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Abstract
Mercury is a toxic and persistent environmental pollutant which has been recognized as a global threat to human health and 
our ecosystem because mercury bio-accumulates in the food chain and can be transformed into the more neurotoxic methyl-
mercury. Among current and emerging abatement technologies for elemental mercury in flue gas, gas–solid heterogeneous 
oxidation is nowadays gaining increasing attention due to several inherent advantages. The catalysts and adsorbents are key 
materials that control the heterogeneous catalytic oxidation and adsorption of Hg0 from flue gas. Here we present a review 
of the recent developments on several catalysts and adsorbents, including noble metal-based catalysts, non-noble metal-
based catalysts (transition metal oxides and selective catalytic reduction catalysts), activated carbon/coke-based sorbents, 
biochar-based sorbents, fly ash-based sorbents, mineral material-based sorbents and other novel catalysts. The key process 
parameters and kinetic reaction mechanisms and advantages and disadvantages of various emerging catalysts/adsorbents 
and technologies of Hg0 removal are described in detail.
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Introduction

Mercury is an environmental persistent pollutant of great 
public concern because of its well-known high neurologi-
cal toxicity, and well-documented food chain transport and 
bioaccumulation in its different forms, such as methylmer-
cury with its concomitant adverse effects on our ecosys-
tem and human health (Li et al. 2009). Human exposure to 
mercury occurs primarily by consumption of contaminated 
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fish, resulting in such detrimental effects on human health, 
including neurological disorders, kidney damage, and birth 
defects. Therefore, United States Environmental Protection 
Agency (US EPA) identified mercury as a toxic and hazard-
ous air pollutant under Title III of the 1990 Clean Air Act 
Amendments (CAAA) (Qiao et al. 2009). The total amount 
of anthropogenic mercury emission is about 1000–6000 
tons per year (Yang et al. 2007). Combustion activities such 
as the burning of fossil fuels, municipal solid wastes, and 
medical wastes are the largest source of mercury emissions, 
which accounts for more than 90% of all anthropogenic 
mercury emissions (Reddy et al. 2012). To abate mercury 
emissions, some countries and regions have developed very 
stringent laws. In 2011, the United States Environmental 
Protection Agency (US EPA) promulgated the first national 
standard for mercury emissions, namely the Mercury and 
Air Toxics Standards (MATS), which aims to limit emis-
sions of mercury and other toxic substances in power plants 
(Gao et al. 2013b). Also, in 2013, the United States Envi-
ronmental Protection Agency updated the national emission 
standard (MATS), stipulating mercury emission limit below 
0.003 lb GWh−1 (Zhao et al. 2015b). In July 2011, the State 
Environmental Protection Administration of China (SEPA) 
released a new national standard (GB 13223-2011) of air 
pollutants for power plants, which requires new coal-burning 
power plants’ atmospheric mercury emissions should be less 
than 30 μg/m3 (Ancora et al. 2016). Therefore, the need and 
knowhow to curb mercury emissions are nowadays gaining 
significant global attention.

To reduce the emission of air pollutants, most coal-fired 
power plants have been installed some air pollution con-
trol devices (APCDs). Fabric filters (FF) and electrostatic 
precipitators (ESP), wet flue gas desulfurization (WFGD) 
system, and selective catalytic reduction (SCR) devices 
can effectively control particulate matter, SO2 and NOx 
in flue gas, respectively. During the combustion process, 
the elemental mercury in fuel is released into the flue gas 
in the form of vapor. This gaseous elemental mercury is 
subsequently oxidized partially to Hg2+ by heterogeneous 
(gas–solid) and homogeneous (gas–gas) reactions (Lee 
et al. 2002). Therefore, mercury in typical flue gas con-
sists of three forms: elemental mercury (Hg0), oxidized 
mercury (Hg2+) and particulate-bound mercury (Hgp) (Chi 
et al. 2009). Some studies have reported that the existing 
conventional air pollution control devices (APCDs) for 
reducing emissions of SO2, NOx and particulate matter can 
achieve a certain degree of mercury removal (Zheng et al. 
2011; Wang et al. 2010b). For example, the Hg2+ can be 
efficiently removed by the existing wet flue gas desulfuri-
zation (WFGD) equipment due to its high water solubility 
(Li et al. 2011a). Fabric filters (FF) and/or electrostatic 
precipitators (ESP) can easily capture Hgp from flue gas 
(Cao et al. 2008). In contrast, Hg0 with high volatility and 

low solubility in water is very difficult to be effectively 
removed by existing APCDs (Gutiérrez et al. 2007; Gal-
breath and Zygarlicke 1996). To reduce operating costs, 
the use of existing conventional APCDs to remove elemen-
tal mercury from flue gas is considered as an effective 
option for mercury abatement. Therefore, one of the core 
issues of mercury emission control is the efficient oxida-
tion of elemental mercury (Hg0) into the oxidized form 
(Hg2+).

To effectively control mercury emissions from coal-
fired boilers, many Hg0 control technologies have been 
developed over the past few decades, including adsorptive 
removal (Vidic and Siler 2001; Tan et al. 2012a; Chung 
et al. 2009), catalytic oxidation (Wang et al. 2010a; He 
et al. 2013), advanced oxidation (Wang et al. 2010c; An 
et al. 2014; Xu et al. 2008), and traditional chemical oxida-
tion technologies (Wang et al. 2007; Hutson et al. 2008; 
Stergarsek et al. 2010). Adsorption processes utilizing 
modified and supported sorbents can effectively remove 
Hg0 in flue gas by converting it to Hgp and Hg2+ (Pavlish 
et al. 2004; Wu et al. 2012). In addition, catalytic oxida-
tion processes such as selective catalytic reduction (SCR) 
and using catalysts composed of noble metals, metal 
oxides, and multi-metal oxides can simply, efficiently, and 
cost-effectively oxidize Hg0 to Hg2+ (Kamata et al. 2009; 
Yang et al. 2010). Among technologies for Hg0 removal 
from flue gas, the gas–solid heterogeneous adsorption and 
catalytic oxidation are recognized as the most promising 
(Pavlish et al. 2004; Wu et al. 2012; Kamata et al. 2009; 
Yang et al. 2010). While some reviews on mercury con-
trol have been published in the past few decades, these 
reviews appear to be limited in scope and/or outdated due 
to the prolific research productivity in this field, and hence, 
there is a need for a more comprehensive review of the 
recent developments and emerging technologies. (Gao 
et al. 2013b; Zheng et al. 2012; Pavlish et al. 2003; Fu 
et al. 2010). This exhaustive review discusses the emerg-
ing catalysts and adsorbents, including noble metal-based 
catalysts, non-noble metal-based catalysts (transition 
metal oxides and SCR catalysts), activated carbon- and 
coke-based sorbents, biochar-based sorbents, fly ash-based 
sorbents, mineral material-based sorbents, and other novel 
catalysts, in detail. Some challenges, problems, and future 
research directions of Hg0 removal using these catalysts 
and adsorbents are also discussed. The key process param-
eters, advantages, and disadvantages of current and emerg-
ing technologies are summarized, and the reaction kinet-
ics and mechanistic aspects of gas–solid heterogeneous 
catalytic oxidation and adsorption of Hg0 from flue gas 
are described in detail.
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Gas–solid heterogeneous oxidation 
of mercury

It is well known that Hg0 in flue gas is very difficult to be 
captured due to its low solubility in water and high volatil-
ity. However, Hgp can be removed in particle controllers, 
and the oxidized mercury (Hg2+) can be easily captured by 
the wet flue gas desulfurization (WFGD) system due to its 
high water solubility. Therefore, a combination of wet flue 
gas desulfurization (WFGD) system and elemental mer-
cury heterogeneous oxidation is considered as a promising 
method for Hg0 control. To date, a number of heterogene-
ous catalyst and adsorption systems have been developed for 
Hg0 oxidation or removal and categorized into seven groups, 
namely noble metal-based catalysts, non-noble metal-based 
catalysts, activated carbon-/coke-based sorbents, biomass 
char-based sorbents, fly ash-based sorbents, mineral mate-
rial-based sorbents, and other novel catalysts.

Noble metal‑based catalysts

Noble metals such as Au, Pd, Ag, Ru, and Ir have been 
considered as potential Hg0 oxidation catalysts due to their 
regeneration performance and excellent mercury adsorption 
capacity. To obtain a high mercury removal capacity, the 

noble metals are usually supported on materials with well-
developed pore structures and large Brunauer–Emmet–Teller 
(BET) surface areas, such as alumina, silica, zirconia, tita-
nia, carbons, and zeolite. The modification conditions and 
Hg0 removal capacities of the investigated noble metal cata-
lysts are summarized in Table 1.

Pd has been recognized as a promising catalyst for mer-
cury removal (Granite et al. 2006). In the study by Hou et al. 
(2014a), the Pd catalyst exhibited high mercury removal effi-
ciency in the operating temperature range of 200–270 °C, 
reporting that, up to 270 °C, a catalyst containing 8% Pd 
provided 90% Hg0 removal efficiency and retained good sta-
bility at mid-temperatures. Li et al. (2014a) also tested the 
effects of three operating temperatures, 250, 300, 350 °C, 
on mercury adsorption capacity and found the mercury 
adsorption efficiency at 250 °C was higher than those at 
300 and 350 °C, confirming the positive effects of operat-
ing at mid-temperatures. Hou et al. (2014a) and Han et al. 
(2012, 2016) tested the effects of H2 and CO on mercury 
removal and observed that H2 and CO could enhance the 
removal efficiency of elemental mercury as a result of the 
reduction of PdO to Pd metal. Hou et al. (2014a) also studied 
the effect of HCl on Hg0 removal over Pd based catalyst and 
found that HCl promoted mercury removal. Yue et al. (2015) 
examined the effects of H2S on mercury removal over Pd/
AC catalyst and showed that H2S significantly inhibited Hg0 

Table 1   Reaction conditions and Hg0 removal performance of noble metal catalysts

*Reaction temperature
**Hg0 removal efficiency
***Adsorption capacity

Raw sorbents Name of modified 
sorbents

Simulated flue gas RT* (°C) MRE**(%) AC*** 
(μg/g)

References

Al2O3 Pd/Al2O3 H2/CO/H2S/HCl/Hg0 270 > 90 – Hou et al. (2014a)
Activated carbon (AC) Pd/AC H2/CO/H2S/N2/Hg0 250 94 4.84 Li et al. (2014a)
γ-Al2O3 1Pd3Fe/γ-Al2O3 N2/Hg0 250 > 80 – Han et al. (2012)
Activated carbon (AC) 1Pd5Fe/AC N2/H2S/Hg0 200 > 80 – Han et al. (2016)

Pd/AC N2/H2S/H2/Hg0 200 91.4 – Yue et al. (2015)
Activated carbon (BAC) BACCl−Au Air/Hg0 – > 97 10.0 Song and Lee (2016)
Carbon Au/C SO2/CO2/N2/Hg0 120 – 38.7 Gómez-Giménez et al. 

(2015)
Carbon MC-Au-red N2/Hg0 75 – 23 Ballestero et al. (2013)
TiO2 Ag–Mo–TiO2 N2/O2/HCl/Hg0 150 > 90 – Zhao et al. (2015d)
Selective catalytic reduc-

tion (SCR)
Ru-SCR N2/O2/HCl/Hg0 350 95 – Chen et al. (2014)

TiO2 RuO2/TiO2 N2/CO2/O2/SO2/NO/
NH3/HCl/Hg0

350 > 90 – Liu et al. (2016b)

N2/CO2/O2/SO2/NO/
NH3/HBr/Hg0

> 90

Rutile TiO2 RuO2/rutile TiO2 N2/CO2/H2O/O2/NO/
NH3/HCl/Hg0

350 > 90 – Liu et al. (2017)

CexZr1−x O2 IrO2/CexZr1−x O2 O2/SO2/HCl/N2/Hg0 150 97 – Chen et al. (2016)
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adsorption and removal efficiency, possibly due to the reac-
tion of H2S with the PdO to form PdS. Li et al. (2014a) sug-
gested two Hg0 removal pathways over the Pd/AC catalyst 
in N2-Hg-H2S atmosphere, reaction of Hg0 with elemental 
palladium (Pd0) to produce Hg-Pd amalgam or the reaction 
of some oxygen-containing functional groups on the surface 
of activated carbon (AC) with Pd0 to form PdO. However, 
as shown in Fig. 1, the possible product in the N2-Hg-H2S 
atmosphere, PdS, is difficult to reduce to Pd0, suggesting 
that this product could be inhibitory to the mercury removal 
process.

