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Abstract
Nowadays, the water ecosystem is being polluted due to the rapid industrialization and massive use of antibiotics, fertilizers, 
cosmetics, paints, and other chemicals. Chemical oxidation is one of the most applied processes to degrade contaminants 
in water. However, chemicals are often unable to completely mineralize the pollutants. Enhanced pollutant degradation can 
be achieved by Fenton reaction and related processes. As a consequence, Fenton reactions have received great attention in 
the treatment of domestic and industrial wastewater effluents. Currently, homogeneous and heterogeneous Fenton processes 
are being investigated intensively and optimized for applications, either alone or in a combination of other processes. This 
review presents fundamental chemistry involved in various kinds of homogeneous Fenton reactions, which include classical 
Fenton, electro-Fenton, photo-Fenton, electro-Fenton, sono-electro-Fenton, and solar photoelectron-Fenton. In the homoge-
neous Fenton reaction process, the molar ratio of iron(II) and hydrogen peroxide, and the pH usually determine the effective-
ness of removing target pollutants and subsequently their mineralization, monitored by a decrease in levels of total organic 
carbon or chemical oxygen demand. We present catalysts used in heterogeneous Fenton or Fenton-like reactions, such as 
 H2O2–Fe3+(solid)/nano-zero-valent iron/immobilized iron and electro-Fenton-pyrite. Surface properties of heterogeneous 
catalysts generally control the efficiency to degrade pollutants. Examples of Fenton reactions are demonstrated to degrade 
and mineralize a wide range of water pollutants in real industrial wastewaters, such as dyes and phenols. Removal of various 
antibiotics by homogeneous and heterogeneous Fenton reactions is exemplified.

Keywords Homogeneous Fenton reaction · Heterogeneous · Advanced oxidation processes · Mechanism · Dyes · 
Antibiotics

Introduction

Water is abundant on earth and is critical to life. Of the 
total water mass, 97.2% is present in oceans and seas and 
2.1% exists in glacier. 0.65% is the fraction of total water 
mass being utilizable for production of drinking water. This 
amount contains several lakes’ waters which are highly pol-
luted (Bakker 2012; Vörösmarty et al. 2010). Therefore, one 
of the important issues of this century is to provide clean 
water to humans (Liu and Yang 2012a, b; Shannon et al. 
2008). Based on a recent report of United Nations and World 
Health Organization (WHO), more than 2 billion humans 
face some kind of risk to have safe drinking water at home 
(World Health Organization 2017). Water-related diseases 
have caused more than 360,000 children die every year 
under 5 years of age. Ecosystems are also subjected to pol-
luted water-related risks (Schwarzenbach et al. 2006, 2010).
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Water pollutants usually contain diseases-containing 
agents, e.g., parasitic worms, bacteria, viruses, and protozoa, 
oxygen-consuming wastes, water soluble inorganics, e.g., 
toxic metals, nutrients, e.g., phosphates and nitrate, water 
soluble radioactive compounds and organic pollutants, e.g., 
plastics, oil, detergents, dyes, aryl chlorides, and pesticides 
(Kralchevska et al. 2016; Schmeller et al. 2018; Sharma and 
Sohn 2009; Sousa et al. 2018). In recent years, emerging 
organic contaminants in water have become major concerns. 
These include endocrine disruptor chemicals (EDCs) and 
pharmaceuticals and personal care products (PPCPs) (Ciz-
mas et al. 2015; Hajj-Mohamad et al. 2017; Klatte et al. 
2017; Sharma et al. 2016). Pollutants come from industrial, 
agricultural, and consumer products, which contaminate 
groundwater and surface water, commonly used as drinking 
water resources (Blum et al. 2018; Sousa et al. 2018). Water 
treatments have been greatly investigated for depollution of 
water for freshwater usage and drinking (Kim et al. 2014; 
Sharma et al. 2015; Werber et al. 2016).

Various treatment approaches have been applied which 
include adsorption, biodegradation, coagulation, ion-
exchange, and oxidation processes (Brillas and Martínez-
Huitle 2015; Feng et al. 2018; Ghattas et al. 2017; Sharma 
and Feng 2017). Among these methods, advanced oxida-
tion processes (AOPs) have been researched tremendously 
for the last two decades (Anumol et al. 2016; Boczkaj and 
Fernandes 2017; Gassie and Englehardt 2017; Oturan and 
Aaron 2014). AOPs is based on generation of a powerful 
oxidizing agent such as hydroxyl radicals (·OH) at a signifi-
cant amount to effectively decontaminate water. Many dif-
ferent kinds of AOPs have been developed to produce in situ 

