96	-	Fan et al. (2012a)
Zeolite	Cu/HZSM-5	NO/CO ₂ /SO ₂ /NH ₃ /O ₂ /Hg ⁰	250	90	_	Fan et al. (2012b)
Clay	KBr-clay	N ₂ /O ₂ /SO ₂ /H ₂ O/Hg ⁰	180	> 57	52.96	Cai et al. (2014)
	KI-clay			> 31	487.80	
Clay	KI-Ti-PILC	$N_2/O_2/Hg^0$	180	>65	526.32	Shen et al. (2015b)
Clay	15CeTPC	$N_2/O_2/Hg^0$	300	88.2	_	He et al. (2016a)
Clay	6Ce6MnTiP	$O_2/N_2/Hg^0$	250	72	_	He et al. (2016b)
Bentonite	Br-Ben/Na	N ₂ /Hg ⁰	140	>90	-	Li et al. (2014b)
Bentonite	Cu-Ben	N ₂ /O ₂ /CO ₂ /Hg ⁰	120	>90	-	Ding et al. (2012)
	Cl-Ben			>45		
	I-Ben			>90		
	Br-Ben			>10		
Bentonite/Starch	B-S-I	$N_2/O_2/Hg^0$	120	100	604.3	Shao et al. (2016)

Table 6 Reaction conditions and Hg⁰ removal performance of mineral material-based sorbents

*Reaction temperature

**Hg⁰ removal efficiency

***Adsorption capacity

(2012a, b) studied the Hg⁰ removal from flue gas using both CeO₂- and CuO-modified zeolites in a laboratory-scale fixed-bed system. They found that not only did they improve Hg⁰ removal compared to raw zeolite (HZSM-5), but the CeO₂/HZSM-5 and Cu/HZSM-5 also exhibited higher activities for NO removal.

Clay has been used as sorbent for Hg⁰ removal due to its high abundance, good thermal stability, and layered structure. Cai et al. (2014) studied Hg⁰ removal using KI- and KBr-modified clavs in simulated flue gas conditions. The results indicated that the modification of KI and KBr significantly enhanced the Hg⁰ removal, and the KI-modified clays had better Hg⁰ removal capacity compared with KBrmodified clays. Based on these results, Cai et al. (2014) and Shen et al. (2015b) further synthesized KI-impregnated titanium-pillared clay (KI-Ti-PILC) for use to capture Hg⁰ in flue gas and found that the much better performance over the raw clay was due to its more developed mesopores and higher specific surface area. Also, some metal oxides such as CeO₂ and MnO_x have been employed as modification additives due to their higher oxidation activities for Hg⁰ capture (He et al. 2016a, b). He et al. (2016a) developed a CeO₂-modified pillared clay sorbent via an impregnation method, and they found that the sorbent (15CeTPC) showed a high oxidation activity of 88.2% for Hg⁰ in flue gas at 300 °C in the presence of 5% O2. He et al. further synthesized Ce-MnO_x-modified pillared clay catalysts (Ce-MnO_x/Ti-PILC), which also showed excellent Hg⁰ removal performance (He et al. 2016b).

Bentonite, a type of clay mineral composed of montmorillonite, has been also used for treatment of Hg⁰ in flue gas (Li et al. 2014b; Ding et al. 2012; Shao et al. 2016). Li et al. (2014b) synthesized the ammonium bromide-modified bentonite via an impregnation method and found that the modification enhanced the Hg⁰ removal efficiency. Ding et al. (2012) also synthesized a number of bentonite-based sorbents modified by CuCl₂, NaClO₃, KBr, or KI, and reported that the KI-modified and CuCl2-modified samples achieved better performance of about 90% Hg⁰ removal at 120 °C. Furthermore, Shao et al. (2016) synthesized a novel KI-modified bentonite-starch sorbent (B-S-I) and found it to be more effective for Hg⁰ removal than that of KI-modified bentonite sorbent (B-I). It was suggested that the starch-iodine complex formed by the reaction of iodine and starch promoted Hg^0 removal via the ability to release I₂, which could react with Hg⁰ to form iodated mercuric compounds, thus promoting Hg⁰ removal, as shown in the reaction mechanism depicted in Fig. 11.

Fig. 11 Reaction mechanism of Hg^0 removal by B-S-I. The starchiodine complex formed by the reaction of iodine and starch promoted Hg^0 removal via the ability to release I_2 , which could react with Hg^0

to form iodated mercuric compounds, thus promoted Hg^0 removal (reproduced with permission from Shao et al. 2016)

Other novel Hg⁰ removal technologies

In addition to the catalysts and sorbents extensively discussed above, other novel capture processes for Hg⁰ in flue gas systems involving photocatalysis, plasma catalytic oxidation, and microwave catalytic oxidation under various modification conditions have been developed as attractive alternatives to conventional technologies, and are summarized in Table 7 (Wu et al. 2015a; Zhuang et al. 2014; Zhang et al. 2016a; An et al. 2016; Yang et al. 2012a, b; Liu et al. 2015a; Wei et al. 2015a, b).

Table 7 Reaction conditions and Hg⁰ removal performance of novel removal methods

Novel removal methods	Modification reagents	Name of modified sorbents	Simulated flue gas	RT* (°C)	MRE** (%)	References
Photocatalysis	Ti(SO ₄) ₂	TiO ₂	Air/Hg ⁰	55	82.75	Wu et al. (2015a)
	TiO ₂	CTNTs	N ₂ /O ₂ /Hg ⁰	20	>90	Zhuang et al. (2014)
	Bi(NO ₃) ₃ /KCl	BiOCl	N ₂ /O ₂ /CO ₂ /Hg ⁰	-	50	Zhang et al. (2016a)
	Bi(NO ₃) ₃ /KBr	BiOBr			90	
	Bi(NO ₃) ₃ /KI	BiOI			>95	
Plasma	Plasma/O ₂	_	N ₂ /O ₂ /SO ₂ /NO/HCl/Hg ⁰	110	99.1	An et al. (2016)
	TiCl ₄	TiO ₂ -B	N ₂ /H ₂ O/Hg ⁰	140	98.4	Yang et al. (2012a, b)
	TiCl ₄	TiO ₂ -B	N ₂ /O ₂ /HCl/Hg ⁰	140	94	
	TiO ₂	TiO ₂	N ₂ /O ₂ /HCl/Hg ⁰	25	71	Liu et al. (2015a)
	SiO ₂	SiO_2			15	
	$TiO_2/Mn(NO_3)_2$	Mn/TiO ₂			>90	
	$SiO_2/Mn(NO_3)_2$	Mn/SiO ₂			>80	
Microwave	$Mn(NO_3)_2$	Mn/y-Al ₂ O ₃	Air/O ₃ /Hg ⁰	_	92.2	Wei et al. (2015a)
	Mn(NO ₃) ₂	Mn/zeolite	Air/O ₃ /Hg ⁰	>90	>92	Wei et al. (2015b)

*Reaction temperature

**Hg0 removal efficiency

Photocatalytic oxidation has been considered as a promising technology to remove Hg⁰ in flue gas because it is a green process with superior oxidation ability (Wu et al. 2015a; Zhuang et al. 2014; Zhang et al. 2016a). Wu et al. (2015a) synthesized TiO₂ hollow sphere via a hydrothermal method and evaluated its performance for Hg⁰ in flue gas under the irradiation of ultraviolet lamp. The results indicated that the sample showed an excellent photocatalytic oxidation for Hg^0 oxidation with a conversion of 82.75%. Zhuang et al. (2014) developed carbon-modified TiO₂ nanotubes by a hydrothermal method, which achieved an effective Hg⁰ removal performance under the white light LED lamp irradiation. Zhang et al. (2016a) synthesized some BiOX (X denotes Cl, Br, and I) photocatalysts via a sample coprecipitation method for use to capture Hg⁰ in flue under fluorescent light. The results of the study indicated that compared with BiOCl, BiOBr, BiOI exhibited much better Hg⁰ removal capacity. It was suggested that the presence of a hole (h⁺) and ion (·O²⁻) played key roles in BiOBr reaction system, while for BiOI reaction system, the generated I₂ might be the main species for Hg⁰ oxidation.

The plasma catalytic oxidation technology has obtained much attention due to its ability to oxidize Hg⁰ via the generation of active species such as O₃, OH, HO₂, and O (An et al. 2016). Yang et al. (2012a, b) studied the oxidation of Hg⁰ using TiO₂ power via non-thermal plasma coupled with photocatalysis and found that the combined plasmaphotocatalysis system resulted in a synergistic effect, promoting improved Hg⁰ oxidation performance. Liu et al. (2015a) investigated the Hg⁰ removal performance of SiO₂, TiO₂, and SiO₂ or TiO₂ supported transition metal oxide catalysts at low temperatures using a plasma-catalyst reactor. The results showed that while the non-thermal plasma could effectively enhance the Hg⁰ oxidation, the presence of Mn/ TiO₂ catalysts resulted in the highest Hg⁰ removal efficiency of about 99% under a SED of 2.3 ± 0.3 J/L.

Wei et al. (2015a, b) synthesized Mn/ γ -Al₂O₃ and Mn/ zeolite catalysts via an incipient wetness impregnation method for microwave catalytic oxidation of Hg⁰ in flue gas under the integrated ozone atmosphere. They reported more than 90% Hg⁰ removal efficiency in the integrated microwave and ozone system, and also attributed the higher efficiency to the presence of ozone and large amounts of free radicals (O, HO₂, and OH) and their strong ability to oxidize Hg⁰.

Proposed mechanism for the heterogeneous oxidation of elemental mercury

Typically, the Hg^0 can be oxidized to Hg^{2+} by the heterogeneous reactions or/and homogeneous reactions. The mechanistic aspects of Hg^0 removal using sorbents and catalysts

have been extensively studied by numerous investigators (Zhao et al. 2015d; Chen et al. 2016; Zhang et al. 2017d; Xu et al. 2014b). It is well known that sorbents and catalysts promote heterogeneous reactions, which are faster reaction rate than homogeneous reactions (Presto and Granite 2006). The Deacon process, Eley–Rideal, Langmuir–Hinshelwood, and Mars–Maessen are among some of the mechanistic approaches, which have been employed to explain and quantify the heterogeneous oxidation of Hg⁰ in flue gas.