Gold-based catalysts are also considered as promising 
alternatives for Hg0 removal because gold has the ability 
to adsorb and react with Hg0 on its surface to form amal-
gam (Presto and Granite 2009; Zhao et al. 2006). Song and 
Lee (2016) synthesized a gold (Au)-based catalyst via an 
impregnation method and found the catalyst to achieve a 
97% elemental mercury oxidation. Gómez-Giménez et al. 
(2015) studied the effect of SO2 and O2 on mercury removal 
and showed that these flue gas components promoted mer-
cury removal in the presence of gold nanoparticles, attribut-
able to the catalytic activity of Au. Ballestero et al. (2013) 
examined the regenerability of the Au-based catalyst through 
several cycles of Hg0 capture regeneration and found that 
when the regeneration temperature was 220 °C, the Au-
based catalyst maintained a high mercury removal efficiency 
in several regeneration cycles. In the process of elemental 
mercury oxidation, some reactants such as chlorine atoms 
have been shown to play an important role since gold could 
dissociate the adsorbed Cl2 molecule into Cl atoms, which 
subsequently could react with Hg0 to form HgCl2, enhancing 
Hg0 removal (Dranga and Koeser 2015). Lim and Wilcox 
(2013) examined the Hg0 oxidation via a Langmuri–Hin-
shelwood (L–H) mechanism and suggested that the adsorbed 
Cl2 (or HCl) could react with Hg0 to produce HgCl and 
HgCl2, as shown in Fig. 2, illustrating that the Hg0 oxida-
tion on the surface of Au is a step-by-step Hg0 oxidation 
(Hg → HgCl → HgCl2) rather than a direct oxidation of Hg0 
to HgCl2.

Other noble metals such as Ag, Ru, and Ir also have 
been reported to be effective catalysts for mercury removal 
from flue gases (Karatza et al. 2011; Yan et al. 2011). Zhao 
et al. (2015d) prepared a Ag-based catalyst by an impreg-
nation method and demonstrated its excellent performance 
for mercury removal in a simulated flue gas. Rungnim 
et al. (2015) synthesized Ag/TiO2 catalyst samples by 
loading 5% Ag on TiO2 powder and investigated possi-
ble synergistic effects between Ag and TiO2 toward Hg0 
removal using periodic density functional theory (DFT) 
calculations. They showed an improved Hg0 removal, sug-
gesting the synergy resulted from the promotion of elec-
tron transfer from adsorbed elemental mercury to Ag/TiO2 
catalyst, with the concomitant effect of greatly enhancing 
the mercury removal.

It has been reported that RuO2 is an excellent mercury 
oxidation catalyst and that halogen gases play an important 
role in the mercury oxidation process (Chen et al. 2014; 
Liu et al. 2016b, 2017). Liu et al. (2016b, 2017) stud-
ied the effect of halogen gas on mercury removal using 
RuO2/TiO2 catalyst in the presence of HCl or HBr, and the 
results showed 85 and 90% mercury removal in the pres-
ence of 10 ppm HCl and 1 ppm HBr, respectively, and that 
HgCl2 and HgBr2 were the main respective oxidation prod-
ucts. Liu et al. (2017) also found that the RuO2/TiO2 cata-
lyst exhibited a good resistance to SO2 poisoning under 
bituminous coal flue gas (SO2 > 2000 ppm in flue gas). It 
was suggested that the oxidation reaction mechanism of 
elemental mercury follows the Deacon process as shown 
in Fig. 3. Chen et al. (2016) prepared the IrO2-based cata-
lyst via a sol–gel method and also found that the novel 
IrO2-modified catalyst displayed a higher catalytic activity 
for mercury oxidation in a flue gas system, and the mecha-
nism also followed the Deacon reacting scheme illustrated 
in Fig. 3.

Fig. 1   Schematic diagram of the pathways of mercury removal over 
the Pd/activated carbon samples in N2–Hg–H2S atmosphere. The 
possible product in the N2–Hg–H2S atmosphere, PdS, is difficult to 
reduce to Pd0, suggesting that this product could be inhibitory to the 
mercury removal process (reproduced with permission from Li et al. 
2014a)

Fig. 2   Reaction pathways of mercury oxidation on the surface of Au. 
The Hg0 oxidation on the surface of Au is a step-by-step Hg0 oxida-
tion (Hg → HgCl → HgCl2) rather than a direct oxidation of Hg0 to 
HgCl2 (reproduced with permission from Lim and Wilcox 2013)
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Non‑noble metal‑based catalysts

Transition metal oxides‑based catalysts

Transition metal oxides, including mainly Fe2O3, CuO, 
MnO2, and CeO2, commonly supported on carriers such as 
alumina, silica, titania, have been tested as potential ele-
mental mercury oxidation catalysts. The advantages of these 
oxides compared with the noble metal catalysts, include the 
lower cost, widely available sources, and the relatively high 
catalytic oxidation activity. These supporters not only could 
increase the dispersion degree of metal oxides, but in some 
cases, also participate in the mercury removal process. Typi-
cal modification conditions and the resulting Hg0 removal 
capacities are summarized in Table 2.

Copper-based catalysts are considered as promising 
mercury removal catalysts due to their abilities to store/
release oxygen via the redox reaction between Cu2+ and Cu+ 
(Tsai et al. 2013; Li et al. 2013c; Du et al. 2015). Liu et al. 
(2015b) synthesized Cu/Al2O3 catalyst via a wetness incipi-
ent method and reported that with optimal loading of 10 wt% 
Cu, more than 95% Hg0 oxidation efficiency was attained 
during the first 20 h at 140 °C. It was also observed that the 
loading value of CuCl2 has a significant effect on the activ-
ity of the catalyst. At low CuCl2 loadings, it was speculated 
that CuCl2 could react with Al2O3 to form copper aluminate 
(CuAlO2) which was inactive for mercury oxidation, while 
high loadings of CuCl2 would be expected to be present in 
a highly dispersed amorphous state on the surface of the 
CuAlO2, which contributed to mercury removal. It was also 
observed that high loading of Cu into the Al2O3 support 
exhibited excellent SO2 poisoning resistance under 10 ppm 
HCl (Yamaguchi et al. 2008). Zhou et al. (2014) tested the 
effect of HCl on Hg0 removal using CuCl2/TiO2 catalyst, and 
they also found that the Cl atoms in HCl had a positive effect 
on Hg0 removal. Xu et al. (2014a) suggested that CuO had 
showed a good performance for Hg0 removal in the presence 
of low level HCl, and with a CuO/TiO2 catalyst prepared by 

a wetness impregnation method, they reported Hg0 removal 
efficiency of nearly 100% obtained with HCl concentration 
of 5 ppm. The positive effect of HCl was attributed mainly 
to the production of active atomic chlorine species.

Manganese-based catalysts are attractive potential alter-
natives for Hg0 capture from flue gas due to their low cost 
and expected excellent oxidation performance, stemming 
from their inherent multiple oxidation states (Xu et  al. 
2015a; Li et al. 2010). Yu et al. (2015) investigated the per-
formance of Hg0 removal using M/Al catalysts (M = Mg2+, 
Zn2+, Cu2+, and Mn2+), and they found that compared with 
Mg/Al, Zn/Al, and Cu/Al catalysts, Mn/Al catalysts exhib-
ited the highest Hg0 removal performance at 300 °C. They 
concluded that Mn4+ species, which was the main active 
sites, played a very important role in the removal process of 
Hg0. Xu et al. (2015b) reported that the improved removal 
of Hg0 from flue gas, achieved with heterogeneous reaction 
between Hg0 and Mn4+, resulted from the transition of high 
valence (Mn4+) to low valence Mn (Mn3+ and Mn2+). Xie 
et al. (2013) also obtained similar results in the investiga-
tion of Hg0 removal using Mn-based catalysts. Zhang et al. 
(2015a) examined the influence of calcination temperature 
in the 200–800 °C range on Hg0 capture using MnOx/TiO2 
sorbents. It was observed that the calcination temperature 
had an important effect on the activity and structure of the 
MnOx/TiO2 catalysts. The catalyst exhibited excellent per-
formance for Hg0 removal at high temperature of 400 °C; 
however, BET surface area, pore volume, and the content of 
Mn4+ of the catalyst decreased at calcination temperatures 
greater than 400 °C. Scala and Cimino (2015) studied the 
effect of flue gas composition on Hg0 capture using man-
ganese-based catalysts, and their results showed that both 
CO and CO2 reduced the Hg0 capture performance, while 
NO had no detectable effect, and 50 ppm HCl significantly 
improved the Hg0 removal. Zhang et al. (2014a, 2015c) pro-
posed that the Hg0 oxidation by HCl over manganese-based 
catalyst followed the Hg → HgCl → HgCl2 pathway, rather 
than the direct production of HgCl2.

Scala and Cimino (2015) and Xie et al. (2012) examined 
the effect of SO2 on Hg0 removal both MnOx-based and Mn-
TiO2 catalysts, and the results showed that SO2 had a nega-
tive effects on the performance of both catalysts, mainly due 
to the competitive adsorption between Hg0 and SO2. Zhang 
et al. (2017b) also reported that the presence of SO2 weak-
ened the Hg0 removal capacity of the MnOx-based catalyst. 
To further enhance the Hg0 removal effectiveness of Mn-
based catalysts in the presence of SO2, some metal elemen-
tals (Cu, Fe, Ce, Mo) have been utilized to modifying agents. 
Wang et al. (2013) prepared CuO–MnO2–Fe2O3/Al2O3 cata-
lyst by an improved impregnation method and studied the 
effect of SO2 concentration on Hg0 removal, reporting that 
SO2 has little effect on Hg0 removal due to the larger affin-
ity between Cu and sulfur. Zhao et al. (2016a) examined 

Fig. 3   Schematic diagram of Hg0 oxidation reaction over RuO2 cata-
lyst in the presence of HCl or HBr. In the presence of HCl or HBr 
gas, the RuO2 catalysts follow the Deacon process (reproduced with 
permission from Liu et al. 2016b)
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Table 2   Reaction conditions and Hg0 removal performance of non-noble metal-based catalysts

*Calcination temperature
**Reaction temperature
***Hg0 removal efficiency
****Adsorption capacity

Raw sorbents Name of modified 
sorbents

Simulated flue gas CT* (°C) RT** 
(°C)

MRE*** 
(%)

AC**** 
(μg/g)

References

Al2O3 CuCl2/α–Al2O3 N2/O2/SO2/HCl/Hg0 – 140 > 90 – Li et al. (2013c)
Al2O3 CuOx–Al2O3 N2/NO/SO2/HCl/

H2O/CO2/O2/Hg0
500 140 > 65 – Du et al. (2015)

γ-Al2O3 CuCl2/γ–Al2O3 N2/Hg0 – 140 > 95 – Liu et al. (2015b)
TiO2 CuO/TiO2 N2/HCl/O2/Hg0 400 150 > 90 – Zhou et al. (2014)
TiO2 CuO/TiO2 O2/HCl/N2/Hg0 500 300 98 – Xu et al. (2014a)
– Mn–Al–CO3 – 200 300 90 294.88 Yu et al. (2015)
– α-MnO2 N2/O2/Hg0 – 150 92 – Xu et al. (2015b)

β-MnO2 > 10
γ-MnO2 > 70

– Zr0.5Mn0.5Oy N2/O2/Hg0 500 100 – 5 mg/g Xie et al. (2013)
TiO2 Mn/Ti-200 N2/O2/CO2/Hg0 200 150 – 587 Zhang et al. (2015a)

Mn/Ti-400 400 866
γ-Al2O3 MnOx/γ–Al2O3 N2/CO/CO2/NO/O2/

SO2/Hg0
550 50–250 – – Scala and Cimino 

(2015)
TiO2 Mn–TiO2 Air/Hg0 400 300 95 1.6 mg/g Xie et al. (2012)
TiO2 Mn0.6Ti O2/CO2/HCl/H2O/

SO2/NO/NH3/Hg0
500 200 > 80 – Zhang et al. (2017b)

γ-Al2O3 CMFA O2/CO2/HCl/NO/
SO2/H2O/Hg0/N2

500 300 > 70 – Wang et al. (2013)

MoO3/CNT Mn-Mo/CNT O2/N2/SO2/Hg0 400 150 > 90 – Zhao et al. (2016a)
γ-Al2O3 MnCe O2/CO2/HCl/NO/