·OH radicals (Duan et al. 2018; Liu et al. 2018; Sillanpää 
et al. 2018). Chemical, sonochemical, photochemical, elec-
trochemical processes have been utilized to form ·OH radi-
cals (Brillas and Martínez-Huitle 2015; Cheng et al. 2016; 
Ganzenko et al. 2017; Garcia-Segura and Brillas 2017; Gli-
gorovski et al. 2015; Sharma 2013; Sirés et al. 2014; Steter 
et al. 2018; Trellu et al. 2016). The present review pertains 
to Fenton’s reagent, a chemical strategy to efficiently gener-
ate in situ ·OH radicals. In the literature, many approaches 
of Fenton reaction have been performed, which include 
homogeneous and heterogeneous Fenton reactions (Fig. 1). 
Examples are classical, modified Fenton reactions (e.g., 
sono-Fenton, photo-Fenton, electro-Fenton, photo-electro-
Fenton, and ligand assisted Fenton) and solid-solution-based 
Fenton  (H2O2–solid  Fe0,  H2O2–solid  FeIII (Barbosa et al. 
2016; Clarizia et al. 2017; Gligorovski et al. 2015; Mirzaei 
et al. 2017; Moreira et al. 2016). In the next sections, funda-
mental chemistry of the Fenton reaction occurring in differ-
ent systems to generate ·OH radicals is presented.

Fenton’s reagent

A mixture of ferrous ion  (Fe2+) and hydrogen perox-
ide  (H2O2) is called Fenton’s reagent. The chemistry of 
this reagent started in 1894 when Fenton applied it to 
degrade tartaric acid (Fenton 1894, 1896). Fenton’s rea-
gent involved complex mechanism of reactions, presented 
in Table 1. Basically, a Fenton process is initiated by the 
formation of hydroxyl radical (·OH) (reaction F1) (Oturan 
and Aaron 2014). The reaction F1 takes place in acidic 

Fig. 1  Types of Fenton reac-
tion processes used in treating 
organic pollutants in water
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medium, therefore presented by reaction F2. The optimum 
pH range for the Fenton process is approximately 2.8–3.0. 
The catalytic behavior of the redox couple  Fe3+/Fe2+ propa-
gates the Fenton reaction process. For example, only a small 
amount of  Fe2+ is needed because it can be regenerated by 
the reaction F3, called as Fenton-like reaction. The reaction 
F3 produces superoxide radical (HO2

·), which has lower oxi-
dation power (E0 = 1.65 V vs. NHE) than hydroxyl radical 
(E0 = 2.80 V vs. NHE). The generation of  Fe2+ from the 
reaction of  Fe3+ with superoxide radical (reaction F4) is 
slower than the reaction F3. With increase in pH, the proto-
nated superoxide species (HO2

·) converts to the deprotonated 
species (O2

·−) (HO2
· = H+ + O2

·−; pKa = 4.8) (Czapski and Biel-
ski 1993; Von Sonntag and Schuchmann 1997). The reac-
tion between  Fe3+ with O2

·− (reaction F5) is much faster than 
reaction F4 (see Table 1) (Bielski and Richter 1977; Gallard 
and De Laat 2000; Rush and Bielski 1985).

The mechanism of Fenton reaction is still not fully under-
stood. The reaction F1 occurs through inner sphere electron 

transfer step (Fischbacher et al. 2017; Goldstein and Mey-
ersteion 1999). In the first step, the formation of complex, 
 FeOOH2+, is formed (Gallard et al. 1999) (reaction F6). This 
complex goes through equilibrium (reaction F7) (Rachmi-
lovich-Calis et al. 2009). Overall reaction of the complex 
formation is written as reaction F8. A general assumption 
is that the complex Fe(H2O2)2+ could react through either 
one-electron or two-electron transfer forming ·OH or  FeIV, 
respectively (reactions F9 and F10) (Bataineh et al. 2012; 
Hug and Leupin 2003; Katsoyiannis et al. 2008; Von Sonn-
tag 2008).

Advantages of Fenton’s reagent are that it is simple and 
easy to apply without any requirement of energy input 
(Bautista et al. 2008). However, Fenton’s reagent has some 
drawbacks which include risk of storage of hydrogen per-
oxide, adjustment of pH to acidic range, and buildup of iron 
sludge (Oturan and Aaron 2014). Optimizing the dosages of 
reactants may minimize disadvantages of Fenton’s reagent. 
Use of iron oxides, iron-modified clays, ion-exchange resins, 
iron-exchange Nafion membranes, and zeolites, and alumina 
may reduce the generation of sludge (Bautista et al. 2008; 
Lucas et al. 2007; Pignatello et al. 2006; Zhang et al. 2011a, 
b). Fenton’s reagent has been applied to degrade and subse-
quent destruction and mineralization of numerous organic 
pollutants (Aljuboury et al. 2017; Annabi et al. 2016; Des-
corme 2017; Ganzenko et al. 2017; Li et al. 2016; Tayo et al. 
2018; Usman et al. 2016). Examples include treatment of 
dyes, phenols, chlorophenols, chlorobenzenes, and antibi-
otics. Details are described in later sections of the review.