The Deacon reaction

The mechanism assumes that the process by which Cl_2 (or Cl atom) can be generated by the reaction of HCl and O_2 or air at high temperature (e.g., 300–400 °C) as in Eq. (1) is the main pathway for Hg⁰ catalytic oxidation in flue gas.

$$4\text{HCl}_{(g)} + \text{O}_{2(g)} \to 2\text{Cl}_{2(g)} + 2\text{H}_2\text{O}$$
(1)

The Deacon reaction could produce a large amount of Cl₂ in the presence of some sorbents and catalysts, thereby promoting Hg⁰ removal (He et al. 2016a). Based on the results of Xu et al. (2014a) and Du et al. (2014), the Deacon reaction may be the main pathway for Hg⁰ removal over the Cu-based sorbents and catalysts in HCl and O₂ atmosphere. Zhao et al. (2017b) suggested that the different reaction temperature ranges have significant effects on the Deacon reaction. As shown in Fig. 12, Hg^0 could be adsorbed by Mo or Ag on the surface of catalyst to form the Mo-Hg or silver amalgam at low reaction temperature and then combine with the active Cl species produced by a reaction of HCl and Ag-Mo/V-Ti to form soluble and adsorbable HgCl₂, namely the Semi-Deacon reaction. When the reaction temperature is in the range of 350–450 °C, the generated Cl₂ could begin to react with the gaseous Hg⁰ to form HgCl₂, namely the Full Deacon reaction. Chen et al. (2014) by employing the Deacon mechanism explained that the gaseous O₂ was firstly adsorbed and activated by Ru_{cus} to generate the active O species, and then the produced active O species reacted with HCl to generate Cl₂. The reaction pathways can be described as follows:

$$2Ru_{cus} + O_2 \rightarrow 2Ru_{cus} - O^*$$
⁽²⁾

$$Ru_{cus} - O^* + HCl \rightarrow Ru_{cus} - OH - Cl^*$$
(3)

$$4\operatorname{Ru}_{\operatorname{cus}} - \operatorname{OH} - \operatorname{Cl}^* \to 4\operatorname{Ru}_{\operatorname{cus}} - \operatorname{Cl}^* + 2\operatorname{H}_2\operatorname{O} + \operatorname{O}_2 \tag{4}$$

$$2Ru_{cus} - Cl^* \rightarrow 2Ru_{cus} + Cl_2 \tag{5}$$

$$2Ru_{cus} - Cl^* + Hg^0 \rightarrow 2Ru_{cus} + HgCl_2$$
(6)

The Eley–Rideal mechanism

In general, this mechanism assumes surface reaction involving physically adsorbed reactant (A) and chemisorbed reactant (B)

Fig. 12 Reaction mechanism for Hg^0 removal over Ag-Mo/V-Ti at different reaction temperatures. The Mo-Hg or silver amalgam formed by the reaction of adsorbed Hg^0 and Mo or Ag can react with active Cl to produce $HgCl_2$ at low reaction temperature, namely, the

or reactant (A) in gas phase and chemisorbed reactant (B), and vice versa. That is, the adsorbed active species, such as HCl, could react with the gas-phase or weakly adsorbed Hg⁰ to form Hg²⁺ (Zhao et al. 2014; Wang et al. 2016a). The Eley–Rideal reaction mechanism has been employed in the study of Hg⁰ oxidation over selective catalytic reduction (SCR) catalysts in the presence of HCl (Yang et al. 2017d; Zhang et al. 2015d). It has been suggested that in the Hg⁰ oxidation over SCR catalysts, the HCl was firstly adsorbed on the surface of the catalyst to generate active Cl sites, which could react with the gas-phase or weakly adsorbed Hg⁰ to produce HgCl₂ (Wang et al. 2013). The specific reaction mechanism can be described as follows:

$$4\text{HCl}_{(g)} + \text{O}_2 \rightarrow 2\text{H}_2\text{O} + 4\text{Cl}^*_{(ad)} \tag{7}$$

$$\mathrm{Hg}^{0}_{(\mathrm{g})} + \mathrm{Cl}^{*}_{(\mathrm{ad})} \to \mathrm{Hg}\mathrm{Cl}_{(\mathrm{ad})}$$

$$\tag{8}$$

$$HgCl_{(ad)} + Cl^*_{(ad)} \to HgCl_{2(ad)}$$
(9)

$$HgCl_{2(ad)} \rightarrow HgCl_{2(g)}$$
 (10)

Similarly, the reaction of H_2S and Hg^0 also followed the Eley–Rideal reaction mechanism (Zhou et al. 2013). Related results (Hou et al. 2014a; Li et al. 2014a; Han et al. 2016; Yue et al. 2015) suggested that H_2S could be oxidized by some active species to form adsorbed active sulfur species (S_{ad}),

Semi-Deacon reaction. When the reaction temperature is in the range of 350–450 °C, the generated Cl_2 could begin to react with the gaseous Hg⁰ to form HgCl₂, namely the Full Deacon reaction (reproduced with permission from Zhao et al. 2017b)

which could further reacts with the gas-phase Hg⁰ to generate HgS. The reaction mechanism can be described as follows:

$$H_2S_{(g)} + O^* \to S_{(ad)} + H_2O$$
⁽¹¹⁾

$$S_{(ad)} + Hg^0 \rightarrow HgS$$
 (12)

The Langmuir–Hinshelwood mechanism

Langmuir-Hinshelwood (L-H) mechanism (also known as Langmuir-Hinshelwood-Hougen-Watson (LHHW) in chemical reaction engineering) generally employs Langmuir's adsorption isotherm for chemisorption and assumes equilibrium adsorption and that the surface reaction is controlling. It has been used extensively to describe the bimolecular reaction between two species adsorbed on the surface of sorbents and catalysts (Zhao et al. 2016a; Liu et al. 2016a). Based on this reaction mechanism, the adsorbed Hg^0 could react with some adsorbed oxidant species, such as HBr and HCl (Lim and Wilcox 2013; Song et al. 2014). The results of prior studies indicate that the Hg⁰ oxidation on the surface of some metal oxides-based sorbents and catalysts followed the Langmuir-Hinshelwood mechanism (Zhang et al. 2017b; Hou et al. 2014b; Huang et al. 2016). Jampaiah et al. (2015) and Wang et al. (2014) suggested that the Hg^0 removal on the Mn/Ce catalysts could be described by the Langmuir-Hinshelwood mechanism, whereby the adsorbed

Hg⁰ could react with adsorbed active species to form Hg²⁺ as in reactions in Eqs. (13–17). Negreira and Wilcox (2013) also obtained similar results in the oxidation of Hg⁰ over vanadia–titania selective catalytic reduction (SCR) catalyst. In addition, some investigators have indicated that the Hg⁰ oxidation on the surface of catalyst in the presence of SO₂ could also be explained by the Langmuir–Hinshelwood mechanism and suggested that the active species derived from SO₂ could react with adsorbed Hg⁰ to form HgSO₄ (Li et al. 2013a; Chiu et al. 2015; Zhang et al. 2016b).

$$2\text{HCl}_{(g)} + \text{O}^* \rightarrow 2\text{Cl}^*_{(ad)} + \text{H}_2\text{O}$$
(13)

$$\mathrm{Hg}^{0}_{\mathrm{(g)}} \to \mathrm{Hg}^{0}_{\mathrm{(ad)}} \tag{14}$$

$$Cl^*_{(ad)} + Hg^0_{(ad)} \rightarrow HgCl^*_{(ad)}$$
(15)

$$\operatorname{HgCl}_{(ad)}^{*} + \operatorname{Cl}_{(ad)}^{*} \to \operatorname{HgCl}_{2(ad)}$$
(16)

$$HgCl_{2(ad)} \to HgCl_{2(g)}$$
(17)

The Mars-Maessen mechanism

The Mars-Maessen mechanism had been considered by numerous investigators as the most plausible mechanism for Hg⁰ oxidation on the surface of metal oxide-based sorbents and catalysts (Wu et al. 2015b; Xu et al. 2016b; Qu et al. 2015). In this mechanism, the adsorbed Hg^0 could react with the lattice oxygen to form a binary mercury oxide. The Hg⁰ oxidation mechanism on the Fe₂O₃-SiO₂ catalyst could be described by the reactions in Eqs. (18-22) (where M denotes Fe) (Tan et al. 2012c). Firstly, the gas-phase Hg⁰ is assumed to adsorb on the surface of catalysts to form adsorbed Hg⁰. Then the adsorbed Hg⁰ is oxidized by the lattice oxygen from metal oxides to form HgO. Finally, the consumed lattice oxygen could be regenerated and replenished by the gas-phase oxygen from flue gas. The oxidation of Hg⁰ by other metal oxides such as CuO_x, MnO_x, and CeO₂ could also be explained by the Mars-Maessen mechanism (Zeng et al. 2017; Chiu et al. 2017; Li et al. 2015e). Also, other investigators have used the Mars–Maessen mechanism to explain the oxidation of Hg^0 over some multi-metal oxidebased catalysts (Zhang et al. 2015e, 2016d; Li et al. 2016b; Zhao et al. 2016c). Zhao et al. (2015c) suggested that the Hg^0 oxidation on $CeO_2-V_2O_5$ catalyst surface followed the Mars–Maessen mechanism, where the synergistic effect between CeO_2 and V_2O_5 played an important role on the oxidation of Hg^0 . They proposed the plausible reaction pathways as in the Eqs. (18–22), and the reaction mechanism is illustrated in Fig. 13.

$$Hg_{(g)} \to Hg_{(ad)}$$
 (18)

$$Hg_{(ad)} + M_x O_y \rightarrow HgO_{(ad)} + M_x O_{y-1}$$
(19)

$$M_x O_{y-1} + 1/2 O_2 \to M_x O_y$$
 (20)

$$HgO_{(ad)} \rightarrow HgO_{(g)}$$
 (21)

$$HgO_{(ad)} + M_xO_y \to HgM_xO_{y+1}$$
(22)

Summary, challenges, future research suggestions, and prospects

In this review, recent development on several catalysts and adsorbents for Hg⁰ heterogeneous oxidation removal, including mainly noble metal-based catalysts, non-noble metal-based catalysts (transition metal oxides and selective catalytic reduction catalysts), activated carbon-/coke-based sorbents, biochar-based sorbents, fly ash-based sorbents, mineral material-based sorbents and other novel catalysts, are extensively discussed. Some future research suggestions and potential directions for the development of green and cost-effective technologies are summarized here.