SO2/H2O/Hg0/N2

550 250 > 80 – Wang et al. (2014)

TiO2 CeTi O2/H2O/CO2/HCl/
NO/SO2/N2/Hg0

500 250 > 90 – Li et al. (2011b)

TiO2 CeTi HCl/NO/O2/Hg0/N2 500 200 96.1 – Li et al. (2013a)
CS MnO2/CeO2–MnO2 O2/N2/Hg0 450 150 89 – Ma et al. (2017)
TiO2 CeTi H2/CO/H2S/HCl/

NH3/N2/Hg0
500 120 > 80 – Zhou et al. (2013)

TiO2 CeTi H2/CO/H2S/HCl/N2/
Hg0

500 150 > 80 – Hou et al. (2014b)

TiO2 VCeTi O2/N2/Hg0 500 250 81.55 – Zhang et al. (2015e)
TiO2 CuCeTi NO/NH3/O2/N2/Hg0 500 200 90 – Li et al. (2017d)
V2O5-WO3/TiO2 VWTiCe NO/SO2/O2/CO2/N2/

Hg0
500 250 88.93 – Zhao et al. (2015c)

Selective catalytic 
reduction (SCR)

WO3–V2O5/TiO2 N2/O2/HCl/Hg0 – 350 98.5 – Gao et al. (2013a)

TiO2 V2O5–WO3/TiO2 CO2/O2/N2/Hg0 500 250 > 80 – Wang et al. (2015a)
TiO2 TVM O2/N2/Hg0 400 350 > 80 – Zhao et al. (2014)
TiO2 TV5M5 O2/CO2/CO/NO/

NOx/SO2/H2O/HCl/
Hg0

400 370 > 90 – Zhao et al. (2015a)

Selective catalytic 
reduction (SCR)

Fe2O3/SCR HCl/O2/N2/Hg0 400 350 > 90 – Huang et al. (2016)
Ce-Cu/SCR N2/O2/NO/NH3/Hg0 500 250 > 80 – Chi et al. (2017)
MnOx-5%/
catalyst

CO2/H2O/O2/HCl/
SO2/NO/NH3/N2/
Hg0

– 350 83.8 – Chiu et al. (2015)
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the effect of SO2 on Hg0 capture using Mo-doped Mn/CNT 
catalyst, showing that the presence of SO2 improved Hg0 
removal, and attributing this to Mo promoting of the con-
version of SO2 to SO3, with concomitant improvement in 
Hg0 removal efficiency. Wang et al. (2014) also investigated 
the effect of SO2 on Hg0 removal using MnOx–CeO2/Al2O3 
catalyst, and found that the addition of Ce effectively resisted 
the poisoning effect of SO2 on the catalysts.

Cerium oxide and Ce-based catalysts have gained wide-
spread attention due to the unique redox cycle between 
Ce4+ and Ce3+, excellent oxygen storage capacity and high 
oxidation capacity, and resistant to SO2 poisoning (Li et al. 
2011b). In the process of redox reaction of Ce4+ and Ce3+, 
bulk oxygen species and surface oxygen vacancies with high 
mobility are easily produced, which facilitate the effective-
ness of Hg0 removal. Li et al. (2013a) synthesized Ce-based 
catalysts using TiO2 nanoparticles by an ultrasonic-assisted 
impregnation method, and reported that the addition of 
1200 ppm SO2 into a flue gas system enhanced the perfor-
mance of Hg0 capture. In addition, the results of Ma et al. 
(2017) showed that the addition of CeO2 improved the water 
vapor resistance of the catalyst, and even with 5% water 
vapor in the flue gas, the high-level removal efficiency of 
Hg0 was only slightly reduced. Considering the superior 
activity and the unique redox cycles of Ce4+/Ce3+couple, 
the incorporation of CeO2 into other metal oxide cata-
lysts is generally believed to improve their Hg0 removal 
performances.

Zhou et al. (2013) and Hou et al. (2014b) investigated the 
Hg0 removal over CeO2–TiO2 catalysts and reported that 
when HCl or H2S was present alone in the flue gas, more 
than 97% of Hg0 was captured, while the simultaneous pres-
ence of HCl and H2S resulted a prohibitive effect on the 
effectiveness of Hg0 capture. Zhou et al. (2013) also found 
that the presence of H2 and CO have a negligible effect on 
the capture of Hg0 at 150 °C. Zhang et al. (2015e) synthe-
sized a series of Ce-based V2O5/TiO2 catalysts by an ultra-
sound-assisted impregnation method and found that the V(1)
Ce(10)Ti catalyst had the best Hg0 oxidation performance. 
Li et al. (2017d) examined the synergistic effect of CeO2 
and CuO using CuTi, CeTi and CuCeTi catalysts prepared 
by a sol–gel method. They found that, unlike the CuTi and 
CeTi catalysts, the Hg0 removal efficiency of CuCeTi cata-
lyst at 200 °C was about 99.0%, the high value ascribed to 
the combined effect of the presence of both CeO2 and CuO.

Selective catalytic reduction catalysts

Recently, selective catalytic reduction (SCR) systems have 
been applied in many coal-fired power plants for NOx 
removal due to its higher economy of scale, efficiency, 
and selectivity. Typical selective catalytic reduction (SCR) 
catalysts usually apply TiO2 and some catalytically active 

components (such as WO3, V2O5 and/or MoO3) as precur-
sors and activators, respectively. The modification condi-
tions and Hg0 removal capacities of SCR type catalysts are 
summarized in Table 2. V2O5 is the major active ingre-
dient of the selective catalytic reduction (SCR) catalyst, 
which can be employed not only to control the emission 
of NOx but also to remove Hg0 from flue gas. Zhao et al. 
(2015c) reported that the V2O5-rich SCR catalyst exhib-
ited a superior Hg0 removal performance in the range 
of 250–350 °C. For WO3–V2O5/TiO2 catalysts, the Hg0 
oxidation in the presence of both O2 and HCl was found 
to follow the Eley–Rideal mechanism (Gao et al. 2013a). 
Wang et al. (2015a) also investigated the Hg0 removal in 
CO2-enriched flue gas using WO3–V2O5/TiO2 catalysts, 
and they found that high concentration of CO2 (80 vol%) 
promoted the capture efficiency of Hg0, but inhibited the 
removal of NO. MoO3 is often introduced into the cata-
lyst’s formulation to improve its resistance to SO2 poison-
ing. Zhao et al. (2014) found that the V2O5–MoO3/TiO2 
catalyst was excellent Hg0 oxidation, and the Hg0 removal 
process could be explained by the Mars–Maessen mecha-
nism. To further study the Hg0 capture performance of 
this catalyst system in actual flue gas, Zhao et al. (2015a) 
performed a test in a coal-fired power plant, and  reported 
higher than 90% Hg0 removal efficiency.

Selective catalytic reduction (SCR) system is widely 
applied in coal-fired power plant to simultaneously con-
trol the emissions of NOx and Hg0. However, the conven-
tional selective catalytic reduction catalysts are not effective 
enough for the removal of Hg0 in the presence of low HCl 
concentrations and are often suppressed by the presence of 
SO2 and NH3 in the flue gas (Kamata et al. 2008). Therefore, 
some metal oxides are usually used to modify the selective 
catalytic reduction (SCR) catalysts. Huang et al. (2016) pre-
pared the Fe2O3/SCR catalyst by an impregnation method 
and found that the introduction of Fe2O3 could significantly 
improve the Hg0 removal ability of the SCR catalyst. The 
active temperature window of Fe2O3/SCR catalyst was found 
to range from 150 to 450 °C, which is wider than that of 
conventional SCR catalysts. They suggested that the Fe3+ 
could react with HCl to release active Cl species by the 
Mars–Maessen mechanism and then the generated active 
Cl species could participate in the Hg0 removal by the L–H 
mechanism. The proposed plausible Hg0 oxidation mecha-
nism is shown in Fig. 4.

Chi et al. (2017) prepared a series of Ce-Cu-modified 
selective catalytic reduction (SCR) catalysts by ultrasonic-
assisted impregnation method for simultaneous removal of 
Hg0 and NOx and found that a 7%Ce–1%Cu/SCR catalyst 
showed a superior performance at 200–400 °C. The cata-
lyst also exhibited higher resistance to water vapor and SO2. 
The Hg0 removal performance of MnOx-treated commercial 
SCR catalysts was also evaluated (Chiu et al. 2015), and the 
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results showed that both 5 and 10% MnOx-impregnated SCR 
catalysts had higher Hg0 oxidation efficiency.

Activated carbon/cokes based sorbents

Activated carbon/cokes have been proven to be effective 
sorbents for Hg0 removal, and sulfur, halogens, and metal 
oxides are the most common additives/modified reagents, 
which have been widely studied for the modifications of 
these sorbents to improve their removal efficiencies for Hg0. 
The modification conditions and Hg0 removal capacities of 
activated carbon-/coke-based sorbents are summarized in 
Table 3.

Sulfured carbon sorbents

Sano et al. (2017) performed a laboratory-scale test of Hg0 
removal over sulfur-impregnated activated carbon and raw 
activated carbon and reported that S (sulfur) impregnation 
resulted in 50 times higher Hg0 removal than the perfor-
mance of the raw activated carbon. Hsi and Chen (2012) 
studied the effects of acidic/oxidizing gases, O2, HCl, SO2, 
and NO which are commonly found in the flue gas, on Hg0 
removal using simulated flue gas over sulfur-impregnated 
activated carbon. They observed the flue gas components 
had strong positive effect on the catalyst’s performance, with 
the largest Hg0 removal capacity of 2310 μg/g obtained in 
the presence of O2, HCl and NO.

Ie et al. (2013) synthesized a series of innovative com-
posite powdered activated carbon (PACs) by an impregna-
tion method using aqueous-phase sodium sulfide (Na2S) and 
vapor-phase elemental sulfur (S0) in different sequences and 
investigated their performances in the removal of Hg0 or 

HgCl2. They found that the Hg0 and HgCl2 removal capaci-
ties of powdered activated carbon (PACs) impregnated with 
aqueous Na2S solution followed by gaseous sulfur (S0), 
respectively, were 1.98 and 1.42 times higher than those 
of the samples impregnated in the opposite sequence. Yao 
et al. (2014) also studied the performance of activated car-
bon fibers functionalized with sulfur-containing groups and 
reported that sulfur impregnation decreased the pore volume 
and surface area of activated carbon fibers. However, com-
pared with the raw activated carbon fiber samples, the Hg0 
removal capacity of sulfur-treated activated carbon fibers 
increased due to the incorporation of the sulfur groups.

Halogenated carbon sorbents

Zhou et al. (2015) prepared Br-based activated carbon by an 
impregnation method and evaluated the in-flight Hg0 capture 
performance in an entrained flow reactor. They found that 
the Hg0 removal efficiency of raw activated carbon was sig-
nificantly enhanced by the NH4Br impregnation. Yao et al. 
(2013) also prepared Br-based activated carbon fibers using 
KBr solution, and by KBr impregnation, bromine vapor, and 
electrochemical modification methods, respectively. For the 
brominated activated carbon fibers, the introduction of Br 
atoms promoted the Hg0 oxidation process. They also found 
that the brominated activated carbon fibers modified by bro-
mine vapor and electrochemical methods using KBr solution 
exhibited stable Hg0 removal capacity (30–33% capture), 
which was retained up to 3 months. Rupp and Wilcox (2014) 
examined the effects of flue gas components (NOx, SO2) on 
Hg0 removal using brominated activated carbon fibers and 
reported that while NOx promoted the oxidation of Hg0, SO2 
prevented the Hg0 adsorption, and the interaction of NOx and 
SO2 with Br decreased sorbent’s performance.