Electro‑Fenton process

In the electro-Fenton process,  Fe2+ and  H2O2 are produced 
simultaneously by cathodic reduction of  Fe3+ and  O2, respec-
tively (reactions EF1 and EF2, Table 1) (Barhoumi et al. 
2015, 2016; He and Zhou 2017; Lin et al. 2017a; Mousset 
et al. 2018; Mousset et al. 2016, 2018; Nidheesh et al. 2018; 
Sirés et al. 2014; Wang et al. 2016). A small amount of 
salt of  Fe2+ (e.g., ferrous sulfate) is initially added, which 
can react with electrochemically produced  H2O2 to pro-
duce  Fe3+. Reaction EF1 is critical to carry out recycling 
of  Fe3+ to  Fe2+. Glassy carbon and graphite are rarely used 
as cathodes in electro-Fenton process. The most often used 
electro-Fenton’s cathodes are carbon felt (Oturan et al. 2008) 
and GDE (gas diffusion electrode) cathodes (Brillas et al. 
2009; Oturan and Aaron 2014). These are 3D cathodes. A 
platinum electrode is applied to perform the anodic reac-
tion in the laboratory setup (reaction EF3, Table 1). In the 
peroxycoagulation, fered Fenton, anodic Fenton treatment 
or electrochemical peroxidation,  Fe2+ can also be produced 
from the oxidation of sacrificial anode of iron (reaction 
EF4, Table 1) (Brillas et al. 2009). A few reviews on the 

Table 1  Reactions involved in Fenton reaction processes

Fenton’s reagent
 Fe2+ + H2O2 → Fe3+ + ·OH + OH− (F1)
 Fe2+ + H2O + H+ → Fe3+ + H2O + ·OH (F2)
 Fe3+ + H2O2 → Fe2+ + HO2

· + H+ (F3)
 Fe3+ + HO2

· → Fe2+ + O2 + H+ k4 = 2 × 103  M−1s−1 (F4)
 Fe3+ + O2

·− → Fe2+ + O2 k5 = 5 × 107  M−1s−1 (F5)
 Fe2+ + H2O2 ⇌ FeOOH+ + H+ (F6)
 FeOOH+ + H+ ⇌ Fe(H2O2)2+ (F7)
 Fe2+ + H2O2 ⇌ Fe(H2O2)2+ (F8)
 Fe(H2O2)2+→ Fe3+ + ·OH + OH− (F9)
 Fe(H2O2)2+→ FeO2+ + H2O (F10)

Electro-Fenton processes
 Fe3+ + e− → Fe2+ (EF1)
 O2 + 2H+ + 2e− → H2O2 (EF2)
 2H2O → O2 + 4H+ + 4e− (EF3)
 Fe → Fe2+ + 2e− (EF4)

Photo-Fenton processes
 Fe3+ + hν + H2O → Fe2+ + ·OH + H+ (PF1)
 FeOH2+ + hν → Fe2+ + ·OH (PF2)
 Fe3+-L + hν → Fe2+ + L·+ (PF3)

Ultrasound Fenton processes
 H· + Fe3+ → Fe2+ + H+ (UF1)
 H· + O2 → HO2

· (UF2)
 HO2

· ⇌ O2
·− + H+ (UF3)

 Fe3+ + O2
·− → Fe2+ + O2 (UF4)

 HO2
· + O2

·− + H+ → H2O2 + O2 (UF5)
Zero-valent-induced Fenton processes
 2Fe0 + O2 + 4H+ → 2Fe2+ + 2H2O (ZF1)
 Fe2+ + O2 → Fe3+ + O2

·− (ZF2)
 2O2

·− + 2H+ → H2O2 + O2 (ZF3)
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elimination of pollutants including micro-pollutants in 
water using electro-Fenton process have been published 
(Annabi et al. 2016; Brillas et al. 2009; Isarain-Chávez et al. 
2011; Lin et al. 2017b; Steter et al. 2018; Wang et al. 2015; 
Özcan et al. 2016). A progress is being made to enhance the 
efficiency of electro-Fenton process. A research on sono-
electro-Fenton and photo-Fenton processes has also been 
performed in order to improve efficiency and practicality of 
electro-Fenton methods (Bocos et al. 2016; Espinoza et al. 
2016; Gozzi et al. 2017; Kalishwaralal et al. 2016; Oturan 
et al. 2008; Pliego et al. 2015; Uribe et al. 2015; Vidal et al. 
2018). Electro-Fenton process is also being combined with 
biological methods to mineralize organic pollutants in water 
(Annabi et al. 2016; Ganzenko et al. 2017). The coupling 
of electro-Fenton with biological degradation is a new and 
interesting tool. The coupled process is called bioelectro-
Fenton process (Olvera-Vargas et al. 2016a, b).