The noble metal-based catalysts have excellent Hg⁰ removal capacity and are generally regenerable and reusable to a large extent of use, but the very high costs and scarce sources greatly limited their developments and applications. Compared with noble metals, transition metal oxides and selective catalytic reduction (SCR) catalysts have several advantages such as much lower costs and more extensive sources. However, the catalytic activity for Hg⁰ of transition

Fig. 13 Reaction mechanism of Hg^0 oxidation on $CeO_2-V_2O_5$ catalyst. The Hg^0 oxidation on $CeO_2-V_2O_5$ catalyst surface followed the Mars–Maessen mechanism, where the synergistic effect between CeO_2 and V_2O_5 played an important role on the oxidation of Hg^0) (reproduced with permission from Zhao et al. 2015c

metal oxides and selective catalytic reduction catalysts is often relatively low. Besides, their Hg⁰ removal performance is greatly affected by the components of flue gas, such as halides, sulfides, vapors and alkali metal salts, and other heavy metals. The activity and stability of transition metal oxides and SCR catalysts for removing Hg⁰ still need to be improved significantly using doping and other modification methods that utilize precious metals, transition metals, and nonmetals (including mixed doping and modification of multiple components). In addition, possible poisoning or deactivation of transition metal oxides and SCR catalysts by mercury itself, also needs further future investigations.

Activated carbon injection (ACI) method has been proven as one of the effective ways for Hg⁰ removal from flue gas. However, the large activated carbon (AC)/Hg⁰ ratio and high operation costs have limited its development. The modification with various chemical reagents (e.g., halides, sulfurs, acids, alkaline and metal oxides) can significantly improve the Hg⁰ removal capacity of activated carbon, but also further increase the costs. Biochars, fly ash, and mineral materials are considered as the potential alternatives to activated carbon due to their much lower costs and more extensive sources. However, they have low Hg⁰ adsorption capacity due to the poor adsorption sites on their surface. To improve the effectiveness of these adsorbents, chemical reagents are also used to modify them by increasing active sites on the surface. Unfortunately, the leaking and secondary pollution of the modified chemical reagents used over these adsorbents have greatly hindered the development and practical applications. In recent years, various advanced oxidation processes have been widely applied in the field of flue gas purification. Therefore, exploring more green and clean modification methods, such as free radical-based advanced oxidation methods, should be considered an important future priority. However, there could a limitation of terrestrial biomass (e.g., the reduction of cultivated land area and the dispersity of biomass straw). But, the ocean contains a huge biomass resource, which could be utilized. Therefore, actively exploring the utilization of marine biomass resources such as all kinds of large algae and microalgae (e.g., using marine biomass to prepare biochars and activated carbon) could provide significant resources for human development.

At present, a large number of adsorbents have been developed, but most of these sorbents lack adequate recycling and regeneration capabilities, which greatly increased the costs of application, operation, and post-processing costs and related environmental issues due to solid waste treatment problems. Developing magnetically separable and renewable sorbents should be considered as an important research direction in the future. In addition, it is reported that most of the magnetic adsorbents are still difficult to be completely separated from magnetic impurities, for example, in coal fly ash due to similar magnetic properties. Therefore, in order to completely separate the magnetic adsorbents from the magnetic impurities successfully, significant improvements in multistage magnetic field separation processes are desirable and should be pursue vigorously in future research. The separation of sorbents from fly ash can be solved by the magnetic property of sorbent materials. Therefore, magnetic properties of magnetic adsorbents could also be effectively regulated through various preparation and modification methods, and based on magnetic differences, the separation problem of adsorbents could be more effectively addressed.

In addition, other technologies such as photocatalytic oxidation, plasma catalytic oxidation, microwave catalytic oxidation, and covalent organic frameworks (COFs) adsorption oxidation developed to remove Hg^0 in flue gas have demonstrated good Hg^0 oxidation performance. However, some problems limiting process development such as high investment and operating costs, low reliability, and stability of systems/devices, low activity and anti-poisoning ability of catalysts/adsorbents and others, need to be addressed before large-scale deployment. Also, technologies utilizing catalytic or photocatalytic membrane systems should be exploited as they could remarkably reduce the demand of oxidant (by improving its retainability) and have better efficiencies for Hg^0 removal from flue gas.

Among the aforementioned catalysts, the selective catalytic reduction (SCR) catalyst is considered the most promising, with the greatest benefit of providing simultaneous removal of NO_x and Hg^0 from flue gas, and reducing investment and operating costs of existing SCR denitrification device as it could be retrofitted into its current configuration. Furthermore, research initiatives into the development of sustainable adsorbents, such biochars-based adsorbents, as potential alternatives to conventional activated carbon, should be intensified because of their very low costs and readily available renewable sources.

Conclusion

Regulatory requirements and increased public concerns regarding mercury elevation levels and persistence in the atmosphere have stimulated worldwide research efforts to develop technologies for mercury emission control. In particular, the heterogeneous catalytic oxidation and adsorption of Hg^0 from flue gas has recently been an area of major focus because of its important scientific and practical significance. The catalysts and/or adsorbents are the key to the success of the heterogeneous oxidation removal technologies for Hg^0 from flue gas. This review provides the stateof-the-art knowledge of the chemistry and the fundamental mechanistic aspects of gas–solid heterogeneous oxidation and adsorption processes for the removal of Hg^0 from the flue gas systems. It evaluates the performance and economic viability of various catalysts/sorbents for Hg^0 removal. However, this review also reveals a number of areas in which additional research are needed. These include the development of more resistant, regenerable, effective, and versatile catalysts and adsorbents; and engineering-based research such as cost-benefit analysis, techno-economic modeling and optimization of the heterogeneous catalytic and adsorptive processes for mercury removal from flue gas systems. It is hoped that this review has stimulated thinking beyond the cases presented and should spur further research needed to further the development of greener, sustainable, and more cost-effective technologies to remove Hg^0 from flue gas.

Acknowledgements This study was supported by National Natural Science Foundation of China (No. U1710108), Jiangsu "Six Personnel Peak" Talent-Funded Projects (GDZB-014), China Postdoctoral Science Foundation (2017M610306). The authors also wish to acknowledge the contribution of the United States National Science Foundation (NSF) for funding received by YGA via Grant CBET-0651811.

References

- An JT, Shang KF, Lu N, Jiang YZ, Wang TC, Li J, Wu Y (2014) Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. J Hazard Mater 268:237–245. https://doi.org/10.1016/j.jhazmat.2014.01.022
- An JT, Jiang YZ, Zhang ZJ, Ma XX, Wang TC, Shang KF, Li J (2016) Oxidation characteristics of mixed NO and Hg⁰ in coal-fired flue gas using active species injection generated by surface discharge plasma. Chem Eng J 288:298–304. https://doi.org/10.1016/j. cej.2015.11.048
- Ancora MP, Zhang L, Wang SX, Schreifels JJ, Hao JM (2016) Meeting Minamata: cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. Energy Policy 88:485–494. https://doi.org/10.1016/j.enpol.2015.10.048
- Ballestero D, Gómez-Giménez C, García-Díez E, Juan R, Rubio B, Izquierdo MT (2013) Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents. J Hazard Mater 260:247–254. https://doi. org/10.1016/j.jhazmat.2013.05.034
- Bisson TM, Xu ZH, Gupta R, Maham Y, Liu Y, Yang HQ, Clark L, Patel M (2013) Chemical-mechanical bromination of biomass ash for mercury removal from flue gases. Fuel 108:54–59. https ://doi.org/10.1016/j.fuel.2012.02.035
- Borderieux S, Wu CY, Bonzongo JC, Powers K (2004) Control of elemental mercury vapor in combustion systems using Fe₂O₃ nanoparticles. Aerosol Air Qual Res 4:74–90. https://doi.org/10.4209/ aaqr.2004.07.0006
- Cai J, Shen BX, Li Z, Chen JH, He C (2014) Removal of elemental mercury by clays impregnated with KI and KBr. Chem Eng J 241:19–27. https://doi.org/10.1016/j.cej.2013.11.072
- Cao Y, Cheng CM, Chen CW, Liu MC, Wang CW, Pan WP (2008) Abatement of mercury emissions in the coal combustion process equipped with a Fabric Filter Baghouse. Fuel 87:3322–3330. https://doi.org/10.1016/j.fuel.2008.05.010
- Cao Y, Wang QH, Li J, Cheng JC, Chan CC, Cohron M, Pan WP (2009) Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility. Environ Sci Technol 43:2812–2817. https://doi. org/10.1021/es803410z