Tsai et al. (2017) investigated CuCl2-impregnated acti-
vated carbon for Hg0 removal using a fixed-bed reactor sys-
tem. Results from the tests showed that the Cl-impregnated 
samples achieved better Hg0 removal capacity than non-
impregnated samples, with the Hg0 removal capacity of the 
8% CuCl2-impregnated sample reported to be 631.1 μg/g. Li 
et al. (2017a) prepared NH4Cl-modified activated carbons 
for Hg0 removal by an impregnation method, and they found 
that Cl-doped activated carbons exhibited a good perfor-
mance for Hg0 capture. De et al. (2013) impregnated acti-
vated carbons using various halogens such as ammonium 
and potassium halides. They observed that the introduction 
of halide ions greatly enhanced the capacity of the activated 
carbons for Hg0 removal. For the same loading values of 
halide (I, Cl and Br) ions, the Hg0 capture performance of 
ammonium halide-modified activated carbon was higher 
than those of potassium halide-modified activated carbon. 
Also, the I-impregnated sample exhibited the highest Hg0 

Fig. 4   Schematic of the possible Hg0 oxidation mechanism in HCl-
O2 on over the Fe2O3/SCR catalyst. The active chlorine species gen-
erated by the reaction of Fe3+ and HCl can react with adsorbed Hg0 
to form HgCl2. The gas-phase O2 in flue gas regenerated the chem-
isorbed oxygen and lattice oxygen (reproduced with permission from 
Huang et al. 2016)
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removal capacity compared to Cl- and Br-impregnated 
samples.

Tong et al. (2017) synthesized the I-impregnated acti-
vated carbons using an impregnation method and inves-
tigated the Hg0 capture, and the adsorption mechanism 
and the effects of simulated flue gas components. They 
found that the formation of I2 molecules on the surface of 
I-impregnated activated carbons significantly promoted Hg0 
removal and proposed the plausible adsorption mechanism 
shown in Fig. 5. They also observed that low concentrations 
of SO2 had a promotional effect on Hg0 oxidation, but high 
concentrations of SO2 had a negative impact on Hg0 cap-
ture. They also found that the Hg0 removal efficiency signifi-
cantly increased with increasing NO concentration from 0 to 

100 ppm, while high NO concentration of 300 ppm showed 
antagonistic effects.

Metal oxides‑modified carbon sorbents

Zhao et  al. (2016b) studied the use of activated coke 
impregnated with CuO (a CuO/AC-H sample), focusing 
on the effects of the copper loading, reaction temperature, 
calcination temperature, and flue gas components (NO, O2) 
on Hg0 capture, and found the optimal reaction tempera-
ture, copper loading value, and calcinations temperature to 
be 160 °C, 8%, and 300 °C, respectively, and that NO and 
O2 showed positive effects on Hg0 capture. CeO2 has been 
widely investigated as one of the catalysts for selective 

Table 3   Reaction conditions and Hg0 removal performance of carbon sorbents

*Reaction temperature
**Hg0 removal efficiency
***Adsorption capacity

Raw sorbents Name of modified 
sorbents

Simulated flue gas RT* 
(°C)

MRE** 
(%)

AC*** 
(mg/g)

References

Activated carbon (AC) AC-S Air/Hg0 140 – 21 Sano et al. (2017)
AC AC-400S CO2/H2O/O2/HCl/N2/

NO/Hg0
150 – 2.31 Hsi and Chen (2012)

Powdered activated 
carbon (PAC)

Na2S + S0-PAC N2/Hg0 150 – 33.789 Ie et al. (2013)

ACF NaSH-ACF Air/Hg0 – – > 14 Yao et al. (2014)
AC NH4Br-AC O2/CO2/CO/NO/SO2/

Hg0
– 90.5 – Zhou et al. (2015)

Activated carbon fiber 
(ACF)

Br(v)-ACF Air/Hg0 – – 64 Yao et al. (2013)
KBr-ACF 100
eBr-ACF 50
Br-ACF CO2/H2O/N2/O2/Hg0 140 97 – Rupp and Wilcox (2014)

AC HCAC​ N2/Hg0 150 – 0.631 Tsai et al. (2017)
AC ACNCl5 O2/SO2/HCl/NO/N2/Hg0 180 71.9 – Li et al. (2017a)
AC KCl-AC N2/Hg0 135 26 – De et al. (2013)

KBr-AC 85 –
KI-AC 100 –
NH4Br-AC > 50 –
NH4I-AC 100 –

AC KI-AC N2/Hg0 120 > 90 – Tong et al. (2017)
AC CuO/AC-Hz N2/O2/Hg0 120 > 72 – Zhao et al. (2016b)
Semi-coke (SC) Ce/SC Air/N2/Hg0 260 95 – Zhang et al. (2017a)
SC Ce/SC Air/N2/Hg0 260 > 95 – Zhao et al. (2017a)
AC CeO2–Mn/AC N2/Hg0 120 90 – Wu et al. (2017)
AC MnCe/AC N2/O2/Hg0 190 > 90 – Xie et al. (2015)
SC Mn/Ce-SC N2/O2/Hg0 260 > 90 – Zhang et al. (2016d)
AC CoCe/AC O2/CO2/NO/SO2/N2/Hg0 170 > 80 – Wu et al. (2015b)
AC Fe2O3–CeO2/AC O2/CO2/NO/SO2/N2/Hg0 110 90 – Wang et al. (2016c)
AC AC-A30 N2/Hg0 30 > 70 – Zhang et al. (2015b)
AC AC-O20 N2/Hg0 25 > 50 37.05 μg/g Zhang et al. (2016e)
AC AC-C15T60 N2/Hg0 30 > 96 – Zhang et al. (2016c)
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catalytic reduction (SCR) of NOx, and Hg0 removal due 
to its large oxygen storage capacity and unique redox 
couple Ce3+/Ce4+, and excellent ability to shift between 
CeO2 and Ce2O3 under oxidizing and reducing conditions, 
respectively (Zhang et al. 2017a; Zhao et al. 2017a). Zhang 
et al. (2017a) prepared CeO2-supported semi-coke (SC) 
sorbents by an impregnation method and observed much 
better Hg0 removal capacity than that of unmodified semi-
coke (SC) but high concentration of H2O vapor showed 
inhibitory effects. It was demonstrated that the Ce–OH 
groups formed by the reaction of CeO2 and H2O vapor 
consumed lattice oxygen on the surface of samples, with 
the concomitant effect of decreasing the Hg0 removal effi-
ciency. Zhao et al. (2017a) also obtained similar results in 
studying the effect of water vapor on Hg0 removal perfor-
mance over CeO2-supported semi-coke (SC) sorbents. Wu 
et al. (2017), Xie et al. (2015), and Zhang et al. (2016d) 
prepared Ce–Mn-co-modified activated carbons (AC), 
Mn–Ce-mixed oxides-modified activated coke (MnCe/
AC), and Mn/Ce-modified semi-coke (Mn/Ce-SC) by an 
impregnation method, respectively, and found the modi-
fied sorbents to exhibit excellent Hg0 capture capability. 
Wu et al. (2015b) investigated the performance of CoCe/
AC sorbents prepared by an impregnation method for Hg0 
capture from flue gas at 110–230 °C and reported supe-
rior performance compared to Ce/AC, Co/AC, and virgin 
AC, with a 92.5% Hg0 removal achieved at 170 °C. Based 
on the results obtained from XPS and TGA analyses, the 
valence transitions of Co3+/Co2+ and Ce4+/Ce3+ produced 
lattice oxygen, promoting Hg0 oxidation and removal. 
Wang et al. (2016c) also reported that activated coke (AC) 
impregnated with CeO2 and Fe2O3 (denoted Fe2O3-CeO2/
AC), significantly improved Hg0 removal capacity.

Plasma‑treated carbon sorbents

In recent years, plasma modification has received wide-
spread attention in research for functionalizing catalyst 
and sorbents. For example, non-thermal plasma produces 
energetic electrons, ions, and active radicals, which could 
improve the pore structure of sorbents and increase the 
active functional groups on the surface of the sorbents. Some 
investigators (Zhang et al. 2015b, 2016c, e) have shown that 
plasma modification could form multiple functional groups 
on the surface of sorbents, ameliorating the Hg0 removal 
process.

Zhang et al. (2015b) used a non-thermal plasma tech-
nology to modify activated carbon (AC) in air environ-
ment and found the modified sample to have a higher Hg0 
removal efficiency than the corresponding raw sample. The 
results of XPS showed that the modification by non-thermal 
plasma increased the content of ester groups (C(O)–O–C) 
and carbonyl groups (C=O) on the activated carbon, which 
played a key role in Hg0 removal. Zhang et al. (2016e) also 
obtained the similar results in studying the effect of oxygen 
non-thermal plasma modification, reporting that the modi-
fied activated carbon (AC) exhibited a high removal perfor-
mance for Hg0 from flue gas. Zhang et al. (2016c) modified 
activated carbon (AC) by Cl2 non-thermal plasma method 
and found the sample to greatly enhance Hg0 removal by 
increasing the chlorinated (Cl) active sites on the surface of 
the activated carbon (AC). The corresponding XPS analysis 
indicated that a large number of C–Cl groups resulted from 
the treatment, which could have oxidized the Hg0 to HgCl2, 
as illustrated in Fig. 6.

Biomass char‑based sorbents

The results of some studies (Hua et al. 2010; Lee et al. 2006; 
Diamantopoulou et al. 2010) have indicated that injection 
of activated carbon into the flue gas system is a promising 
method for Hg0 removal from flue gas. However, large acti-
vated carbon (AC)/Hg0 ratio and high operation costs have 
limited large-scale applications (Hsi et al. 2002; Scala et al. 
2011). Biomass char is the by-product of biomass pyrolysis 
under oxygen-free conditions. With the low costs and the 
simplicity of preparation, it could be considered as an attrac-
tive alternative to activated carbon (AC) (Liu et al. 2011). 
Therefore, pyrolysis chars, which are made from cheap and 
renewable resources, have been extensively studied recently 
in the field of Hg0 removal (Hsi et al. 2011; Klasson et al. 
2010; Fuente-Cuesta et al. 2012). However, they require 
physical techniques to modify pore structure such as spe-
cific surface area, pore volume, and pore size and/or chemi-
cal modification to increase active functional groups on the 
surface. For example, the use of active ingredients such as 
halogens, metal oxides, and acid to modify biochars has 

Fig. 5   Possible adsorption mechanism for Hg0 under simulated flue 
gas. The formation of I2 molecules, SO3

2−/SO4
2− active species and 

NO2 active species on the surface of I-impregnated activated carbons 
significantly promoted Hg0 removal (reproduced with permission 
from Tong et al. 2017)
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been reported to improve their performance for Hg0 removal. 
The modification conditions and Hg0 removal capacities of 
modified biochars are summarized in Table 4.

The results of a number of studies (Johari et al. 2016a, 
b; Klasson et al. 2014) have suggested that the pyrolysis 
conditions could also substantially influence the yield and 
physicochemical properties of chars. Johari et al. (2016b) 
prepared a series of coconut pith (CP) chars at different 
pyrolysis temperatures and found the Hg0 removal capac-
ity to increase with increasing pyrolysis temperature, with 
the highest removal capacity of 6067.49 μg/g obtained at 
900 °C. Klasson et al. (2014) prepared four different bio-
chars (almond shells, cottonseed hulls, lignin, and chicken 
manure) at different pyrolysis temperature and reported that 
chicken manure exhibited the best Hg0 removal performance 
of 95% from flue gas at 650 and 800 °C.

Halogens‑modified biochar

Many studies have reported that chemical modifications 
of sorbents using halogens could significantly enhance the 
Hg0 removal from flue gas (Li et al. 2015a, b; Shen et al. 
2015a). The halogens (chloride, bromide, and iodide) have 
been demonstrated as effective reagents for modification 
of sorbents to improve their performance in Hg0 removal 
from flue gas. Li et al. (2015a) and Shen et al. (2015a) pre-
pared low-cost sorbents using municipal solid waste and 
medicinal residues by a chloride impregnation method and 
reported that NH4Cl-modified sorbents showed improved 
performance for Hg0 removal. Li et al. (2015b) investigated 
the effects of flue gas composition on Hg0 removal using 
NH4Cl-impregnated medicine residue biochars and reported 
that the presence of O2 and NO increased Hg0 removal, but 
water vapor suppressed the removal process. A dual effect 
of SO2 concentration was observed on Hg0 capture, that is, 
low SO2 concentration enhanced Hg0 removal while high 
SO2 concentration was antagonistic.