Photo‑Fenton process

In the Photo-Fenton process, the ultraviolet (UV) light can 
assist the reduction of  Fe3+ to  Fe2+ (reaction PF1, Table 1) 
to react with  H2O2 to generate ·OH through the reaction 
F1 (Table 1). Efficiency of reaction is greatest at pH 3.0 
because  Fe3+ ions generally exist as Fe(OH)2+ under this 
condition. The photo-Fenton process has possibility of using 
many several UV regions as light energy source, namely 
UVA (λ = 315–400 nm), UVB (λ = 285–315 nm), and UVC 
(λ < 285 nm); therefore, the yield of ·OH varies with intensity 
of light. The Fe(OH)2+ has absorbance maximum only in the 
UVB region. Production of ·OH through the UV photolysis 
of Fe(OH)2+ is low (quantum yield of reaction PF2 is 0.2) 
(Pignatello et al. 2006; Zepp et al. 1992). Furthermore, solar 
light has fraction of light in the UVB region; only limited 
solar light irradiation can be absorbed. At the neutral pH, 
 Fe3+ precipitated out and efficiency of photo-Fenton process 
is quite low. This drawback of the photo-Fenton process can 
be minimized by adding ligands (L) such as polycarboxy-
lates and polyaminocarboxylates (e.g., oxalate, citrate, eth-
ylenediaminetetraacetatic acid, and ethylenediamine N,N′-
disuccinic acid) (Faust and Hoigné 1990; Faust and Zepp 
1993; Li et al. 2012; Weller et al. 2013a, b). These ligands 
form stable complexes with  Fe3+, which upon UV and 
visible light irradiation reduce  Fe3+ to  Fe2+ via ligand-to-
metal-charge transfer (LMCT) step (reaction PF3, Table 1). 
Quantum yields of these  Fe3+-L complexes are higher than 
quantum yield of Fe(OH)2+. The use of organic ligand com-
plexes of  Fe3+ is advantageous. However, the ligands are 
attacked by ·OH produced in the process reducing the effi-
ciency. Photo-Fenton process has shown their effectiveness 
in removing a wide range of contaminants, which include 
polychlorinated biphenyls, pesticides, and pharmaceuticals 

(Clarizia et al. 2017; Gligorovski et al. 2015; Matafonova 
and Batoev 2018; Serpone et al. 2017).

Ultrasound Fenton process

In the ultrasound Fenton process, a high-frequency is 
applied to split water into ·OH and ·H radicals (Eren 2012; 
Ma 2012; Salimi et al. 2017; Özdemir et al. 2011). Sonoly-
sis of solution containing  Fe3+ ions results in a series of 
reactions (reactions UF1–UF5, Table 1) to generate both 
 Fe2+ and  H2O2 for Fenton reaction (Gligorovski et al. 2015). 
Basically, sonochemistry and Fenton reaction generate ·OH 
to carry out transformation of organic pollutants in water 
(Chakma and Moholkar 2014, 2015). Several investigations 
have been explored applications of ultrasound Fenton pro-
cesses to degrade a number of contaminants in water (Durán 
et al. 2013; Feng et al. 2013).

Heterogeneous Fenton reaction

A heterogeneous Fenton-like process has been investigated 
by many researchers because of advantages over homoge-
neous Fenton reactions (Cai et al. 2016; Diao et al. 2017; 
García-Rodríguez et al. 2017; Li et al. 2018; Lyu and Hu 
2017; Velichkova et al. 2017). One of the main advantages of 
heterogeneous Fenton reactions is its feasibility over a wide 
pH rage to degrade pollutants in water. If the source of iron 
is magnetic like magnetite  (Fe3O4), a magnetic separation 
can be applied (Morales-Pérez et al. 2016b). A focus of the 
research in the heterogeneous Fenton process is to increase 
the catalytic activity of solid iron sources without leaching 
of iron to aqueous environment. Efforts have been made to 
characterize catalysts for their pore size, density, and poros-
ity in order to achieve better catalytic efficiency of hetero-
geneous Fenton-like reactions. A number of catalysts have 
been applied to carry out heterogeneous Fenton reactions 
(Costa et al. 2008; Diao et al. 2017, 2018; García-Rodríguez 
et al. 2017; Mirzaei et al. 2017; Morales-Pérez et al. 2016a; 
Nidheesh et al. 2017; Oturan et al. 2018; Ouiriemmi et al. 
2017; Pi et al. 2018).

The ·OH radicals may also be produced in a reductive 
environment (Cao et al. 2013; Le et al. 2011; Vilardi et al. 
2018). It has been shown that an addition of zero-valent iron 
(ZVI,  Fe0) to an aerated water solution yields the precursors 
reactants  (Fe2+ and  H2O2) through a sequence of reactions 
(ZF1–ZF3, Table 1) (Kang et al. 2017). In the presence of 
organic compounds and ZVI, many additional reactions also 
occur. This may be the reason of limited use of ZVI in Fen-
ton reaction processes (Shimizu et al. 2012).

Iron oxides minerals like pyrite  (FeS2), hematite  (Fe2O3), 
goethite (α-FeOOH), and lepidocrocite (γ-FeOOH) have 
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been studied in the heterogeneous Fenton-like reactions. 
Numerous support materials in heterogeneous Fenton pro-
cesses have also been used. These include activated carbon, 
zeolites, clays, silicas, layered materials, and graphene oxide 
(Espinosa et al. 2016). More recently, a focus is on metal 
nanoparticles (e.g., Ag, Cu, and Au) to modify surfaces 
to obtain more effectiveness of the heterogeneous Fenton 
reaction processes (Dhakshinamoorthy et al. 2012; Espinosa 
et al. 2018). Details of a range of catalysts in Fenton reac-
tions are given in reviews on the subject of degradation of 
several kinds of pollutants in water.