- Chen WM, Ma YP, Yan NQ, Qu Z, Yang SJ, Xie JK, Guo YF, Hu LG, Jia JP (2014) The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. Fuel 133:263–269. https://doi.org/10.1016/j.fuel.2014.04.086
- Chen WM, Pei Y, Huang WJ, Qu Z, Hu XF, Yan NQ (2016) Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation. Environ Sci Technol 50:2564–2572. https://doi.org/10.1021/acs.est.5b05564
- Chi Y, Yan NQ, Qu Z, Qiao SH, Jia JP (2009) The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas. J Hazard Mater 166:776–781. https://doi. org/10.1016/j.jhazmat.2008.11.130
- Chi GL, Shen BX, Yu RR, He C, Zhang X (2017) Simultaneous removal of NO and Hg⁰ over Ce-Cu modified V₂O₅/TiO₂ based commercial SCR catalysts. J Hazard Mater 330:83–92. https:// doi.org/10.1016/j.jhazmat.2017.02.013
- Chiu CH, Hsi HC, Lin CC (2014) Control of mercury emissions from coal-combustion flue gases using CuCl₂-modified zeolite and evaluating the cobenefit effects on SO₂ and NO removal. Fuel Process Technol 126:138–144. https://doi.org/10.1016/j.fupro c.2014.04.031
- Chiu CH, Hsi HC, Lin HP, Chang TC (2015) Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg⁰ and NO. J Hazard Mater 291:1–8. https://doi.org/10.1016/j.jhazmat.2015.02.076
- Chiu CH, Kuo TH, Chang TC, Lin SF, Lin HP, Hsi HC (2017) Multipollutant removal of Hg⁰/SO₂/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO₂ composites. Int J Coal Geol 170:60–68. https://doi.org/10.1016/j. coal.2016.08.014
- Chung ST, Kim KI, Yun YR (2009) Adsorption of elemental mercury vapor by impregnated activated carbon from a commercial respirator cartridge. Powder Technol 192:47–53. https://doi. org/10.1016/j.powtec.2008.11.012
- De M, Azargohar R, Dalai AK, Shewchuk SR (2013) Mercury removal by bio-char based modified activated carbons. Fuel 103:570–578. https://doi.org/10.1016/j.fuel.2012.08.011
- Diamantopoulou I, Skodras G, Sakellaropoulos GP (2010) Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Process Technol 91:158–163. https://doi. org/10.1016/j.fuproc.2009.09.005
- Ding F, Zhao YC, Mi LL, Li HL, Li Y, Zhang JY (2012) Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents. Ind Eng Chem Res 51:3039–3047. https://doi.org/10.1021/ie202231r
- Dranga BA, Koeser H (2015) Increased co-oxidation activity for mercury under hot and cold site coal power plant conditions-Preparation and evaluation of Au/TiO₂-coated SCR-DeNO_x catalysts. Appl Catal B-Environ 166–167:302–312. https:// doi.org/10.1016/j.apcatb.2014.11.018
- Du W, Yin LB, Zhuo YQ, Xu QS, Zhang L, Chen CH (2014) Catalytic Oxidation and Adsorption of Elemental Mercury over CuCl₂-Impregnated Sorbents. Ind Eng Chem Res 53:582–591. https://doi.org/10.1021/ie4016073
- Du W, Yin LB, Zhuo YQ, Xu QS, Zhang L, Chen CH (2015) Performance of CuO_x-neutral Al₂O₃ sorbents on mercury removal from simulated coal combustion flue gas. Fuel Process Technol 131:403–408. https://doi.org/10.1016/j.fuproc.2014.11.039
- Dunham GE, DeWall RA, Senior CL (2003) Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Process Technol 82:197–213. https://doi.org/10.1016/ S0378-3820(03)00070-5
- Fan XP, Li CT, Zeng GM, Zhang X, Tao SS, Lu P, Tan Y, Luo DQ (2012a) Hg⁰ removal from simulated flue gas over CeO₂/ HZSM-5. Energy Fuels 26:2082–2089. https://doi.org/10.1021/ ef201739p

- Fan XP, Li CT, Zeng GM, Zhang X, Tao SS, Lu P, Li SH, Zhao YP (2012b) The effects of Cu/HZSM-5 on combined removal of Hg⁰ and NO from flue gas. Fuel Process Technol 104:325–331. https://doi.org/10.1016/j.fuproc.2012.06.003
- Fu XW, Feng XB, Sommar J, Wang SF (2010) A review of studies on atmospheric mercury in China. Sci Total Environ 421–422:73– 81. https://doi.org/10.1016/j.scitotenv.2011.09.089
- Fuente-Cuesta A, Lopez-Anton MA, Diaz-Somoano M, Martínez-Tarazona MR (2012) Retention of mercury by low-cost sorbents: influence of flue gas composition and fly ash occurrence. Chem Eng J 213:16–21. https://doi.org/10.1016/j. cej.2012.09.054
- Galbreath KC, Zygarlicke CJ (1996) Mercury speciation in coal combustion and gasification flue gases. Environ Sci Technol 30:2421–2426. https://doi.org/10.1021/es950935t
- Gao W, Liu QC, Wu CY, Li HL, Li Y, Yang J, Wu GF (2013a) Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst. Chem Eng J 220:53–60. https://doi.org/10.1016/j.cej.2013.01.062
- Gao YS, Zhang Z, Wu JW, Duan LH, Umar A, Sun LY, Guo ZH, Wang Q (2013b) A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environ Sci Technol 47:10813–10823. https://doi.org/10.1021/es402495h
- Gómez-Giménez C, Ballestero D, Juan R, Rubio B, Izquierdo MT (2015) Mercury capture by a regenerable sorbent under oxycoal combustion conditions: Effect of SO₂ and O₂ on capture efficiency. Chem Eng Sci 122:232–239. https://doi.org/10.1016/j. ces.2014.09.033
- Granite EJ, Myers CR, King WP, Stanko DC, Pennline HW (2006) Sorbents for mercury capture from fuel gas with application to gasification systems. Ind Eng Chem Res 45:4844–4848. https:// doi.org/10.1021/ie060456a
- Guo P, Guo X, Zheng CG (2010) Roles of γ-Fe₂O₃ in fly ash for mercury removal: results of density functional theory study. Appl Surf Sci 256:6991–6996. https://doi.org/10.1016/j.apsus c.2010.05.013
- Gutiérrez OFJ, Navarrete B, Canadas L, Salvador L (2007) A technical assessment of a particle hybrid collector in a pilot plant. Chem Eng J 127:131–142. https://doi.org/10.1016/j.cej.2006.09.015
- Han LN, Lv XY, Wang JC, Chang LP (2012) Palladium-iron bimetal sorbents for simultaneous capture of hydrogen sulfide and mercury from simulated syngas. Energy Fuels 26:1638–1644. https ://doi.org/10.1021/ef2015974
- Han LN, He XX, Yue CX, Hu YF, Li LN, Chang LP, Wang H, Wang JC (2016) Fe doping Pd/AC sorbent efficiently improving the Hg⁰ removal from the coal-derived fuel gas. Fuel 182:64–72. https://doi.org/10.1016/j.fuel.2016.05.046
- He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG (2013) Simultaneous removal of elemental mercury and NO from flue gas using CeO₂ modified MnO_x/TiO₂ materials. Energy Fuels 27:4832– 4839. https://doi.org/10.1021/ef400718n
- He C, Shen BX, Chi GL, Li FK (2016a) Elemental mercury removal by CeO₂/TiO₂-PILCs under simulated coal-fired flue gas. Chem Eng J 300:1–8. https://doi.org/10.1016/j.cej.2016.04.017
- He C, Shen BX, Li FK (2016b) Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs. J Hazard Mater 304:10–17. https://doi.org/10.1016/j.jhazm at.2015.10.044
- Hou WH, Zhou JS, Yu CJ, You SL, Gao X, Luo ZY (2014a) Pd/ Al₂O₃ sorbents for elemental mercury capture at high temperatures in syngas. Ind Eng Chem Res 53:9909–9914. https://doi. org/10.1021/ie501292a
- Hou WH, Zhou JS, Qi P, Gao X, Luo ZY (2014b) Effect of H₂S/ HCl on the removal of elemental mercury in syngas over CeO₂-TiO₂. Chem Eng J 241:131–137. https://doi.org/10.1016/j. cej.2013.12.047

- Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES (2010) Mercury capture by native fly ash carbons in coal-fired power plants. Prog Energ Combust 36:510–529. https://doi. org/10.1016/j.pecs.2009.12.003
- Hsi HC, Chen CT (2012) Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfurimpregnated activated carbon. Fuel 98:229–235. https://doi. org/10.1016/j.fuel.2012.04.011
- Hsi HC, Rood MJ, Asce M, Rostam-Abadi M, Chen S, Chang R (2002) Mercury adsorption properties of sulfur-impregnated adsorbents. J Environ Eng 128:1080–1088. https://doi.org/10.1061/ (ASCE)0733-9372(2002)128:11(1080)
- Hsi HC, Tsai CY, Kuo TH, Chiang CS (2011) Development of lowconcentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation. Bioresour Technol 102:7470–7477. https://doi.org/10.1016/j.biort ech.2011.05.036
- Hua XY, Zhou JS, Li QK, Luo ZY, Cen KF (2010) Gas-phase elemental mercury removal by CeO₂ impregnated activated coke. Energy Fuels 24:5426–5431. https://doi.org/10.1021/ef100554t
- Huang WJ, Xu HM, Qu Z, Zhao SJ, Chen WM, Yan NQ (2016) Significance of Fe₂O₃ modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas. Fuel Process Technol 149:23–28. https://doi.org/10.1016/j.fuproc.2016.04.007[]89
- Hutson ND, Krzyzynska R, Srivastava RK (2008) Simultaneous removal of SO₂, NO_x, and Hg from coal flue gas using a NaClO₂-enhanced wet scrubber. Ind Eng Chem Res 47:5825– 5831. https://doi.org/10.1021/ie800339p
- Ie IR, Hung CH, Jen YS, Yuan CS, Chen WH (2013) Adsorption of vapor-phase elemental mercury (Hg⁰) and mercury chloride (HgCl₂) with innovative composite activated carbons impregnated with Na₂S and S⁰ in different sequences. Chem Eng J 229:469–476. https://doi.org/10.1016/j.cej.2013.06.059
- Jampaiah D, Tur KM, Venkataswamy P, Ippolito SJ, Sabri YM, Tardio J, Bhargava SK, Reddy BM (2015) Catalytic oxidation and adsorption of elemental mercury over nanostructured CeO₂-MnO_x catalyst. RSC Adv 5:30331–30341. https://doi. org/10.1039/C4RA16787B
- Johari K, Saman N, Tien SS, Chin CS, Kong H, Mat H (2016a) Removal of elemental mercury by coconut pith char adsorbents. Procedia Eng 148:1357–1362. https://doi.org/10.1016/j.proen g.2016.06.588
- Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H (2016b) Development of coconut pith chars towards high elemental mercury adsorption performance-effect of pyrolysis temperatures. Chemosphere 156:56–68. https://doi.org/10.1016/j.chemospher e.2016.04.114
- Kamata H, Ueno SI, Naito T, Yukimura A (2008) Mercury oxidation over the V₂O₅(WO₃)/TiO₂ commercial SCR catalyst. Ind Eng Chem Res 47:8136–8141. https://doi.org/10.1021/ie800363g
- Kamata H, Ueno S, Sato N, Naito T (2009) Mercury oxidation by hydrochloric acid over TiO₂ supported metal oxide catalysts in coal combustion flue gas. Fuel Process Technol 90:947–951. https://doi.org/10.1016/j.fuproc.2009.04.010
- Karatza D, Prisciandaro M, Lancia A, Musmarra D (2011) Silver impregnated carbon for adsorption and desorption of elemental mercury vapors. J Environ Sci 23(9):1578–1584. https://doi. org/10.1016/S1001-0742(10)60528-1
- Klasson KT, Lima IM, Boihem LL Jr, Wartelle LH (2010) Feasibility of mercury removal from simulated flue gas by activated chars made from poultry manures. J Environ Manag 91:2466–2470. https://doi.org/10.1016/j.jenvman.2010.06.028
- Klasson KT, Boihem LL Jr, Uchimiya M, Lima IM (2014) Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas. Fuel Process Technol 123:27–33. https ://doi.org/10.1016/j.fuproc.2014.01.034