Li et al. (2015c) carried out a comparative study of NH4Cl 
modified biochars from three solid wastes (medicinal resi-
dues, municipal solid wastes, and cotton straw), showing that 
the chemically modified biochars, especially the modified 

cotton straw char exhibited higher Hg0 removal capacity 
than modified activated carbon (AC). In addition, the bio-
char derived from waste tire also demonstrated an excellent 
Hg0 removal performance, resulting from generated mercury 
sulfide chemisorption sites on the surface of the biochar (Li 
et al. 2017b). Shen et al. (2017) studied NH4Cl-modified 
biochar sorbents derived from waste tea and found that the 
generated C–Cl and C=O groups on the surface of the bio-
char promoted the oxidation of Hg0, resulting in an excel-
lent Hg0 removal. Xu et al. (2016c) synthesized a novel Cl-
Char composite by the co-pyrolysis of biomass (wood and 
paper) and polyvinyl chloride (PVC) and reported a 90% 
Hg0 removal capacity at 140 °C, which was more than 2.5–5 
times than that of a raw char. In addition, biochars modi-
fied by metal chlorides have been evaluated for their Hg0 
capture performances from flue gas (Shu et al. 2013; Tan 
et al. 2015). Shu et al. (2013) studied mulberry twig chars 
(MT) modified by ZnCl2, H2O2, and NaCl, respectively, and 
reported that the ZnCl2-impregnated char was better than the 
other chemically treated samples for Hg0 removal. Tan et al. 
(2015) also compared Hg0 capture performance of bamboo 
charcoal (BC) impregnated by ZnCl2 and FeCl3 and found 
that the impregnated BCs was better than raw bamboo char-
coal (BC), with the FeCl3-impregnated BCs showing the 
highest Hg0 removal efficiency (> 99.9%) at 140 °C.

It is well known that chemical modification of sorb-
ents with bromine plays a key role in the adsorption and 
oxidation of Hg0 (Yang et al. 2018a, b; Tang et al. 2017; 
Zhu et al. 2016). Yang et al. (2018a, b) reported that sar-
gassum chars’ effectiveness for Hg0 removal was greatly 
improved after NH4Br and NH4Cl impregnation, with the 
NH4Br-modified samples showing improved performance 
attributable to the generation of C–Br and C=O groups on 
the surface of the sorbents. Tang et al. (2017) developed a 
low-cost sorbent based on rice husk char (RHC) using HBr 
impregnation method and demonstrated that the modified 
rice husk char (RHC-HBr) had higher Hg0 removal capacity 
(57.84 μg/g) than those of activated carbon (AC). Zhu et al. 
(2016) evaluated the performances of chemically treated 
samples of rice husk char (RHC) and commercial coal-
based activated carbon (CAC) and found that modification of 

Fig. 6   Mechanism of modified 
activated carbon (AC) for Hg0 
removal. A large number of C–
Cl groups generated by the Cl2 
non-thermal plasma treatment 
can oxidize Hg0 to HgCl2, thus 
promoted the removal of Hg0 
(reproduced with permission 
from Zhang et al. 2016c)
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Table 4   Reaction conditions and Hg0 removal performance of biochars

*Pyrolysis temperature
**Reaction temperature
***Hg0 removal efficiency
****Adsorption capacity

Raw sorbents Name of modified 
sorbents

Simulated flue gas PT* (°C) RT** (°C) MRE*** (%) AC**** (μg/g) References

Biomass chars PW1 O2/SO2/NO2/HCl/Hg0/N2 – 150 – 172 Fuente-Cuesta et al. (2012)
Coconut pith chars CP700 N2/Hg0 700 – – 2395.98 Johari et al. (2016a, b)

CP900 900 6067.49
Chicken manure / HCl/NOx/SO2/O2/CO2/

Hg0/N2

800 150 – 250 Klasson et al. (2014)

Municipal solid waste C6WN5 N2/O2/Hg0 600 80 – 157.7 Li et al. (2015a)
Medicine residue M6WN5 N2/O2/Hg0 600 120 – 869.6 Shen et al. (2015a) and Li 

et al. (2015b)
Municipal solid wastes W6WN5 N2/O2/Hg0 600 120 – 160 Li et al. (2015c, 2017b)
Cotton straw char C6WN5 11400
Medicinal residues M6WN5 840
Waste tire T6WN5 – 83.2 –
Waste tea HCU-5 N2/O2/Hg0 500 120 > 90 – Shen et al. (2017)
Paper/Wood Paper/PVC N2/Hg0 700 140 90 – Xu et al. (2016c)

Wood/PVC
Mulberry twig chars MT873-A-Z5 N2/NO/SO2/Hg0 600 90 – 29.55 Shu et al. (2013)
Bamboo charcoal B1/B2 O2/SO2/NO/CO2/Hg0/N2 – 140 88/92 – Tan et al. (2015)

B3/B4 99.9
Sargassum chars S8Br5 N2/SO2/NO/O2/H2O/Hg0 800 160 93.96 952.4 Yang et al. (2018a, b)

S8Cl5 91.67 625.0
Rice husk char RHC-HBr O2/CO2/SO2/NO/N2/Hg0 600 150 – 57.84 Tang et al. (2017)
Rice husk char RBr N2/SO2/NO/Hg0 600 150 > 70 > 30 Zhu et al. (2016)

RCl > 60 > 25
Bamboo charcoal BC-I O2/SO2/NO/CO2/Hg0/N2 – 140 99.9 – (Tan et al. 2012b)

180 > 90 –
Sargassum chars S8KI3 N2/SO2/NO/O2/H2O/Hg0 800 160 94.1 – Liu et al. (2018)
Enteromorpha chars E8KI3 95.7
Cotton straw char C6WNCl1 N2/Hg0 600 120 – 1239.2 Li et al. (2016a, 2017c)

C6WNBr1 2781.9
C6WNI1 7752.0

Sawdust Fe1.5MBC600 N2/O2/Hg0 600 120 > 90 1279.6 Yang et al. (2016a)
Wheat straw char WS8Fe0.1 N2/H2O/O2/Hg0 600 50 > 80 – Zhou et al. (2017)
Wheat straw char MnCe0.12(2/1)/WSU250 N2/H2O/O2/NO/SO2/Hg0 600 150 83.6 – Yang et al. (2017b)
Rice straw char CuCe0.18(1/5)/RSU(260) N2/H2O/O2/NO/SO2/Hg0 600 150 79.93 – Xu et al. (2018)
Peanut shells 6Mn-6Zr/PSC-I3 N2/O2/Hg0 600 150 > 90 5587.0 Zeng et al. (2017)
Bamboo char BC2 N2/O2/Hg0 – 160 > 70 294.1 Xu et al. (2016a)
Waste tire T6 N N2/O2/Hg0 600 120 – – Li et al. (2015d)

T6S
Leather industry waste BCT0.33 N2/O2/Hg0 750 150 – 2007 Lopez-Anton et al. (2015)
Corn stalk char BC-50-9 N2/Hg0 700 140 – 269.4 Niu et al. (2017)
Tobacco straw T6Cl Air/Hg0 600 150 84.2 583.0 Wang et al. (2018)
Rice straw R6Cl 83.9 445.1
Millet straw M6Cl 81.1 444.3
Wheat straw W6Cl 52.7 217.6
Corn straw C6Cl 42.7 150.8
Black bean straw B6Cl 5.3 12.6
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NH4Cl and NH4Br significantly increased the Hg0 removal 
efficiency of rice husk char compared to CAC and that the 
NH4Br-modified rice husk char exhibited the highest Hg0 
removal performance.

Tan et al. (2012b) reported that KI modification of bamboo 
charcoal (BC) by an impregnation method, while it resulted 
in the decrease in the total volume and BET surface area, the 
modified BC (BC-I) exhibited superior capacity for Hg0. The 
results of XPS analysis of the used samples appear to sup-
port the generations of C-Ix compounds and I2 and subsequent 
reactions with Hg0 to form iodated mercuric compounds, 
thus contributing to a higher Hg0 removal efficiency. Liu 
et al. (2018) also obtained similar results in their study of the 
removal of Hg0 using the KI-modified sargassum and entero-
morpha chars. Li et al. (2016a, 2017c) synthesized cotton 
straw char sorbents using three different ammonium halides 
to capture Hg0 from flue gas and found that the Hg0 removal 
efficiency was in the order of NH4I > NH4Br > NH4Cl. It was 
also noted that high reaction temperature improved the Hg0 
removal performance of the NH4I-modified sorbents.

Metal oxides‑modified biochar

In recent years, metal oxides have been widely studied as 
effective sorbent modifiers for Hg0 capture due to their 
low costs and high activities. Among metal oxides used to 
modify biochars-based sorbents for Hg0 capture are FeOx, 
CeOx, CuOx, MnOx, and ZrO2 (Yang et al. 2016a, 2017b; 
Zhou et al. 2017; Xu et al. 2018; Zeng et al. 2017). Yang 
et al. (2016a) prepared a novel magnetic sorbents (MBC) 
based on sawdust char by one-step pyrolysis of FeCl3-laden 
method and showed that the modified sample has improved 

Hg0 removal capacity compared with those of raw biochar. 
XPS analysis indicated that the generated Fe3O4 and C=O 
groups were the major active oxidation/adsorption sites for 
Hg0 removal. The plausible mechanism of Hg0 removal pro-
posed is depicted in Fig. 7.

Zhou et al. (2017) studied Hg0 removal by wheat straw char 
impregnated with K2FeO4 reagent, and the results appeared 
to show that K2FeO4 impregnation effectively improved 
pore structure of the wheat straw char, leading to enhance-
ment in Hg0 removal. Yang et al. (2017b) further studied the 
Hg0 removal performance of wheat straw char modified by 
Mn–Ce-mixed oxides and found that the Mn/Ce redox cycle 
played an important role in Hg0 removal. Xu et al. (2018) 
modified rice straw char (RS) by impregnation with Cu-
Ce-mixed oxides to remove Hg0 from flue gas and reported 
significant enhancement up to 95.26% efficiency. Zeng et al. 
(2017) prepared metal oxides (MnOx and ZrO2) and halide 
ions (I−) modified peanut shells char (6Mn-6Zr/PSC-I3) and 
demonstrated that the sample exhibited superior Hg0 removal 
capacity (15028.4 μg/g). Based on XPS analysis, two reac-
tion stages could be detected in the Hg0 removal process. As 
shown in Fig. 8, at the initial reaction stage, Hg0 was first 
removed by the chemical adsorption sites of C-I groups. The 
Hg0 oxidation caused by the hydroxyl (OH) oxygen and lattice 
oxygen played a key role at the final reaction stage.

Other modification

In addition to the modification of biochar sorbents with halo-
gens and metal oxides, other chemical modification meth-
ods involving the use of acid and alkali to increase surface 
activity, and physical modification such as plasma mainly to 

Fig. 7   Mechanism of magnetic 
sorbents for Hg0 removal. 
The generated Fe3O4 and 
C=O groups on the surface 
of novel magnetic sorbents 
(MBC) by one-step pyrolysis of 
FeCl3-laden method signifi-
cantly promoted Hg0 removal 
(reproduced with permission 
from Yang et al. 2016a)
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change pore structure, are also employed to improve the Hg0 
removal performance of sorbents derived from biomass char 
(Xu et al. 2016a; Li et al. 2015d; Lopez-Anton et al. 2015; 
Niu et al. 2017; Wang et al. 2018). Xu et al. (2016a) modi-
fied bamboo char (BC) using an oxidizing agent (HNO3) and 
showed that the modification by HNO3 increased the Hg0 
capture efficiency from the flue gas. The improvement was 
ascribed to the oxygen functional groups (such as carboxy-
late, carboxyl, and carbonyl groups) on the modified bam-
boo. In addition, the presence of water vapor improved the 
Hg0 removal performance. Li et al. (2015d) modified pyro-
lyzed char from waste tire by H2SO4 and HNO3, respectively. 
The results showed that the raw pyrolyzed char (T6) exhib-
ited superior Hg0 removal performance compared with those 
of acid-modified char (T6 N and T6S), attributable to the 
loss of sulfide functional groups on the modified samples.

Lopez-Anton et al. (2015) developed a low-cost sorb-
ent based on leather industry waste by KOH activation and 
showed that the modified samples achieved the highest Hg0 
removal capacity under the N2/O2 atmosphere. Niu et al. 
(2017) treated corn stalk samples by the dielectric barrier 
discharge (DBD) plasma method under N2/O2/H2O atmos-
phere and found the DBD plasma-treated corn stalk sorbents 
to have a higher Hg0 removal capacity compared with that 
of a raw corn stalk. The XPS analysis indicated that oxygen-
containing functional groups increased significantly on the 
surface of the samples after the dielectric barrier discharge 
(DBD) plasma treatment, which played an important role 
in the removal of Hg0. Wang et al. (2018) treated six straw 
chars by Cl2 non-thermal plasma method and found that the 
Hg0 removal efficiency increased from 10% to over 80% 
after the treatment. For example, as shown in Table 4, the 
Hg0 removal capacity of T6Cl was more than 36 times than 
that of T6 (tobacco straw). The improved results could be 

ascribed to the generated C–Cl groups on the samples, which 
served as activated sites for Hg0 removal.