In following section of the review, examples are given to 
demonstrate applications of homogeneous and heterogene-
ous Fenton reaction processes.

Treatment of industrial wastewater: 
homogeneous Fenton reaction process

Effluents released from various industries contain pollut-
ants at high levels, which could be a threat to human life. 
Removal of these pollutants by biological and eco-friendly 
methods is not successful as industrial waste contains mainly 
organic loads comprising of high COD and BOD. In devel-
oping countries, 85–90% of the wastewater is discharged 
directly into surface water bodies without proper treatment, 
and thus, the pollutants present in the discharged directly to 
the environment (Shannon et al. 2008). In India, nearly 6.2 
million  m3 of industrial wastewater is generated every day, 
and only 60% of it is being treated (Kaur et al. 2012).

Chemical method is considered as a convenient strat-
egy for removing these pollutants. Among various chemi-
cal processes, advanced oxidation process has found to 
be appropriate approach to minimize contamination from 
industrial effluents. Table 2 presents examples of Fenton 
treatment of industrial waste generated by various indus-
tries of the world. A wide range of chemicals have been 
found in industrial wastewater, which include pesticides 
and pharmaceuticals. Generally, industrial wastewater con-
tains high values of chemical oxygen demand (COD), bio-
logical demand (BOD), dissolved organic carbon (DOC), 
and total organic carbon. Fenton’s reagent was applied 
at various molar ratios of Fe(II) and  H2O2 (Table  2). 
Pollutants of industrial wastewater could be degraded 
almost completely. Moreover, results showed a signifi-
cant decrease in values of COD, BOD, and DOC after the 
treatment with Fenton’s reagent. For example, at a molar 
ratio 10 for 0.2 mM  Fe3+, TOC removal was 90% in real 
industrial water (Bouafia-Chergui et al. 2010). This sug-
gests that mineralization of organic pollutants (e.g., maleic 
acid anhydride, pesticides, 2-ethylhexyl alcohol, urea 
formaldehyde resin adhesive, α,β,γ-HCH, DDT, DMDT, 
fenitrothion, chlorfenvinphos) could be achieved using the 

Fenton’s reagent. Values of DOC decreased significantly 
by the treatment with the Fenton’s reagent. Components of 
petroleum waste like ethylene glycol, 1,4-dioxane, lower 
[Fe(II)]/[H2O2] value could also be degraded at molar ratio 
of Fe(II) to  H2O2 as 0.02.

Degradation of pollutants: homogeneous 
Fenton reaction processes

Degradation of representative phenols and pesticides by 
homogeneous Fenton reaction is given in Table 3. Phe-
nol and dichlorvos were found to be successfully removed 
by homogeneous Fenton reaction in the acidic pH range 
(Table 3). Only 80% removal of 2,4-dichlorophenol was 
seen. Transformation of bisphenol A formed various 
intermediates, suggested not significant mineralization 
of parent molecule under studied conditions. Homogene-
ous Fenton reaction in combination with ultrasound was 
highly effectives in degrading different kind of pesticides. 
Removal of the pesticides was almost complete (Table 3).

Degradation of dyes: heterogeneous Fenton 
reaction processes

Nowadays, dyes are frequently used for several purposes 
such as dyeing clothes, leather, furniture, even in our regu-
lar life in food, cosmetics, and medicine, etc. Dyes are 
not easily degraded because some of them are non-bio-
degradable and have long-term adverse effect. Dyes have 
shown hazard effects on environment after entering into 
the ecosystem (Huang et al. 2009). Dyes can be degraded 
by various methods, including biomass degradation (Hsu 
et al. 2012; Prachi and Anushree 2009), photocatalytic 
degradation (Gu et al. 2014), combined treatment (Jafari 
et al. 2012). Among various advanced oxidation methods, 
Fenton reaction systems are reliable methods to transform 
dyes into many smaller fragments, i.e., water, carbon diox-
ide. Examples of degrading dyes by Heterogeneous Fenton 
reactions systems are summarized in Table 4. Catalysts 
used in the systems were iron- and carbon-based materi-
als. Combinations of iron and carbon materials were also 
utilized to degrade dyes. Significantly, most of the studies 
shown in Table 4 under different conditions and catalysts 
could achieve the complete degradation of dyes. However, 
time of the complete degradation varied with experimen-
tal conditions. Nanocomposite materials in heterogeneous 
Fenton reaction systems seem to take less time to obtain 
the complete degradation compared to other catalysts.
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Table 2  Treatment of real industrial wastewater by homogeneous Fenton reaction process. COD—chemical oxygen demand, BOD—biological 
oxygen demand, DOC—dissolved organic carbon, TOC—total oxygen carbon

No. Region Pollutants Reaction conditions and com-
ments

References

1. Tambla Tributary (River 
Damodar), India

Industrial waste [Fe(II)] = 6 g/L and 
 [H2O2] = 220 g/L

COD removal = ~ 95%

Mandal et al. (2010)

2. Chemical factories, Southern 
Poland

Maleic acid anhydride, pesticides, 
2-ethylhexyl alcohol, urea for-
maldehyde resin adhesive