- Lee TG, Hedrick E, Biswas P (2002) Hg reactions in the presence of chlorine species: homogeneous gas phase and heterogeneous gas-solid phase. Air Repair 52:1316–1323. https://doi. org/10.1080/10473289.2002.10470863
- Lee SH, Rhim YJ, Cho SP, Baek JI (2006) Carbon-based novel sorbent for removing gas-phase mercury. Fuel 85:219–226. https://doi. org/10.1016/j.fuel.2005.02.030
- Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601. https://doi.org/10.1016/j.jhazmat.2009.03.031
- Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP (2010) Catalytic oxidation of elemental mercury over the modified catalyst Mn/γ-Al₂O₃ at lower temperatures. Environ Sci Technol 44:426–431. https://doi.org/10.1021/es9021206
- Li HL, Li Y, Wu CY, Zhang JY (2011a) Oxidation and capture of elemental mercury over SiO₂-TiO₂-V₂O₅ catalysts in simulated low-rank coal combustion flue gas. Chem Eng J 169:186–193. https://doi.org/10.1016/j.cej.2011.03.003
- Li HL, Wu CY, Li Y, Zhang JY (2011b) CeO₂-TiO₂ catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400. https://doi.org/10.1021/es2007808
- Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY (2013a) Impact of SO₂ on elemental mercury oxidation over CeO₂-TiO₂ catalyst. Chem Eng J 219:319–326. https://doi.org/10.1016/j. cej.2012.12.100
- Li L, Pan SW, Hu JJ, Kuang JF, Qi M, Ye K, Tang N (2013b) Experimental research on fly ash modified adsorption of mercury removal efficiency of flue gas. Adv Mater Res 800:132–138. https://doi.org/10.4028/www.scientific.net/AMR.800.132
- Li X, Liu ZY, Kim JS, Lee JY (2013c) Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control. Appl Catal B-Environ 132–133:401–407. https://doi.org/10.1016/j.apcatb.2012.11.031
- Li DK, Han JR, Han LN, Wang JC, Chang LP (2014a) Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas. J Environ Sci 26:1497–1504. https://doi. org/10.1016/j.jes.2014.05.016
- Li M, Wang L, Chen JY, Jiang YL, Wang WJ (2014b) Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal. J Fuel Chem Technol 42(10):1266–1272. https://doi.org/10.1016/S1872 -5813(14)60049-9
- Li GL, Shen BX, Li FK, Tian LH, Singh S, Wang FM (2015a) Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol 133:43–50. https://doi. org/10.1016/j.fuproc.2014.12.042
- Li GL, Shen BX, Li YW, Zhao B, Wang FM, He C, Wang YY, Zhang M (2015b) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169. https://doi.org/10.1016/j.jhazm at.2015.05.031
- Li GL, Shen BX, Wang Y, Yue SJ, Xi YQ, An MD, Ren KK (2015c) Comparative study of element mercury removal by three biochars from various solid wastes. Fuel 145:189–195. https://doi. org/10.1016/j.fuel.2014.12.083
- Li GL, Shen BX, Lu F (2015d) The mechanism of sulfur component in pyrolyzed char from waste tire on the elemental mercury removal. Chem Eng J 273:446–454. https://doi.org/10.1016/j. cej.2015.03.040
- Li JR, Chen JS, Yu YK, He C (2015e) Fe-Mn-Ce/ceramic powder composite catalyst for highly volatile elemental mercury removal in simulated coal-fired flue gas. J Ind Eng Chem 25:352–358. https ://doi.org/10.1016/j.jiec.2014.11.015
- Li GL, Wang SX, Wu QR, Wang FY, Shen BX (2016a) Mercury sorption study of halides modified bio-chars derived from cotton

straw. Chem Eng J 302:305–313. https://doi.org/10.1016/j. cej.2016.05.045

- Li Z, Shen YS, Li XH, Zhu SM, Hu M (2016b) Synergetic catalytic removal of Hg⁰ and NO over CeO₂(ZrO₂)/TiO₂. Catal Commun 82:55–60. https://doi.org/10.1016/j.catcom.2016.04.019
- Li GL, Wu QR, Wang SX, Li ZJ, Liang HY, Tang Y, Zhao MJ, Chen L, Liu KY, Wang FY (2017a) The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. Chem Eng J 326:561–569. https://doi.org/10.1016/j.cej.2017.05.099
- Li GL, Wang SX, Wang FY, Wu QR, Tang Y, Shen BX (2017b) Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chem Eng J 307:544–552. https ://doi.org/10.1016/j.cej.2016.08.106
- Li GL, Wang SX, Wu QR, Wang FY, Ding D, Shen BX (2017c) Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. Chem Eng J 315:251–261. https://doi.org/10.1016/j.cej.2017.01.030
- Li HL, Zhu L, Wu SK, Liu Y, Shih KM (2017d) Synergy of CuO and CeO₂ combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere. Int J Coal Geol 170:69– 76. https://doi.org/10.1016/j.coal.2016.07.011
- Lim DH, Wilcox J (2013) Heterogeneous mercury oxidation on Au(111) from first principles. Environ Sci Technol 47:8515– 8522. https://doi.org/10.1021/es400876e
- Liu WJ, Zeng FX, Jiang H, Zhang XS (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102:8247–8252. https://doi.org/10.1016/j.biort ech.2011.06.014
- Liu L, Zheng CH, Chen JH, Zhou JS, Gao X, Ni MJ, Cen KF (2015a) Plasma-induced adsorption of elemental mercury on TiO₂ supported metal oxide catalyst at low temperatures. Fuel Process Technol 138:14–20. https://doi.org/10.1016/j.fuproc.2015.04.021
- Liu ZY, Li X, Lee JY, Bolin TB (2015b) Oxidation of elemental mercury vapor over γ-Al₂O₃ supported CuCl₂ catalyst for mercury emissions control. Chem Eng J 275:1–7. https://doi. org/10.1016/j.cej.2015.04.022
- Liu T, Man CY, Guo X, Zheng CG (2016a) Experimental study on the mechanism of mercury removal with Fe₂O₃ in the presence of halogens: role of HCl and HBr. Fuel 173:209–216. https://doi. org/10.1016/j.fuel.2016.01.054
- Liu ZY, Li C, Sriram V, Lee JY, Brewe D (2016b) XANES study of elemental mercury oxidation over RuO₂/TiO₂ and selective catalytic reduction catalysts for mercury emissions control. Fuel Process Technol 153:156–162. https://doi.org/10.1016/j.fupro c.2016.07.018
- Liu ZY, Sriram V, Lee JY (2017) Heterogeneous oxidation of elemental mercury vapor over RuO₂/rutile TiO₂ catalyst for mercury emissions control. Appl Catal B-Environ 207:143–152. https://doi. org/10.1016/j.apcatb.2017.02.021
- Liu ZY, Yang W, Xu W, Liu YX (2018) Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chem Eng J 339:468–478. https://doi.org/10.1016/j. cej.2018.01.148
- Lopez-Anton MA, Gil RR, Fuente E, Díaz-Somoano M, Martínez-Tarazona MR, Ruiz B (2015) Activated carbons from biocollagenic wastes of the leather industry for mercury capture in oxy-combustion. Fuel 142:227–234. https://doi.org/10.1016/j. fuel.2014.11.018
- Ma YP, Mu BL, Yuan DL, Zhang HZ, Xu HM (2017) Design of MnO₂/ CeO₂-MnO₂ hierarchical binary oxides for elemental mercury removal from coal-fired flue gas. J Hazard Mater 333:186–193. https://doi.org/10.1016/j.jhazmat.2017.03.032
- Negreira AS, Wilcox J (2013) DFT study of Hg oxidation across Vanadia-Titania SCR catalyst under flue gas conditions. J Phys Chem C 117:1761–1772. https://doi.org/10.1021/jp310668j