Fly ash‑based sorbents

Many investigators (Wang et al. 2016b; Hower et al. 2010) 
have identified fly ash (FA), a by-product of coal combustion 
as a promising alternative to activated carbon (AC) due to 
its very low cost and abundance. Related studies indicated 
that the fly ash has the ability to oxidize and adsorb Hg0 
in flue gas because of the presence of some oxides such as 
CaO, TiO2, Fe2O3, CuO, Al2O3, and unburned carbon as 
part of its composition (Borderieux et al. 2004; Guo et al. 
2010; Dunham et al. 2003). However, compared with acti-
vated carbon (AC), the Hg0 removal performance of the fly 
ash is relatively poor (Cao et al. 2009) and requires some 
physical and chemical modification methods including the 
use of halogens and metal oxides to improve its capacity for 
Hg0 (Zhao et al. 2010; Bisson et al. 2013). The modification 
conditions and Hg0 removal capacities of raw fly ash and 
modified sorbents are summarized in Table 5.

It is well known that the compositions of fly ash played 
an important role in Hg0 removal (Wang et al. 2016a; Yang 
et al. 2016e, 2017a, c). Wang et al. (2016a) investigated the 
Hg0 removal mechanism and performance of fly ash, and 
they found that the fly ash had a 60% Hg0 removal efficiency 
in simulated flue gas and that the presence of TiO2, Fe2O3, 
and Al2O3 provided better improvement in performance 
compared to CaO and MgO and Al2O3. Furthermore, it was 
demonstrated that the reaction process of heterogeneous oxi-
dation on fly ash followed an Eley–Rideal mechanism, with 
Fe2O3 considered as one of the active components on fly 
ash for Hg0 removal (Yang et al. 2017a). Yang et al. (2016e, 
2017c) reported Hg0 removal at 100 °C of 89.5% for Fe2O3 

Fig. 8   Reaction mechanism of 6Mn-6Zr/PSC-I3 for Hg0 removal 
at different reaction stages. At the initial reaction stage, Hg0 is first 
removed by the chemical adsorption sites of C-I groups. And the Hg0 

oxidation caused by the hydroxyl (OH) oxygen and lattice oxygen 
played a key role at the final reaction stage (reproduced with permis-
sion from Zeng et al. 2017)
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and investigated the Hg0 reaction mechanism on its surface 
in the presence of HCl, suggesting that the main reaction 
process was in accordance with: Hg0 → FeHgCl(s) → HgCl2.

Halogens modification is considered to be an effective 
method to enhance the adsorption and oxidation of Hg0 
(Zhang et al. 2017c). Zhang et al. (2014b) compared three 
different halogenated fly ashes in an entrained flow reactor 
and found that the fly ash modified by HBr exhibited better 
Hg0 removal ability as compared with metal halogens such 
as CaCl2 and CaBr2. Song et al. (2014) and Zhang et al. 
(2015f) also studied the Hg0 removal performance of HBr-
modified fly ash in a fixed-bed reactor and an entrained flow 
reactor, respectively, and found significant improvement over 
unmodified fly ash. Zhang et al. (2017d) further investigated 
the effect of NO on Hg0 removal of HBr-modified fly ash in 
an entrained flow reactor and demonstrated that the intro-
duction of NO improved the Hg0 removal performance of 
the fly ash, as a result of the reaction of NO and HBr in the 
presence of O2. Li et al. (2013b) developed some halogen-
modified fly ash by an impregnation method and found that 
compared to bromine and chlorine, the iodine-modified fly 
ash exhibited better Hg0 removal performance. It has been 

shown that both the metal ions and halogen ions contained 
in metal halogens acted as active sites and improved the Hg0 
removal performance (Xu et al. 2013; Yang et al. 2016b, c, 
d). Xu et al. (2013) suggested that metal halogens, such as 
CuBr2, CuCl2, and FeCl3 loaded on fly ash, promoted the 
removal of Hg0 from flue gas due to the positive role played 
by Cu2+ and Fe3+ cations. Yang et al. (2016b, c, d) devel-
oped a novel magnetic catalyst (CuCl2-MF) based on CuCl2 
modified fly ash and found that the fly ash modified by 6% 
CuCl2 achieved 90.6% Hg0 removal from flue gas at 150 °C. 
In addition, when HCl was introduced into the flue gas, the 
CuCl2-MF catalyst exhibited an excellent resistance to SO2 
poisoning. XPS and EPR analyses suggested that Cu and Cl 
adsorption sites were involved in the Hg0 removal process. 
As shown in Fig. 9, the reaction between CuCl2 and Hg0 
appears cyclical in the presence of HCl and O2. In addition, 
the regeneration performance of CuCl2-MF catalyst was also 
studied. The results of this study indicated that the regener-
ated catalyst showed a relatively higher Hg0 removal capac-
ity after thermal desorption and restoration of HCl and O2.

In recent years, some metal oxides (e.g., manganese 
oxides, cobalt oxides, and iron oxides) have been used to 

Table 5   Reaction conditions and Hg0 removal performance of raw fly ash and modified sorbents

*Reaction temperature
**Hg0 removal efficiency
***Adsorption capacity

Raw sorbents Name of modified sorbents Simulated flue gas RT* (°C) MRE** (%) AC*** 
(μg/g)

References

Fly ash – NO/HCl/SO2/O2/CO2/N2/Hg0 – 60 – Wang et al. (2016a)
Fly ash ZJM-HF N2/O2/Hg0 250 50 – Yang et al. (2017a)
Fly ash – N2/CO2/O2/HCl/Hg0 100 89.5 – Yang et al. (2016e, 2017c)
Fly ash – Air/Hg0 – – 4.5 ng/mg Zhang et al. (2017c)

> 2.7 ng/mg
3.5 ng/mg
4.0 ng/mg

Fly ash A-HBr Air/Hg0 150 98.4 – Zhang et al. (2014b)
A-CaCl2 67.5
A-CaBr2 46.4

Fly ash – Air/Hg0 – – 100 Song et al. (2014)
Fly ash – Air/Hg0 150 44 – Zhang et al. (2015f)
Fly ash – Air/Hg0 150 66.1 – Zhang et al. (2017d)
Fly ash KCl-FA (Fly ash) O2/CO2/N2/SO2/HCl/Hg0 120 > 50 – Li et al. (2013b)

KBr-FA (Fly ash) > 70
KI-FA (Fly ash) > 90

Fly ash CuCl2-FA (Fly ash) N2/O2/SO2/HCl/Hg0 100 > 95 – Xu et al. (2013)
FeCl3-FA (Fly ash) > 70
CuBr2-FA (Fly ash) 100

Fly ash CuCl2-MF (Fly ash) N2/O2/CO2/HCl/SO2/NO/Hg0 150 90.6 – Yang et al. (2016b, c, d)
Fly ash Mn(2)-Fe(3)-FA Air/N2/Hg0 120 98 – Xing et al. (2012)
Fly ash Co/FA (Fly ash) Air/N2/Hg0 80 76 – Xu et al. (2014b)
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modify fly ash (FA) before its use to remove Hg0 from flue 
gas. Xing et al. (2012) modified fly ash by manganese oxides 
and iron oxides and found that modification with Mn and 
Fe increased the Hg0 removal efficiency. In particular, the 
Mn(2)-Fe(3)-FA samples exhibited the highest Hg0 removal 
efficiency compared with raw fly ash in the presence of O2. 
The XPS analysis indicated that the Mn4+ and Fe3+, which 
served as active sites, could react with absorbed Hg0 to 
form HgO, thereby promoting the Hg0 removal. Xu et al. 
(2014b) synthesized Co-modified fly ash by a wet impregna-
tion method and found that the sample impregnated with 9 
wt% Co was very effective in Hg0 capture, attributable to the 
presence of Co3O4 and its reaction with Hg0 to form mercury 
oxides as shown in Fig. 10.

Mineral material‑based sorbents

Mineral material-based sorbents have been widely stud-
ied for the treatment of Hg0 removal in flue gas due to its 
low prices, abundance, and environmentally benign nature. 
However, various nature mineral sorbents such as zeolites, 
clays, and bentonites have a relatively poor capacity for Hg0 
removal, prompting the use of some agents such as halogens, 
metal halogens, and metal oxides under suitable modifica-
tion conditions summarized in Table 6, to improve their 
effectiveness.

Zeolites are regarded as promising sorbents and good 
alternatives to activated carbon, due to their unique frame-
work structures, favorable cation exchange properties and 
low cost (Wang et al. 2015b; Du et al. 2014; Chiu et al. 2014; 
Qi et al. 2015; Fan et al. 2012a, b). Wang et al. (2015b) inves-
tigated some zeolite sorbents for Hg0 removal performance 
and demonstrated an efficiency of over 75% within 480 min 
at 100 °C. Du et al. (2014) developed CuCl2-impregnated 
zeolites, and in general, found their over 80% Hg0 removal 
performances were comparable to those of activated car-
bons. Chiu et al. (2014) further studied the effect of CuCl2 
modification on the physicochemical properties zeolites and 
their resulting effectiveness in the simultaneous removal of 
Hg0, NO, and SO2. The results of this study showed that 
the introduction of CuCl2 decreased the pore volume and 
total surface area, and the CuCl2-modified samples exhib-
ited higher Hg0 removal performances compared with their 
unmodified equivalents under both simulated flue gas and N2 
atmospheres. Qi et al. (2015) investigated the performance 
of FeCl3-modified zeolites (FeCl3-HZSM-5) and demon-
strated that the improved Hg0 capture efficiency obtained 
was due to higher surface areas and the surface-generated 
active Cl species. Metal oxides, with strong active and ther-
mal stabilities, have been used as modification additives to 
improve the Hg0 removal capacity of sorbents. Fan et al. 

Fig. 9   Reaction process for Hg0 removal over CuCl2-MF sample 
in the presence of HCl and/or O2. The Hg0 removal over CuCl2-MF 
samples is attributed to the synergistic role of both Cu and Cl atoms 
in CuCl2, and the reaction between CuCl2 and Hg0 appears cyclical in 
the presence of HCl and O2 (reproduced with permission from Yang 
et al. 2016b, c, d)

Fig. 10   Reaction mechanism of Hg0 removal. The generated Co3+ on the surface of fly ash sorbents significantly promoted Hg0 removal and O2 
played a crucial role in oxidation reactions (reproduced with permission from Xu et al. 2014b)
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(2012a, b) studied the Hg0 removal from flue gas using both 
CeO2- and CuO-modified zeolites in a laboratory-scale 
fixed-bed system. They found that not only did they improve 
Hg0 removal compared to raw zeolite (HZSM-5), but the 
CeO2/HZSM-5 and Cu/HZSM-5 also exhibited higher activ-
ities for NO removal.

Clay has been used as sorbent for Hg0 removal due to its 
high abundance, good thermal stability, and layered struc-
ture. Cai et al. (2014) studied Hg0 removal using KI- and 
KBr-modified clays in simulated flue gas conditions. The 
results indicated that the modification of KI and KBr sig-
nificantly enhanced the Hg0 removal, and the KI-modified 
clays had better Hg0 removal capacity compared with KBr-
modified clays. Based on these results, Cai et al. (2014) and 
Shen et al. (2015b) further synthesized KI-impregnated 
titanium-pillared clay (KI-Ti-PILC) for use to capture Hg0 
in flue gas and found that the much better performance over 
the raw clay was due to its more developed mesopores and 
higher specific surface area. Also, some metal oxides such 
as CeO2 and MnOx have been employed as modification 
additives due to their higher oxidation activities for Hg0 
capture (He et al. 2016a, b). He et al. (2016a) developed 
a CeO2-modified pillared clay sorbent via an impregna-
tion method, and they found that the sorbent (15CeTPC) 
showed a high oxidation activity of 88.2% for Hg0 in flue 
gas at 300 °C in the presence of 5% O2. He et al. further 

synthesized Ce-MnOx-modified pillared clay catalysts (Ce-
MnOx/Ti-PILC), which also showed excellent Hg0 removal 
performance (He et al. 2016b).