[Fe(II)]/[H2O2] = 0.33, (maleic 
acid anhydride), pH = 3.0, COD 
removal = ~ 88%

[Fe(II)]/[H2O2] = 0.50, (2-ethyl-
hexyl alcohol), pH = 3.5, COD 
removal = 86.3%

[Fe(II)]/[H2O2] = 0.33, (urea 
formaldehyde resin adhesive), 
pH = 3.5, COD removal = 88.8%

Barbusinski (2005)

3. Pesticide-containing wastewater, 
Southern Poland

α,β,γ-HCH, DDT, DMDT, feni-
trothion, chlorfenvinphos

[Fe(II)]/[H2O2] = 0.33, (pesticide 
containing water), pH = 3.2, 
COD removal = 71.7%

All pesticides degraded com-
pletely

Barbusinski and Filipek (2001)

4. Pharmaceutical waste water, 
Turkey

Variety of pharmaceutical 
chemicals

[H2O2] = 5 g/L and [Fe(II)]/
[H2O2] = 0.33–0.50 Fenton 
oxidation followed by sequenc-
ing batch reactor, COD 
removal = ~ 99%

Tekin et al. (2006)

5. Laboratory mixed waste chemical 
of 17-month period, Brazil

Different laboratory chemicals 
waste

[Fe(II)]/[H2O2] = 0.22, COD 
removal = 90%

Benatti and Tavares (2012)

6. Fish canning waste water, Por-
tugal

Organic matter, salts, oil and 
grease

Before treatment: 
DOC = 50 mg/L, 
COD = 220 mg/L, 
 BOD5 = 0.8 mg/L

(Biological pretreatment of fish 
canning waste water, followed 
by treatment with Fenton’s 
reagent)

After treatment: DOC = 20 mg/L, 
COD = 90 mg/L

Cristovao et al. (2014)

7. Chemical plant that produce 
acrylic sheets, Mexico

Methyl methacrylate Maximum removal efficiencies 
(Fenton adsorption treatment): 
96% color, 58% TOC, and 60% 
COD

Sanchez et al. (2014)

8. Real industrial biorecalcitrant 
wastewater, Spain

5-Amino-6-methyl-2-benzimida-
zolone

[Fe(II)]/[H2O2] = 0.0032
Removal: 67% color, 42% COD, 

and 41% TOC

Sarria et al. (2001)

9. El-Nasr pharmaceutical and 
Chemical Company, South-East 
of Cairo

Pharmaceutical company 
discharges both industrial and 
municipal wastewater

Before treatment: COD 
(4100–13,023 mg/L), TSS 
(20–330 mg/L), and oil grease 
(17.4–600 mg/L)

Treatment: [Fe(II)]/[H2O2] = 0.02 
and COD/[H2O2] = 1:2.2

Removal was almost complete

Badawy et al. (2009)

10. Tannery wastewater, Brazil Containing both organic and 
inorganic pollutants

H2O2/UV at pH 3 and Fenton at 
pH 3.5; efficiently remove TOC 
to low level

Schrank et al. (2005)

11. Petrochemical effluent, India Ethylene glycol, 1,4-dioxane [Fe(II)]/[H2O2] = 0.02; pH 3.0
COD removal = 97.5%

Ghosh et al. (2011)

12. Pesticides wastewater from 
Nubaria, Egypt

Chlorpyrifos, lambda-cyhalo-
thrin, diazinon

COD removal (photo-Fenton 
process) = 90.7%

COD removal  (TiO2 photocata-
lytic reaction = 79.6%

Alalm et al. (2015)



953Environmental Chemistry Letters (2018) 16:947–967 

1 3

Treatment of antibiotics

Human and veterinary antibiotics are considered to be of 
prime importance as emerging micro-pollutants due to 
their high consumption rate. These micro-pollutants are 
being generated through household, industry, hospital 
service, poultry, livestock, and aquatic activity which get 

deposited and leached into the environment. The fate of 
antibiotics after their purposive use is not being moni-
tored. Most of the antibiotics are not fully eliminated from 
the body, and some of them may remain unchanged in 
the environment (Hirsch et al. 1999; Brown et al. 2006). 
Thus, in order to bring awareness among the people, world 
antibiotics week is being organized since November 2015, 
with the theme “antibiotics: Handle with care.” Antibiotics 

Table 2  (continued)

No. Region Pollutants Reaction conditions and com-
ments

References

13. Wastewater obtained from civilian 
explosive industry, South-west, 
China

Dinitrodiazophenol (DDNP) Treatment: combined  Fe0/air and 
Fenton process

COD removal = 78%
Chromaticity removal = 98% 

chromaticity

Yuan et al. (2016)

14. Beverage industrial effluent, 
Spain

Different complex compound Photo-Fenton process): 53% 
mineralization (2 h)

Photo-Fenton/persulfate: 76% 
mineralization (4 h)

Exposito et al. (2016)

15. Winery wastewater, Cyprus Polyphenols, tannins, and lignins (a) Fe(II)] = 10 mg/L, 
 [H2O2] = 100 mg/L

COD removal = 35% and DOC 
removal = 26% (120 min)