- Niu Q, Luo JJ, Xia YX, Sun SQ, Chen Q (2017) Surface modification of bio-char by dielectric barrier discharge plasma for Hg⁰ removal. Fuel Process Technol 156:310–316. https://doi. org/10.1016/j.fuproc.2016.09.013
- Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA (2003) Status review of mercury control options for coal-fired power plants. Fuel Process Technol 82:89–165. https://doi.org/10.1016/S0378-3820(03)00059-6
- Pavlish JH, Holmes MJ, Benson SA, Crocker CR, Galbreath KC (2004) Application of sorbents for mercury control for utilities burning lignite coal. Fuel Process Technol 85:563–576. https://doi. org/10.1016/j.fuproc.2003.11.022
- Presto AA, Granite EJ (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40:5601–5609. https://doi. org/10.1021/es060504i
- Presto AA, Granite EJ (2009) Noble metal catalysts for mercury oxidation in utility flue gas. Platinum Metals Rev 52:144–154. https:// doi.org/10.1595/147106708X319256
- Qi H, Xu WQ, Wang J, Tong L, Zhu TY (2015) Hg⁰ removal from flue gas over different zeolites modified by FeCl₃. J Environ Sci 28:110–117. https://doi.org/10.1016/j.jes.2014.05.050
- Qiao SH, Chen J, Li JF, Qu Z, Liu P, Yan NQ, Jia JQ (2009) Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnO_x/alumina. Ind Eng Chem Res 48:3317–3322. https:// doi.org/10.1021/ie801478w
- Qu Z, Xie JK, Xu HM, Chen WM, Yan NQ (2015) Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature. Energy Fuels 29:6187–6196. https://doi.org/10.1021/acs.energyfuel s.5b00868
- Reddy BM, Durgarsri N, Kumar TV, Bhargava SK (2012) Abatement of gas-phase mercury-recent developments. Catal Rev Sci Eng 3:344–398. https://doi.org/10.1080/01614940.2012.650966
- Rungnim C, Meeprasert J, Kunaseth M, Junkaew A, Khamdahsag P, Khemthong P, Pimpha N, Namuangruk S (2015) Understanding synergetic effect of TiO₂-supported silver nanoparticle as a sorbent for Hg⁰ removal. Chem Eng J 274:132–142. https://doi. org/10.1016/j.cej.2015.03.101
- Rupp EC, Wilcox J (2014) Mercury chemistry of brominated activated carbons-Packed-bed breakthrough experiments. Fuel 117:351– 353. https://doi.org/10.1016/j.fuel.2013.09.017
- Sano A, Takaoka A, Shiota K (2017) Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chem Eng J 315:598–607. https://doi.org/10.1016/j. cej.2017.01.035
- Scala F, Cimino S (2015) Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: the effect of gas composition. Chem Eng J 278:134–139. https://doi.org/10.1016/j. cej.2014.11.094
- Scala F, Chirone R, Lancia A (2011) Elemental mercury vapor capture by powdered activation carbon in a fluidized bed reactor. Fuel 90:2077–2082. https://doi.org/10.1016/j.fuel.2011.02.042
- Shao HZ, Liu XW, Zhou ZJ, Zhao B, Chen ZG, Xu MH (2016) Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent. Chem Eng J 291:306–316. https:// doi.org/10.1016/j.cej.2016.01.090
- Shen BX, Li GL, Wang FM, Wang YY, He C, Zhang M, Singh S (2015a) Elemental mercury removal by the modified bio-char from medicinal residues. Chem Eng J 272:28–37. https://doi. org/10.1016/j.cej.2015.03.006
- Shen BX, Chen JH, Yue SJ (2015b) Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine. Micropor Mesopor Mater 203:216–223. https://doi.org/10.1016/j. micromeso.2014.10.030

- Shen BX, Tian LH, Li FK, Zhang X, Xu H, Singh S (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 187:189–196. https://doi.org/10.1016/j.fuel.2016.09.059
- Shu T, Lu P, He N (2013) Mercury adsorption of modified mulberry twig chars in a simulated flue gas. Bioresour Technol 136:182– 187. https://doi.org/10.1016/j.biortech.2013.02.087
- Song YC, Lee TG (2016) Preparation of gold- and chlorine-impregnated bead-type activated carbon for a mercury sorbent trap. Chemosphere 165:470–477. https://doi.org/10.1016/j.chemo sphere.2016.09.021
- Song N, Teng Y, Wang JW, Liu Z, Orndorff W, Pan WP (2014) Effect of modified fly ash with hydrogen bromide on the adsorption efficiency of elemental mercury. J Therm Anal Calorim 116:1189– 1195. https://doi.org/10.1007/s10973-014-3701-y
- Stergarsek A, Horvat M, Frkal P, Stergarsek J (2010) Removal of Hg⁰ from flue gases in wet FGD by catalytic oxidation with air -an experimental study. Fuel 89:3167–3177. https://doi. org/10.1016/j.fuel.2010.04.006
- Tan ZQ, Sun LS, Xiang J, Zeng HC, Liu ZH, Hu S, Qiu JR (2012a) Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 50:362–371. https://doi.org/10.1016/j.carbo n.2011.08.036
- Tan ZQ, Xiang J, Su S, Zeng HC, Zhou CS, Sun LS, Hu S, Qiu JR (2012b) Enhanced capture of elemental mercury by bamboobased sorbents. J Hazard Mater 239–240:160–166. https://doi. org/10.1016/j.jhazmat.2012.08.053
- Tan ZQ, Su S, Qiu JR, Kong FH, Wang ZA, Hao F, Xiang J (2012c) Preparation and characterization of Fe₂O₃-SiO₂ composite and its effect on elemental mercury removal. Chem Eng J 195–196:218– 225. https://doi.org/10.1016/j.cej.2012.04.083
- Tan ZQ, Niu GP, Chen XW (2015) Removal of elemental mercury by modified bamboo carbon. Chin J Chem Eng 23:1875–1880. https ://doi.org/10.1016/j.cjche.2015.09.001
- Tang HJ, Duan YF, Zhu C, Li CF, She M, Zhou Q, Cai L (2017) Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring. Int J Coal Geol 170:19–27. https://doi.org/10.1016/j.coal.2016.09.012
- Tong L, Yue T, Zuo PL, Zhang XX, Wang CL, Gao JJ, Wang K (2017) Effect of characteristics of KI-impregnated activated carbon and flue gas components on Hg⁰ removal. Fuel 197:1–7. https://doi. org/10.1016/j.fuel.2016.12.083
- Tsai CY, Hsi HC, Kuo TH, Chang YM, Liou JH (2013) Preparation of Cu-doped TiO₂ photocatalyst with thermal plasma torch for lowconcentration mercury removal. Aerosol Air Qual Res 13:639– 648. https://doi.org/10.4209/aaqr.2012.07.0196
- Tsai CY, Chiu CH, Chuang MW, Hsi HC (2017) Influences of copper(II) chloride impregnation on activated carbon for lowconcentration elemental mercury adsorption from simulated coal combustion flue gas. Aerosol Air Qual Res 17:1537–1548. https ://doi.org/10.4209/aaqr.2016.10.0435
- Vidic RD, Siler DP (2001) Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon 39:3–14. https://doi.org/10.1016/S0008 -6223(00)00081-6
- Wang ZH, Zhou JH, Zhu YQ, Wen ZH (2007) Simultaneous removal of NO_x, SO₂ and Hg in nitrogen flow in a narrow reactor by ozone injection, experimental results. Fuel Process Technol 88:817– 823. https://doi.org/10.1016/j.fuproc.2007.04.001
- $\label{eq:Wang JW, Yang JL, Liu ZY (2010a) Gas-phase elemental mercury capture by a V_2O_5/AC catalyst. Fuel Process Technol 91:676-680.$ https://doi.org/10.1016/j.fuproc.2010.01.017
- Wang SX, Zhang L, Li GH, Wu Y, Hao JM, Pirrone N, Sprovieri F, Ancora MP (2010b) Mercury emission and speciation of coalfired power plants in China. Atmos Chem Phys 10:1183–1192. https://doi.org/10.5194/acp-10-1183-2010

- Wang ZH, Jiang SD, Zhu YQ, Zhou JS, Zhou JH, Li ZS, Cen KF (2010c) Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment. Fuel Process Technol 91:1395–1400. https://doi.org/10.1016/j.fuproc.2010.05.012
- Wang PY, Su S, Xiang J, Cao F, Sun LS, Hu S, Lei SY (2013) Catalytic oxidation of Hg0 by CuO-MnO₂-Fe₂O₃/γ-Al₂O₃ catalyst. Chem Eng J 225:68–75. https://doi.org/10.1016/j.cej.2013.03.060
- Wang PY, Su S, Xiang J, You HW, Cao F, Sun LS, Hu S, Zhang Y (2014) Catalytic oxidation of Hg0 by MnO_x-CeO₂/γ-Al₂O₃ catalyst at low temperatures. Chemosphere 101:49–54. https://doi. org/10.1016/j.chemosphere.2013.11.034
- Wang FM, Li GL, Shen BX, Wang YY, He C (2015a) Mercury removal over the vanadia-titania catalyst in CO₂-enriched conditions. Chem Eng J 263:356–363. https://doi.org/10.1016/j. cej.2014.10.091
- Wang JC, Li DK, Ju FL, Han LN, Chang LP, Bao WR (2015b) Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas. Fuel Process Technol 136:96–105. https://doi.org/10.1016/j.fuproc.2014.10.020
- Wang FY, Wang SX, Meng Y, Zhang L, Wu QR, Hao JM (2016a) Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. Fuel 163:232–239. https://doi.org/10.1016/j.fuel.2015.09.065
- Wang SM, Zhang YS, Gu YZ, Wang JW, Liu Z, Zhang Y, Cao Y, Romero CE, Pan WP (2016b) Using modified fly ash for mercury emissions control for coal-fired power plant applications in China. Fuel 181:1230–1237. https://doi.org/10.1016/j. fuel.2016.02.043
- Wang Y, Li CT, Zhao LK, Xie YE, Zhang XN, Zeng GM, Wu HY, Zhang J (2016c) Study on the removal of elemental mercury from simulated flue gas by Fe₂O₃-CeO₂/AC at low temperature. Environ Sci Pollut Res 23:5099–5110. https://doi.org/10.1007/ s11356-015-5717-7
- Wang T, Liu J, Zhang YS, Zhang HC, Chen WY, Norris P, Pan WP (2018) Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chem Eng J 331:536–544. https://doi.org/10.1016/j. cej.2017.09.017
- Wei ZS, Luo YW, Li BR, Chen ZY, Ye QH, Huang QR, He JC (2015a) Elemental mercury oxidation from flue gas by microwave catalytic oxidation over Mn/γ-Al₂O₃. J Ind Eng Chem 24:315–321. https://doi.org/10.1016/j.jiec.2014.10.002
- Wei ZS, Luo TW, Li BR, Cheng ZY, Wang JB, Ye QH (2015b) Microwave assisted catalytic removal of elemental mercury from flue gas using Mn/zeolite catalyst. Atmos Pollut Res 6:45–51. https ://doi.org/10.5094/APR.2015.006
- Wu J, Chen JH, Zhang SB, He P, Fang JH, Wu YC (2012) Removal of gas-phase elemental mercury by bromine-impregnated activated carbon. Adv Mater Res 356–360:1660–1663. https://doi. org/10.4028/www.scientific.net/AMR.356-360.1660
- Wu J, Li X, Ren JX, Qi XM, He P, Ni B, Zhang C, Hu CZ, Zhou J (2015a) Experimental study of TiO₂ hollow microspheres removal on elemental mercury in simulated flue gas. J Ind Eng Chem 32:49–57. https://doi.org/10.1016/j.jiec.2015.07.019
- Wu HY, Li CT, Zhao LK, Zhang J, Zeng GM, Xie YE, Zhang XN, Wang Y (2015b) Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoO_x-CeO₂ from simulated coal combustion flue gas. Energy Fuels 29:6747–6757. https://doi.org/10.1021/acs.energyfuels.5b00871
- Wu J, Zhao Z, Huang TF, Sheng PF, Zhang J, Tian H, Zhao XY, Zhao LL, He P, Ren JX, Gao KF (2017) Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catal Commun 93:62–66. https://doi.org/10.1016/j.catcom.2017.01.016
- Xie JK, Yan NQ, Yang SJ, Qu Z, Chen WM, Zhang WQ, Li KH, Liu P, Jia JP (2012) Synthesis and characterization of nano-sized