Bentonite, a type of clay mineral composed of montmo-
rillonite, has been also used for treatment of Hg0 in flue gas 
(Li et al. 2014b; Ding et al. 2012; Shao et al. 2016). Li et al. 
(2014b) synthesized the ammonium bromide-modified ben-
tonite via an impregnation method and found that the modi-
fication enhanced the Hg0 removal efficiency. Ding et al. 
(2012) also synthesized a number of bentonite-based sorb-
ents modified by CuCl2, NaClO3, KBr, or KI, and reported 
that the KI-modified and CuCl2-modified samples achieved 
better performance of about 90% Hg0 removal at 120 °C. 
Furthermore, Shao et al. (2016) synthesized a novel KI-mod-
ified bentonite-starch sorbent (B-S-I) and found it to be more 
effective for Hg0 removal than that of KI-modified bentonite 
sorbent (B-I). It was suggested that the starch–iodine com-
plex formed by the reaction of iodine and starch promoted 
Hg0 removal via the ability to release I2, which could react 
with Hg0 to form iodated mercuric compounds, thus pro-
moting Hg0 removal, as shown in the reaction mechanism 
depicted in Fig. 11.

Table 6   Reaction conditions and Hg0 removal performance of mineral material-based sorbents

*Reaction temperature
**Hg0 removal efficiency
***Adsorption capacity

Raw Sorbents Name of modified sorbents Simulated flue gas RT* (°C) MRE** 
(%)

AC*** 
(μg/g)

References

Zeolite Sample G H2S/H2/CO/N2/Hg0 100 > 75 – Wang et al. (2015b)
Zeolite CuCl2-Z O2/CO2/H2O/HCl/SO2/NO/N2/Hg0 300 > 80 – Du et al. (2014)
Zeolite MCM-8% N2/Hg0 150 83.4 1325 Chiu et al. (2014)

N2/NO/SO2/O2/HCl/CO2/Hg0 73.4 1133
Zeolite FeCl3-HZSM-5 N2/O2/NO/HCl/SO2/Hg0 120 > 95 – Qi et al. (2015)
Zeolite CeO2/HZSM-5 NO/CO2/SO2/H2O/O2/Hg0 200 96 – Fan et al. (2012a)
Zeolite Cu/HZSM-5 NO/CO2/SO2/NH3/O2/Hg0 250 90 – Fan et al. (2012b)
Clay KBr-clay N2/O2/SO2/H2O/Hg0 180 > 57 52.96 Cai et al. (2014)

KI-clay > 31 487.80
Clay KI-Ti-PILC N2/O2/Hg0 180 > 65 526.32 Shen et al. (2015b)
Clay 15CeTPC N2/O2/Hg0 300 88.2 – He et al. (2016a)
Clay 6Ce6MnTiP O2/N2/Hg0 250 72 – He et al. (2016b)
Bentonite Br-Ben/Na N2/Hg0 140 > 90 – Li et al. (2014b)
Bentonite Cu-Ben N2/O2/CO2/Hg0 120 > 90 – Ding et al. (2012)

Cl-Ben > 45
I-Ben > 90
Br-Ben > 10

Bentonite/Starch B-S-I N2/O2/Hg0 120 100 604.3 Shao et al. (2016)
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Other novel Hg0 removal technologies

In addition to the catalysts and sorbents extensively dis-
cussed above, other novel capture processes for Hg0 in flue 
gas systems involving photocatalysis, plasma catalytic oxi-
dation, and microwave catalytic oxidation under various 

modification conditions have been developed as attractive 
alternatives to conventional technologies, and are sum-
marized in Table 7 (Wu et al. 2015a; Zhuang et al. 2014; 
Zhang et al. 2016a; An et al. 2016; Yang et al. 2012a, b; 
Liu et al. 2015a; Wei et al. 2015a, b).

Fig. 11   Reaction mechanism of Hg0 removal by B-S-I. The starch-
iodine complex formed by the reaction of iodine and starch promoted 
Hg0 removal via the ability to release I2, which could react with Hg0 

to form iodated mercuric compounds, thus promoted Hg0 removal 
(reproduced with permission from Shao et al. 2016)

Table 7   Reaction conditions and Hg0 removal performance of novel removal methods

*Reaction temperature
**Hg0 removal efficiency

Novel removal methods Modification reagents Name of 
modified 
sorbents

Simulated flue gas RT* (°C) MRE** (%) References

Photocatalysis Ti(SO4)2 TiO2 Air/Hg0 55 82.75 Wu et al. (2015a)
TiO2 CTNTs N2/O2/Hg0 20 > 90 Zhuang et al. (2014)
Bi(NO3)3/KCl BiOCl N2/O2/CO2/Hg0 – 50 Zhang et al. (2016a)
Bi(NO3)3/KBr BiOBr 90
Bi(NO3)3/KI BiOI > 95

Plasma Plasma/O2 – N2/O2/SO2/NO/HCl/Hg0 110 99.1 An et al. (2016)
TiCl4 TiO2-B N2/H2O/Hg0 140 98.4 Yang et al. (2012a, b)
TiCl4 TiO2-B N2/O2/HCl/Hg0 140 94
TiO2 TiO2 N2/O2/HCl/Hg0 25 71 Liu et al. (2015a)
SiO2 SiO2 15
TiO2/Mn(NO3)2 Mn/TiO2 > 90
SiO2/Mn(NO3)2 Mn/SiO2 > 80

Microwave Mn(NO3)2 Mn/γ-Al2O3 Air/O3/Hg0 – 92.2 Wei et al. (2015a)
Mn(NO3)2 Mn/zeolite Air/O3/Hg0 > 90 > 92 Wei et al. (2015b)
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Photocatalytic oxidation has been considered as a prom-
ising technology to remove Hg0 in flue gas because it is 
a green process with superior oxidation ability (Wu et al. 
2015a; Zhuang et al. 2014; Zhang et al. 2016a). Wu et al. 
(2015a) synthesized TiO2 hollow sphere via a hydrothermal 
method and evaluated its performance for Hg0 in flue gas 
under the irradiation of ultraviolet lamp. The results indi-
cated that the sample showed an excellent photocatalytic 
oxidation for Hg0 oxidation with a conversion of 82.75%. 
Zhuang et al. (2014) developed carbon-modified TiO2 nano-
tubes by a hydrothermal method, which achieved an effective 
Hg0 removal performance under the white light LED lamp 
irradiation. Zhang et al. (2016a) synthesized some BiOX (X 
denotes Cl, Br, and I) photocatalysts via a sample coprecipi-
tation method for use to capture Hg0 in flue under fluorescent 
light. The results of the study indicated that compared with 
BiOCl, BiOBr, BiOI exhibited much better Hg0 removal 
capacity. It was suggested that the presence of a hole (h+) 
and ion (·O2−) played key roles in BiOBr reaction system, 
while for BiOI reaction system, the generated I2 might be 
the main species for Hg0 oxidation.

The plasma catalytic oxidation technology has obtained 
much attention due to its ability to oxidize Hg0 via the gen-
eration of active species such as O3, OH, HO2, and O (An 
et al. 2016). Yang et al. (2012a, b) studied the oxidation 
of Hg0 using TiO2 power via non-thermal plasma coupled 
with photocatalysis and found that the combined plasma-
photocatalysis system resulted in a synergistic effect, pro-
moting improved Hg0 oxidation performance. Liu et al. 
(2015a) investigated the Hg0 removal performance of SiO2, 
TiO2, and SiO2 or TiO2 supported transition metal oxide 
catalysts at low temperatures using a plasma-catalyst reactor. 
The results showed that while the non-thermal plasma could 
effectively enhance the Hg0 oxidation, the presence of Mn/
TiO2 catalysts resulted in the highest Hg0 removal efficiency 
of about 99% under a SED of 2.3 ± 0.3 J/L.

Wei et al. (2015a, b) synthesized Mn/γ-Al2O3 and Mn/
zeolite catalysts via an incipient wetness impregnation 
method for microwave catalytic oxidation of Hg0 in flue 
gas under the integrated ozone atmosphere. They reported 
more than 90% Hg0 removal efficiency in the integrated 
microwave and ozone system, and also attributed the higher 
efficiency to the presence of ozone and large amounts of 
free radicals (O, HO2, and OH) and their strong ability to 
oxidize Hg0.

Proposed mechanism for the heterogeneous 
oxidation of elemental mercury

Typically, the Hg0 can be oxidized to Hg2+ by the heteroge-
neous reactions or/and homogeneous reactions. The mecha-
nistic aspects of Hg0 removal using sorbents and catalysts 

have been extensively studied by numerous investigators 
(Zhao et al. 2015d; Chen et al. 2016; Zhang et al. 2017d; 
Xu et al. 2014b). It is well known that sorbents and catalysts 
promote heterogeneous reactions, which are faster reaction 
rate than homogeneous reactions (Presto and Granite 2006). 
The Deacon process, Eley–Rideal, Langmuir–Hinshelwood, 
and Mars–Maessen are among some of the mechanistic 
approaches, which have been employed to explain and quan-
tify the heterogeneous oxidation of Hg0 in flue gas.

The Deacon reaction

The mechanism assumes that the process by which Cl2 (or 
Cl atom) can be generated by the reaction of HCl and O2 or 
air at high temperature (e.g., 300–400 °C) as in Eq. (1) is the 
main pathway for Hg0 catalytic oxidation in flue gas.

The Deacon reaction could produce a large amount of Cl2 
in the presence of some sorbents and catalysts, thereby pro-
moting Hg0 removal (He et al. 2016a). Based on the results 
of Xu et al. (2014a) and Du et al. (2014), the Deacon reac-
tion may be the main pathway for Hg0 removal over the 
Cu-based sorbents and catalysts in HCl and O2 atmosphere. 
Zhao et al. (2017b) suggested that the different reaction tem-
perature ranges have significant effects on the Deacon reac-
tion. As shown in Fig. 12, Hg0 could be adsorbed by Mo or 
Ag on the surface of catalyst to form the Mo-Hg or silver 
amalgam at low reaction temperature and then combine with 
the active Cl species produced by a reaction of HCl and Ag-
Mo/V-Ti to form soluble and adsorbable HgCl2, namely the 
Semi-Deacon reaction. When the reaction temperature is in 
the range of 350–450 °C, the generated Cl2 could begin to 
react with the gaseous Hg0 to form HgCl2, namely the Full 
Deacon reaction. Chen et al. (2014) by employing the Dea-
con mechanism explained that the gaseous O2 was firstly 
adsorbed and activated by Rucus to generate the active O 
species, and then the produced active O species reacted with 
HCl to generate Cl2. The reaction pathways can be described 
as follows:

The Eley–Rideal mechanism

In general, this mechanism assumes surface reaction involving 
physically adsorbed reactant (A) and chemisorbed reactant (B) 

(1)4HCl(g) + O2(g) → 2Cl2(g) + 2H2O

(2)2Rucus + O2 → 2Rucus − O∗

(3)Rucus − O∗ + HCl → Rucus − OH − Cl∗

(4)4Rucus − OH − Cl∗ → 4Rucus − Cl∗ + 2H2O + O2

(5)2Rucus − Cl∗ → 2Rucus + Cl2

(6)2Rucus − Cl∗ + Hg0 → 2Rucus + HgCl2



38	 Environmental Chemistry Letters (2019) 17:19–47

1 3

or reactant (A) in gas phase and chemisorbed reactant (B), and 
vice versa. That is, the adsorbed active species, such as HCl, 
could react with the gas-phase or weakly adsorbed Hg0 to form 
Hg2+ (Zhao et al. 2014; Wang et al. 2016a). The Eley–Rideal 
reaction mechanism has been employed in the study of Hg0 
oxidation over selective catalytic reduction (SCR) catalysts in 
the presence of HCl (Yang et al. 2017d; Zhang et al. 2015d). 
It has been suggested that in the Hg0 oxidation over SCR 
catalysts, the HCl was firstly adsorbed on the surface of the 
catalyst to generate active Cl sites, which could react with the 
gas-phase or weakly adsorbed Hg0 to produce HgCl2 (Wang 
et al. 2013). The specific reaction mechanism can be described 
as follows:

Similarly, the reaction of H2S and Hg0 also followed the 
Eley–Rideal reaction mechanism (Zhou et al. 2013). Related 
results (Hou et al. 2014a; Li et al. 2014a; Han et al. 2016; Yue 
et al. 2015) suggested that H2S could be oxidized by some 
active species to form adsorbed active sulfur species (Sad), 

(7)4HCl(g) + O2 → 2H2O + 4Cl∗
(ad)

(8)Hg0
(g)

+ Cl∗
(ad)

→ HgCl(ad)