(b)  [FeSBA-15]0 = 100 mg/L, 
 [H2O2] = 100 mg/L

COD removal = 48% and DOC 
removal = 48% in 180 min

Loannou et al. (2013)

Table 3  Examples of degradation of phenols, pesticides, and surfactants in water by the homogeneous Fenton reaction

No. Pollutants Reaction conditions Results and comments References

1. Phenol [H2O2] = 300–600 mg/L, 
Fe(II) = 10 mg/L; pH = 3–3.5, room 
temperature; reaction time = 6 h

Degradation = 100%
Mineralization = 60%

Yalfani et al. (2009)

2. 2,4-dichlorophenol [2,4-Dichlorophenol] = 200 mg/L, 
 [H2O2] = 300–580 mg/L, 
[Fe(II)] = 10–20 mg/L; pH = 2.5–7.0

Removal = ~ 70% within 2 h Ranjit et al. (2008)

3. Bisphenol A (BPA) [BPA] = 10 μg/L, pH = 3, [Fe(II)]/
[H2O2] = 10

Degradation resulted in various 
intermediates, benzenediols, 
monohydroxylated BPA with 
molecular weight ranged from 
94 to 500 Da

Poerscchmann et al. (2010)

4. Dichlorvos or 2,2-dichlorovinyl 
dimethyl phosphate

[H2O2] = 15 mg/L, [Fe(II)]/[H2O2] = 3.0, 
pH = 3.0, room temperature; ultrasonic 
probe frequency = 20 kHz

Degradation = 100% Golash and Gogate (2012)

5. Methyl parathion (Phosphate 
pesticides)

[Methyl parathion] = 20 mg/L, 
 [H2O2] = 200 mg/L; [Fe(II)]/
[H2O2] = 3.0

Degradation (ultrasonic horn 
process) = ~ 98.5% TOC 
removal = 73.7%

Degradation (ultrasonic bath 
process) = ~ 96.5%

TOC removal (ultrasonic bath 
process) = 75%

Shriwas and Gogate (2011)

6. Carbofuran (carbamate pesti-
cides)

[Carbofuran] = 20 mg/L, 
 [H2O2] = 100 mg/L,[Fe(II)] = 20 mg/L

Degradation = ~ 99%
Mineralization = 46% after 

30 min

Ma et al. (2010)
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Table 4  Examples of degradation of dyes by heterogeneous Fenton reaction processes

No. Dyes Catalyst Reaction conditions Results References

1. Acid black 1 Pillared laponite clay-
based Fe

[Dye] = 0.2 mM; 
[Catalyst] = 1 g/L, 
 [H2O2] = 6.4 mM, Light 
intensity = 8 W UVC

Removal = 100% in 60 min Sum et al. (2004)

2. Acid blue 185 Natural and ball-milled 
magnetite nanostructures

[Dye] = 20–120 mg/L
[Catalyst] = 1.5 g/L, 

pH = 3.0

Removal = 80–99%
6-h ball-milled mag-

netite showed highest 
efficiency

Acisli et al. (2017)

3. Acid blue 74 Fe-ZSM5 zeolite [Dye] = 8.56 × 10−5 mol/L, 
 [H2O2] = 21.2 mmol/L, 
[Catalyst] = 0.5 g/L, pH 
5,0, UV irradiation

Removal = 100% in 
120 min

Kasiri et al. (2008)

4. Acid blue 92 Natural martite prepared 
by ball milling

[Dye] = 10 mg/L
[Catalyst] = 2.5 g/L
pH = 7.0, 2.5 g/L
Ultrasonic power = 150 W

Removal = 100% in 30 min 
achieved

Dindarsafa et al. (2017)

5. Acid orange 7 Graphene oxide-iron oxide 
nanocomposites

[Dye] = 35 mg/L
[Catalyst] = 0.2 g/L
[H2O2] = 2 mM
pH = 3.0

Removal = 80% in 20 min
Removal = 98% in 180 min

Zubir et al. (2014a, b)

6. Acid orange 7 Graphene oxide-iron oxide 
nanocomposites

[Dye] = 0.1 mM
[Catalyst] = 0.2 g/L
[H2O2] = 22 mM
pH = 3.0

Removal = 96% on 90 min Zubir et al. (2014a, b)

7. Anthraquinone dye Pyrite nanorods synthesize 
by oxygen and nitrogen 
nonthermal plasma

[Dye] = 20 mg/L
[Catalyst] = 0.6 g/L
pH = 5.0
Ultrasonic power = 300 W

Removal = 100% in 40 min Khataee et al. (2016)

8. Brilliant orange X-GN Iron-pillared montmoril-
lonitic via pillaring

[Dye] = 100 mg/L
[Catalyst] = 0.6 g/L 

catalyst, 
 [H2O2] = 4.9 mmol/L 
 H2O2 are pH = 3.0

Removal = 98.6% in 
140 min

Under UV light
Removal = 80% in 140 min 

under visible light

Chen et al. (2009)