Mn-TiO₂ catalysts and their application to removal of gaseous elemental mercury. Res Chem Intermed 38:2511–2522. https://doi.org/10.1007/s11164-012-0568-z

- Xie JK, Qu Z, Yan NQ, Yang SJ, Chen WM, Hu LG, Huang WJ, Liu P (2013) Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. J Hazard Mater 261:206–213. https://doi.org/10.1016/j.jhazm at.2013.07.027
- Xie Y, Li CT, Zhao LK, Zhang J, Zeng GM, Zhang XN, Zhang W, Tao SS (2015) Experimental study on Hg⁰ removal from flue gas over columnar MnO_x-CeO₂/activated coke. Appl Surf Sci 333:59–67. https://doi.org/10.1016/j.apsusc.2015.01.234
- Xing LL, Xu YL, Zhang Q (2012) Mn and Fe modified fly ash as a superior catalyst for elemental mercury capture under air conditions. Energy Fuels 26:4903–4909. https://doi.org/10.1021/ef3005256
- Xu XH, Ye QF, Tang TM, Wang DH (2008) Hg^0 oxidative absorption by $K_2S_2O_8$ solution catalyzed by Ag⁺ and Cu²⁺. J Hazard Mater 158:410–416. https://doi.org/10.1016/j.jhazmat.2008.01.108
- Xu WQ, Wang HR, Zhu TY, Kuang JY, Jing PF (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci 25(2):393–398. https://doi.org/10.1016/S1001 -0742(12)60065-5
- Xu WQ, Wang HR, Zhou X, Zhu TY (2014a) CuO/TiO₂ catalysts for gas-phase Hg⁰ catalytic oxidation. Chem Eng J 243:380–385. https://doi.org/10.1016/j.cej.2013.12.014
- Xu YL, Zhong Q, Xing LL (2014b) Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures. Environ Technol 35:2870–2877. https://doi. org/10.1080/09593330.2014.924569
- Xu HM, Qu Z, Zong CX, Huang WJ, Quan FQ, Yan NQ (2015a) MnO_x/graphene for the catalytic oxidation and adsorption of elemental mercury. Environ Sci Technol 49:6823–6830. https ://doi.org/10.1021/es505978n
- Xu HM, Qu Z, Zhao SJ, Mei J, Quan FQ, Yan NQ (2015b) Different crystal-forms of one-dimensional MnO₂ nanomaterials for the catalytic oxidation and adsorption of elemental mercury. J Hazard Mater 299:86–93. https://doi.org/10.1016/j.jhazm at.2015.06.012
- Xu H, Shen BX, Yuan P, Lu FJ, Tian LH, Zhang X (2016a) The adsorption mechanism of elemental mercury by HNO₃-modified bamboo char. Fuel Process Technol 154:139– 146. https://doi.org/10.1016/j.fuproc.2016.08.025
- Xu HM, Zhang HB, Zhao SJ, Huang WJ, Qu Z, Yan NQ (2016b) Elemental mercury (Hg⁰) removal over spinel LiMn₂O₄ from coal-fired flue gas. Chem Eng J 299:142–149. https://doi. org/10.1016/j.cej.2016.04.094
- Xu Y, Zeng XB, Luo GQ, Zhang B, Xu P, Xu MH, Yao H (2016c) Chlorine-Char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal. Fuel 183:73–79. https://doi.org/10.1016/j. fuel.2016.06.024
- Xu W, Adewuyi YG, Liu YX, Wang Y (2018) Removal of elemental mercury from flue gas using CuO_x and CeO₂ modified rice straw chars enhanced by ultrasound. Fuel Process Technol 170:21–31. https://doi.org/10.1016/j.fuproc.2017.10.017
- Yamaguchi A, Akiho H, Ito S (2008) Mercury oxidation by copper oxides in combustion flue gases. Powder Technol 180(1–2):222– 226. https://doi.org/10.1016/j.powtec.2007.03.030
- Yan NQ, Chen WM, Chen J, Qu Z, Guo YF, Yang SJ, Jia JP (2011) Significance of RuO₂ modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ Sci Technol 45:5725– 5730. https://doi.org/10.1021/es200223x

- Yang HQ, Xu ZH, Fan MH, Bland AE, Judkins RR (2007) Adsorbents for capturing mercury in coal-fired boiler flue gas. J Hazard Mater 146:1–11. https://doi.org/10.1016/j.jhazmat.2007.04.113
- Yang S, Guo Y, Yan N, Wu D, He H, Xie J, Qu Z, Yang C, Jia J (2010) A novel muti-functional magnetic Fe-Ti-V spinel catalyst for elemental mercury capture and callback from flue gas. Chem Commun 46:8377–8379. https://doi.org/10.1039/c0cc02645j
- Yang HM, Hou WH, Zhang HR, Zhou LY (2012a) Oxidation of elemental mercury with non-thermal plasma coupled with photocatalyst. J Adv Oxid Technol 15:321–327. https://doi.org/10.1515/ jaots-2012-0210
- Yang HM, Liu H, Wu H, Wang M (2012b) Photochemical removal of gaseous elemental mercury in a dielectric barrier discharge plasma reactor. Plasma Chem Plasma Process 32:969–977. https ://doi.org/10.1007/s11090-012-9393-9
- Yang JP, Zhao YC, Ma SM, Zhu BB, Zhang JY, Zheng CG (2016a) mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environ Sci Technol 50:12040–12047. https://doi.org/10.1021/acs.est.6b03743
- Yang JP, Zhao YC, Zhang JY, Zheng CG (2016b) Removal of elemental mercury from flue gas by recyclable CuCl₂ modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 164:419–428. https://doi. org/10.1016/j.fuel.2015.08.012
- Yang JP, Zhao YC, Zhang JY, Zheng CG (2016c) Removal of elemental mercury from flue gas by recyclable CuCl₂ modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism. Fuel 167:366–374. https://doi. org/10.1016/j.fuel.2015.11.003
- Yang JP, Zhao YC, Zhang JY, Zheng CG (2016d) Removal of elemental mercury from flue gas by recyclable CuCl₂ modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere. Fuel 173:1–7. https://doi. org/10.1016/j.fuel.2015.12.077
- Yang YJ, Liu J, Shen FH, Zhao FP, Wang Z, Long Y (2016e) Kinetic study of heterogeneous mercury oxidation by HCl on fly ash surface in coal-fired flue gas. Combust Flame 168:1–9. https:// doi.org/10.1016/j.combustflame.2016.03.022
- Yang JP, Zhao YC, Zhang SB, Liu H, Chang L, Ma SM, Zhang JY, Zheng CG (2017a) Mercury removal from flue gas by magnetospheres present in fly ash: role of iron species and modification by HF. Fuel Process Technol 167:263–270. https://doi. org/10.1016/j.fuproc.2017.07.016
- Yang W, Liu YX, Wang Q, Pan JF (2017b) Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181. https://doi.org/10.1016/j.cej.2017.05.106
- Yang YJ, Liu J, Wang Z, Liu F (2017c) Heterogeneous reaction kinetics of mercury oxidation by HCl over Fe₂O₃ surface. Fuel Process Technol 159:266–271. https://doi.org/10.1016/j.fupro c.2017.01.035
- Yang YJ, Liu J, Zhang BK, Zhao YC, Chen XY, Shen FH (2017d) Experimental and theoretical studies of mercury oxidation over CeO₂-WO₃/TiO₂ catalysts in coal-fired flue gas. Chem Eng J 317:758–765. https://doi.org/10.1016/j.cej.2017.02.060
- Yang W, Liu ZY, Xu W, Liu YX (2018a) Removal of elemental mercury from flue gas using sargassum chars modified by NH₄Br reagent. Fuel 214:196–206. https://doi.org/10.1016/j. fuel.2017.11.004
- Yang W, Shan Y, Ding S, Han X, Liu YX, Pan JF (2018b) Gasphase elemental mercury removal using ammonium chloride impregnated sargassum chars. Environ Technol. https://doi. org/10.1080/09593330.2018.1432699
- Yao YX, Velpari V, Economy J (2013) In search of brominated activated carbon fibers for elemental mercury removal from power

plant effluents. J Mater Chem A 1:12103–12108. https://doi. org/10.1039/C3TA11465A