(9)HgCl(ad) + Cl∗
(ad)

→ HgCl2(ad)

(10)HgCl2(ad) → HgCl2(g)

which could further reacts with the gas-phase Hg0 to generate 
HgS. The reaction mechanism can be described as follows:

The Langmuir–Hinshelwood mechanism

Langmuir–Hinshelwood (L–H) mechanism (also known 
as Langmuir–Hinshelwood–Hougen–Watson (LHHW) in 
chemical reaction engineering) generally employs Lang-
muir’s adsorption isotherm for chemisorption and assumes 
equilibrium adsorption and that the surface reaction is con-
trolling. It has been used extensively to describe the bimo-
lecular reaction between two species adsorbed on the sur-
face of sorbents and catalysts (Zhao et al. 2016a; Liu et al. 
2016a). Based on this reaction mechanism, the adsorbed Hg0 
could react with some adsorbed oxidant species, such as 
HBr and HCl (Lim and Wilcox 2013; Song et al. 2014). The 
results of prior studies indicate that the Hg0 oxidation on the 
surface of some metal oxides-based sorbents and catalysts 
followed the Langmuir–Hinshelwood mechanism (Zhang 
et al. 2017b; Hou et al. 2014b; Huang et al. 2016). Jampaiah 
et al. (2015) and Wang et al. (2014) suggested that the Hg0 
removal on the Mn/Ce catalysts could be described by the 
Langmuir–Hinshelwood mechanism, whereby the adsorbed 

(11)H2S(g) + O∗
→ S(ad) + H2O

(12)S(ad) + Hg0 → HgS

Fig. 12   Reaction mechanism for Hg0 removal over Ag-Mo/V-Ti 
at different reaction temperatures. The Mo-Hg or silver amalgam 
formed by the reaction of adsorbed Hg0 and Mo or Ag can react with 
active Cl to produce HgCl2 at low reaction temperature, namely, the 

Semi-Deacon reaction. When the reaction temperature is in the range 
of 350–450 °C, the generated Cl2 could begin to react with the gase-
ous Hg0 to form HgCl2, namely the Full Deacon reaction (reproduced 
with permission from Zhao et al. 2017b)
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Hg0 could react with adsorbed active species to form Hg2+ 
as in reactions in Eqs. (13–17). Negreira and Wilcox (2013) 
also obtained similar results in the oxidation of Hg0 over 
vanadia–titania selective catalytic reduction (SCR) cata-
lyst. In addition, some investigators have indicated that the 
Hg0 oxidation on the surface of catalyst in the presence of 
SO2 could also be explained by the Langmuir–Hinshelwood 
mechanism and suggested that the active species derived 
from SO2 could react with adsorbed Hg0 to form HgSO4 (Li 
et al. 2013a; Chiu et al. 2015; Zhang et al. 2016b).

The Mars–Maessen mechanism

The Mars–Maessen mechanism had been considered by 
numerous investigators as the most plausible mechanism for 
Hg0 oxidation on the surface of metal oxide-based sorbents 
and catalysts (Wu et al. 2015b; Xu et al. 2016b; Qu et al. 
2015). In this mechanism, the adsorbed Hg0 could react with 
the lattice oxygen to form a binary mercury oxide. The Hg0 
oxidation mechanism on the Fe2O3–SiO2 catalyst could be 
described by the reactions in Eqs. (18–22) (where M denotes 
Fe) (Tan et al. 2012c). Firstly, the gas-phase Hg0 is assumed 
to adsorb on the surface of catalysts to form adsorbed Hg0. 
Then the adsorbed Hg0 is oxidized by the lattice oxygen 
from metal oxides to form HgO. Finally, the consumed lat-
tice oxygen could be regenerated and replenished by the 
gas-phase oxygen from flue gas. The oxidation of Hg0 by 
other metal oxides such as CuOx, MnOx, and CeO2 could 
also be explained by the Mars–Maessen mechanism (Zeng 
et al. 2017; Chiu et al. 2017; Li et al. 2015e). Also, other 

(13)2HCl(g) + O∗
→ 2Cl∗

(ad)
+ H2O

(14)Hg0
(g)

→ Hg0
(ad)

(15)Cl∗
(ad)

+ Hg0
(ad)

→ HgCl∗
(ad)

(16)HgCl∗
(ad)

+ Cl∗
(ad)

→ HgCl2(ad)

(17)HgCl2(ad) → HgCl2(g)

investigators have used the Mars–Maessen mechanism to 
explain the oxidation of Hg0 over some multi-metal oxide-
based catalysts (Zhang et al. 2015e, 2016d; Li et al. 2016b; 
Zhao et al. 2016c). Zhao et al. (2015c) suggested that the 
Hg0 oxidation on CeO2–V2O5 catalyst surface followed the 
Mars–Maessen mechanism, where the synergistic effect 
between CeO2 and V2O5 played an important role on the 
oxidation of Hg0. They proposed the plausible reaction path-
ways as in the Eqs. (18–22), and the reaction mechanism is 
illustrated in Fig. 13.

Summary, challenges, future research 
suggestions, and prospects

In this review, recent development on several catalysts 
and adsorbents for Hg0 heterogeneous oxidation removal, 
including mainly noble metal-based catalysts, non-noble 
metal-based catalysts (transition metal oxides and selective 
catalytic reduction catalysts), activated carbon-/coke-based 
sorbents, biochar-based sorbents, fly ash-based sorbents, 
mineral material-based sorbents and other novel catalysts, 
are extensively discussed. Some future research suggestions 
and potential directions for the development of green and 
cost-effective technologies are summarized here.

The noble metal-based catalysts have excellent Hg0 
removal capacity and are generally regenerable and reusable 
to a large extent of use, but the very high costs and scarce 
sources greatly limited their developments and applications. 
Compared with noble metals, transition metal oxides and 
selective catalytic reduction (SCR) catalysts have several 
advantages such as much lower costs and more extensive 
sources. However, the catalytic activity for Hg0 of transition 

(18)Hg(g) → Hg(ad)

(19)Hg(ad) +M
x
O

y
→ HgO(ad) +M

x
O

y−1

(20)M
x
O

y−1 + 1∕2O2 → M
x
O

y

(21)HgO(ad) → HgO(g)

(22)HgO(ad) +M
x
O

y
→ HgM

x
O

y+1

Fig. 13   Reaction mechanism of 
Hg0 oxidation on CeO2–V2O5 
catalyst. The Hg0 oxidation on 
CeO2–V2O5 catalyst surface 
followed the Mars–Maes-
sen mechanism, where the 
synergistic effect between CeO2 
and V2O5 played an important 
role on the oxidation of Hg0) 
(reproduced with permission 
from Zhao et al. 2015c



40	 Environmental Chemistry Letters (2019) 17:19–47

1 3

metal oxides and selective catalytic reduction catalysts is 
often relatively low. Besides, their Hg0 removal performance 
is greatly affected by the components of flue gas, such as 
halides, sulfides, vapors and alkali metal salts, and other 
heavy metals. The activity and stability of transition metal 
oxides and SCR catalysts for removing Hg0 still need to be 
improved significantly using doping and other modifica-
tion methods that utilize precious metals, transition metals, 
and nonmetals (including mixed doping and modification 
of multiple components). In addition, possible poisoning or 
deactivation of transition metal oxides and SCR catalysts 
by mercury itself, also needs further future investigations.

Activated carbon injection (ACI) method has been proven 
as one of the effective ways for Hg0 removal from flue gas. 
However, the large activated carbon (AC)/Hg0 ratio and high 
operation costs have limited its development. The modifica-
tion with various chemical reagents (e.g., halides, sulfurs, 
acids, alkaline and metal oxides) can significantly improve 
the Hg0 removal capacity of activated carbon, but also fur-
ther increase the costs. Biochars, fly ash, and mineral materi-
als are considered as the potential alternatives to activated 
carbon due to their much lower costs and more extensive 
sources. However, they have low Hg0 adsorption capacity 
due to the poor adsorption sites on their surface. To improve 
the effectiveness of these adsorbents, chemical reagents are 
also used to modify them by increasing active sites on the 
surface. Unfortunately, the leaking and secondary pollution 
of the modified chemical reagents used over these adsorbents 
have greatly hindered the development and practical applica-
tions. In recent years, various advanced oxidation processes 
have been widely applied in the field of flue gas purifica-
tion. Therefore, exploring more green and clean modifica-
tion methods, such as free radical-based advanced oxidation 
methods, should be considered an important future prior-
ity. However, there could a limitation of terrestrial biomass 
(e.g., the reduction of cultivated land area and the dispersity 
of biomass straw). But, the ocean contains a huge biomass 
resource, which could be utilized. Therefore, actively explor-
ing the utilization of marine biomass resources such as all 
kinds of large algae and microalgae (e.g., using marine bio-
mass to prepare biochars and activated carbon) could pro-
vide significant resources for human development.

At present, a large number of adsorbents have been devel-
oped, but most of these sorbents lack adequate recycling and 
regeneration capabilities, which greatly increased the costs 
of application, operation, and post-processing costs and 
related environmental issues due to solid waste treatment 
problems. Developing magnetically separable and renew-
able sorbents should be considered as an important research 
direction in the future. In addition, it is reported that most of 
the magnetic adsorbents are still difficult to be completely 
separated from magnetic impurities, for example, in coal fly 
ash due to similar magnetic properties. Therefore, in order 

to completely separate the magnetic adsorbents from the 
magnetic impurities successfully, significant improvements 
in multistage magnetic field separation processes are desir-
able and should be pursue vigorously in future research. The 
separation of sorbents from fly ash can be solved by the 
magnetic property of sorbent materials. Therefore, magnetic 
properties of magnetic adsorbents could also be effectively 
regulated through various preparation and modification 
methods, and based on magnetic differences, the separation 
problem of adsorbents could be more effectively addressed.

In addition, other technologies such as photocatalytic 
oxidation, plasma catalytic oxidation, microwave catalytic 
oxidation, and covalent organic frameworks (COFs) adsorp-
tion oxidation developed to remove Hg0 in flue gas have 
demonstrated good Hg0 oxidation performance. However, 
some problems limiting process development such as high 
investment and operating costs, low reliability, and stabil-
ity of systems/devices, low activity and anti-poisoning abil-
ity of catalysts/adsorbents and others, need to be addressed 
before large-scale deployment. Also, technologies utilizing 
catalytic or photocatalytic membrane systems should be 
exploited as they could remarkably reduce the demand of 
oxidant (by improving its retainability) and have better effi-
ciencies for Hg0 removal from flue gas.

Among the aforementioned catalysts, the selective cata-
lytic reduction (SCR) catalyst is considered the most prom-
ising, with the greatest benefit of providing simultaneous 
removal of NOx and Hg0 from flue gas, and reducing invest-
ment and operating costs of existing SCR denitrification 
device as it could be retrofitted into its current configura-
tion. Furthermore, research initiatives into the development 
of sustainable adsorbents, such biochars-based adsorbents, 
as potential alternatives to conventional activated carbon, 
should be intensified because of their very low costs and 
readily available renewable sources.

Conclusion

Regulatory requirements and increased public concerns 
regarding mercury elevation levels and persistence in the 
atmosphere have stimulated worldwide research efforts to 
develop technologies for mercury emission control. In par-
ticular, the heterogeneous catalytic oxidation and adsorption 
of Hg0 from flue gas has recently been an area of major 
focus because of its important scientific and practical sig-
nificance. The catalysts and/or adsorbents are the key to the 
success of the heterogeneous oxidation removal technolo-
gies for Hg0 from flue gas. This review provides the state-
of-the-art knowledge of the chemistry and the fundamental 
mechanistic aspects of gas–solid heterogeneous oxidation 
and adsorption processes for the removal of Hg0 from the 
flue gas systems. It evaluates the performance and economic 



41Environmental Chemistry Letters (2019) 17:19–47	

1 3

viability of various catalysts/sorbents for Hg0 removal. How-
ever, this review also reveals a number of areas in which 
additional research are needed. These include the develop-
ment of more resistant, regenerable, effective, and versatile 
catalysts and adsorbents; and engineering-based research 
such as cost–benefit analysis, techno-economic modeling 
and optimization of the heterogeneous catalytic and adsorp-
tive processes for mercury removal from flue gas systems. It 
is hoped that this review has stimulated thinking beyond the 
cases presented and should spur further research needed to 
further the development of greener, sustainable, and more 
cost-effective technologies to remove Hg0 from flue gas.
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