- Yao YX, Velpari V, Economy J (2014) Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel 116:560–565. https://doi.org/10.1016/j.fuel.2013.08.063
- Yu CT, Lin HM, Cheng HW (2015) Synthesis of mercury sorbent including metal oxides with layered carbonates material. Chem Eng J 277:79–85. https://doi.org/10.1016/j.cej.2015.04.122
- Yue CX, Wang JC, Han LN, Chang LP, Hu YF, Wang H (2015) Effects of pretreatment of Pd/AC sorbents on the removal of Hg⁰ from coal derived fuel gas. Fuel Process Technol 135:125–132. https ://doi.org/10.1016/j.fuproc.2014.11.038
- Zeng JW, Li CT, Zhao LK, Gao L, Du XY, Zhang J, Tang L, Zeng GM (2017) Removal of elemental mercury from simulated flue gas over peanut shells carbon loaded with iodine ions, manganese oxides, and zirconium dioxide. Energy Fuels 31:13909–13920. https://doi.org/10.1021/acs.energyfuels.7b02500
- Zhang BK, Liu J, Zheng CG, Chang M (2014a) Theoretical study of mercury species adsorption mechanism on MnO₂ (110) surface. Chem Eng J 256:93–100. https://doi.org/10.1016/j. cej.2014.07.008
- Zhang YS, Duan W, Liu Z, Cao Y (2014b) Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128:274–280. https://doi.org/10.1016/j.fuel.2014.03.009
- Zhang AC, Zhang ZH, Chen JJ, Sheng W, Sun LS, Xiang J (2015a) Effect of calcination temperature on the activity and structure of MnO_x/TiO₂ adsorbent for Hg⁰ removal. Fuel Process Technol 135:25–33. https://doi.org/10.1016/j.fuproc.2014.10.007
- Zhang B, Xu P, Qiu Y, Yu Q, Ma JJ, Wu H, Luo GQ, Xu MH, Yao H (2015b) Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem Eng J 263:1–8. https://doi.org/10.1016/j. cej.2014.10.090
- Zhang BK, Liu J, Yang YJ, Chang M (2015c) Oxidation mechanism of elemental mercury by HCl over MnO₂ catalyst: insights from first principles. Chem Eng J 280:354–362. https://doi.org/10.1016/j. cej.2015.06.056
- Zhang BK, Liu J, Dai GL, Chang M, Zheng CG (2015d) Insights into the mechanism of heterogeneous mercury oxidation by HCl over V₂O₅/TiO₂ catalyst: periodic density functional theory study. Proc Combust Inst 35:2855–2865. https://doi.org/10.1016/j. proci.2014.06.051
- Zhang XN, Li CT, Zhao LK, Zhang J, Zeng GM, Xie YE, Yu ME (2015e) Simultaneous removal of elemental mercury and NO from flue gas by V₂O₅-CeO₂/TiO₂ catalysts. Appl Surf Sci 347:392–400. https://doi.org/10.1016/j.apsusc.2015.04.039
- Zhang YS, Zhao LL, Guo RT, Song N, Wang JW, Cao Y, Orndorff W, Pan WP (2015f) Mercury adsorption characteristics of HBrmodified fly ash in an entrained-flow reactor. J Environ Sci 33:156–162. https://doi.org/10.1016/j.jes.2015.01.011
- Zhang AC, Xing WB, Zhang D, Wang H, Chen GY, Xiang J (2016a) A novel low-cost method for Hg⁰ removal from flue gas by visiblelight-driven BiOX (X = Cl, Br, I) photocatalysts. Catal Commun 87:57–61. https://doi.org/10.1016/j.catcom.2016.09.003
- Zhang AC, Xing WB, Zhang ZH, Meng FM, Liu ZC, Xiang J, Sun LS (2016b) Promotional effect of SO₂ on CeO₂-TiO₂ material for elemental mercury removal at low temperature. Atmos Pollut Res 7:895–902. https://doi.org/10.1016/j.apr.2016.05.003
- Zhang B, Zeng XB, Xu P, Chen J, Xu Y, Luo GQ, Xu MH, Yao H (2016c) Using the novel method of nonthermal plasma to add Cl active sites on activated carbon for removal of mercury from flue gas. Environ Sci Technol 50:11837–11843. https://doi. org/10.1021/acs.est.6b01919
- Zhang HW, Chen JY, Zhao K, Niu QX, Wang L (2016d) Removal of vapor-phase elemental mercury from simulated syngas using

semi-coke modified by Mn/Ce doping. J Fuel Chem Technol 44(4):394–400. https://doi.org/10.1016/S1872-5813(16)30020-2

- Zhang J, Duan YF, Zhou Q, Zhu C, She M, Ding WK (2016e) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289. https://doi.org/10.1016/j.cej.2016.02.002
- Zhang HW, Zhao K, Gao YY, Tian YY, Liang P (2017a) Inhibitory effects of water vapor on elemental mercury removal performance over cerium-oxide-modified semi-coke. Chem Eng J 324:279–286. https://doi.org/10.1016/j.cej.2017.05.013
- Zhang SB, Zhao YC, Wang ZH, Zhang JY, Wang LL, Zheng CG (2017b) Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO₂. J Environ Sci 53:141–150. https://doi.org/10.1016/j.jes.2015.10.038
- Zhang YS, Zhang ZS, Liu Z, Norris P, Pan WP (2017c) Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash. Fuel 200:427–434. https://doi. org/10.1016/j.fuel.2017.03.095
- Zhang YS, Zhao LL, Guo RT, Wang JW, Cao Y, Orndorff W, Pan WP (2017d) Influences of NO on mercury adsorption characteristics for HBr modified fly ash. Int J Coal Geol 170:77–83. https://doi. org/10.1016/j.coal.2016.10.002
- Zhao YX, Mann MD, Pavlish JH, Mibeck BAF, Dunham GE, Olson ES (2006) Application of gold catalyst for mercury oxidation by chlorine. Environ Sci Technol 40(5):1603–1608. https://doi. org/10.1021/es050165d
- Zhao PF, Guo X, Zheng CG (2010) Removal of elemental mercury by iodine-modified rice husk ash sorbents. J Environ Sci 22(10):1629– 1636. https://doi.org/10.1016/S1001-0742(09)60299-0
- Zhao B, Liu XW, Zhou ZJ, Shao HZ, Wang C, Si JP, Xu MH (2014) Effect of molybdenum on mercury oxidized by V₂O₅-MoO₃/TiO₂ catalysts. Chem Eng J 253:508–517. https://doi.org/10.1016/j. cej.2014.05.071
- Zhao B, Liu XW, Zhou ZJ, Shao HZ, Wang C, Xu MH (2015a) Mercury oxidized by V₂O₅-MoO₃/TiO₂ under multiple components flue gas: an actual coal-fired power plant test and a laboratory experiment. Fuel Process Technol 134:198–204. https://doi. org/10.1016/j.fuproc.2015.01.034
- Zhao LK, Li CT, Zhang XN, Zeng GM, Zhang J, Xie YE (2015b) A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts. Catal Sci Technol 5:3459–3472. https://doi.org/10.1039/C5CY00219B
- Zhao LK, Li CT, Zhang J, Zhang XN, Zhan FM, Ma JF, Xie YE, Zeng GM (2015c) Promotional effect of CeO_2 modified support on V_2O_5 -WO₃/TiO₂ catalyst for elemental mercury oxidation in simulated coal-fired flue gas. Fuel 153:361–369. https://doi. org/10.1016/j.fuel.2015.03.001
- Zhao SJ, Li Z, Li Z, Qu Z, Yan NQ, Huang WJ, Chen WM, Xu HM (2015d) Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury. Fuel 158:891–897. https://doi.org/10.1016/j. fuel.2015.05.034
- Zhao B, Liu XW, Zhou ZJ, Shao HZ, Xu MH (2016a) Catalytic oxidation of elemental mercury by Mn-Mo/CNT at low temperature.

Chemical, Biological and Bioengineering Department, North Carolina Agricultural and Technical State University,

Greensboro, NC 27411, USA

2

Wei Yang¹ · Yusuf G. Adewuyi² · Arshad Hussain³ · Yangxian Liu¹

i org/10

47

Chem Eng J 284:1233–1241. https://doi.org/10.1016/j. cej.2015.09.090

- Zhao B, Yi HH, Tang XL, Li Q, Liu DD, Gao FY (2016b) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593. https://doi.org/10.1016/j. cej.2015.10.107
- Zhao LK, Li CT, Li SH, Wang Y, Zhang JY, Wang T, Zeng GM (2016c) Simultaneous removal of elemental mercury and NO in simulated flue gas over V₂O₅/ZrO₂-CeO₂ catalyst. Appl Catal B: Environ 198:420–430. https://doi.org/10.1016/j.apcatb.2016.05.079
- Zhao K, Niu QX, Wang L, Zhang HW (2017a) Effect of water vapor and α -Fe₂O₃ on elemental mercury removal performance over cerium oxide modified semi coke. J Fuel Chem Technol 45(3):378–384. https://doi.org/10.1016/S1872-5813(17)30021-X
- Zhao SJ, Xu HM, Mei J, Ma YP, Lou T, Qu Z, Yan NQ (2017b) Ag-Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. Fuel 200:236–243. https:// doi.org/10.1016/j.fuel.2017.03.034
- Zheng JY, Ou JM, Mo ZW, Yin SS (2011) Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China. Sci Total Environ 412–413:214–222. https://doi. org/10.1016/j.scitotenv.2011.10.024
- Zheng YJ, Jensen AD, Windelin C, Jensen F (2012) Review of technologies for mercury removal from flue gas from cement production processes. Prog Energ Combust 38:599–629. https://doi. org/10.1016/j.pecs.2012.05.001
- Zhou JS, Hou WH, Qi P, Gao X, Luo ZY, Cen KF (2013) CeO₂-TiO₂ sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062. https://doi.org/10.1021/ es401681y
- Zhou X, Xu WQ, Wang HR, Tong L, Qi H, Zhu TY (2014) The enhance effect of atomic Cl in CuCl₂/TiO₂ catalyst for Hg⁰ catalytic oxidation. Chem Eng J 254:82–87. https://doi.org/10.1016/j. cej.2014.05.093
- Zhou Q, Duan YF, Zhu C, She M, Zhang J, Yao T (2015) In-flight mercury removal and cobenefit of SO_2 and NO reduction by NH_4Br impregnated activated carbon injection in an entrained flow reactor. Energy Fuels 29:8118–8125. https://doi.org/10.1021/ acs.energyfuels.5b01903
- Zhou JF, Liu YX, Pan JF (2017) Removal of elemental Mercury from flue gas using wheat straw chars modified by K₂FeO₄ reagent. Environ Technol 38(23):3047–3054. https://doi. org/10.1080/09593330.2017.1287222
- Zhu C, Duan YF, Wu CY, Zhou Q, She M, Yao T, Zhang J (2016) Mercury removal and synergistic capture of SO₂/NO by ammonium halides modified rice husk char. Fuel 172:160–169. https://doi. org/10.1016/j.fuel.2015.12.061
- Zhuang ZK, Yang ZM, Zhou SY, Wang HQ, Sun CL, Wu ZB (2014) Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation. Chem Eng J 253:16–23. https://doi. org/10.1016/j.cej.2014.05.010

- School of Energy and Power Engineering, Jiangsu3School of Chemical and Materials Engineering, National
University, Zhenjiang 212013, Jiangsu, China3School of Chemical and Materials Engineering, National
University of Sciences and Technology, Islamabad, Pakistan
 - 🖄 Springer