9. 1-Diazo-2-naphthol-4-sul-
fonic acid dye

Mesoporous carbon–Fe [Dye] = 250 mg/L
[Catalyst] = 0.5 g/L
pH = 5.0

Removal = 94% in 120 min Gu et al. (2013)

10. Methylene blue Fe3O4–MWCNT [Dye] = 10 mg/L
[Catalyst] = 0.3 g/L
[H2O2] = 0.4 M
pH 5.5

Removal = 97% in 720 min Wang et al. (2014)

11. Orange II Fe/ZSM-5 zeolite [Dye] = 0.1 mM
[Catalyst] = 200 mg/L
[H2O2] = 6 mM
Temperature = 53 °C
pH = 5.2

Removal = 100% in 
240 min

Duarte et al. (2009)

12. Orange II Transition metal on carbon 
aerogels

[Dye] = 0.1 mM
[Catalyst] = 0.2 g/L
[H2O2] = 6.0 mM
pH = 3.0

Removal = 100% in 
180 min

Duarte et al. (2009)

13. Orange II a. Nanocomposites Fe sup-
ported on laponite clay

b. Nanocomposites Fe sup-
ported on bentonite clay

[Dye] = 0.2 mM
[Catalyst] = 1.0 g/L
[H2O2 = 10 mM
pH = 2.10–6.60

Removal = 100% in 60 min Feng et al. (2006)

14. Orange II Plasma-synthesized hema-
tite and goethite

[Dye] = 25 mg/L
[Catalyst] = 0.2 g/L
[H2O2 = 5.0 mM
pH = 3

Removal = 100% by 
hematite

Removal = 78% by goe-
thite

Djowe et al. (2014)
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and antibiotics resistance bacteria present in water have 
become problems of global reach (Walter and Vennes 
1985).

Various oxidation methods are nowadays available to 
remove antibiotics from environment (Watkinson et al. 2007; 
Adams et al. 2002; Oturan et al. 2013; Sharma 2013; Feng 
et al. 2016; Anquandah et al. 2011; Gulkowska et al. 2008). 
Advanced oxidation process have gained much higher atten-
tion in comparison to other oxidation methods (An et al. 
2010; Elmolla and Chaudhuri 2010a, b; Alaton and Dogruel 
2004; Alaton et al. 2004; Kassinos et al. 2011; Zhang et al. 
2006). Examples of degradation of antibiotics by different 
reaction processes are presented in Table 5.

Removal of amoxicillin by a mixture of Fe(II) and  H2O2 
could be observed up 100% in ≤ 90 min when the antibiotic 
concentration was in the range from 10 to 500 mg/L. When 
the level of amoxicillin was in 1 g/L, removal of the antibi-
otic was in hours. Degradation of amoxicillin also resulted in 
a decrease in TOC, generally more than 50%. When photo-
Fenton reaction using potassium ferrioxalate was applied, 
a decrease in toxicity of amoxicillin was seen (Table 5). 
Comparatively, degradation of cefradine was much less than 
amoxicillin under same conditions of homogeneous Fen-
ton reaction system. Similar to amoxicillin, degradation of 
ampicillin and cloxacillin was up to 100%, which was also 
in conjunction with removal of COD and TOC. When homo-
geneous Fenton reaction process was applied to antibiotic 
fermentation wastewater, significant removal of COD was 
observed in 60 min (i.e., 72.4%).

Complete removal of ciprofloxacin by Fenton’s reagent 
was observed in less than 2 min at an initial concentra-
tion of the antibiotic as 10 mg/L (Table 5). Degradation of 
chloramphenicol under heterogeneous Fenton system using 
 FeS2–H2O2 at pH 8.0 was more than 80%. Chlortetracy-
cline could be removed by homogeneous Fenton reaction 
processes in which a combination of Fenton with sonica-
tion gave removal of 82%, a slightly higher than either Fen-
ton reaction or sonication processes (67–76%). Removal 

of fluoroquinolone was low (i.e., 40%) in use of Fenton’s 
reagent. However, degradation of flumequine increased to 
94% under photo-Fenton reaction conditions. Removal of 
levofloxacin was sought by electro-Fenton reaction process 
that showed a complete elimination of the antibiotic, and a 
decrease in TOC was more than 50%. Other fluoroquinolo-
nes, moxifloxacin, norfloxacin, and ofloxacin also had the 
complete removal by the Fenton reaction systems.

Degradation of sulfonamide antibiotics (e.g., sulfameth-
oxazole, sulfamethazine, sulfanilamide, and sulfasalazine, 
and sulfamonomethoxine) and trimethoprim has been inves-
tigated by Fenton reaction processes. Almost complete elim-
ination of sulfonamides was observed (Table 5). Mineraliza-
tions of sulfamethoxazole and trimethoprim were also high 
(70–90%). When Fenton’s reagent was applied to degrade 
antibiotics in swine wastewater, removal of TOC was 40%. 
Several studies have been performed on degrading tetracy-
cline by Fenton reaction processes (Table 5). In an hour or 
less, removal of tetracyclines was in the range of 79–100%, 
depending on the reaction conditions. In a longer time of 
2 h, mineralization up to ~ 4% could be achieved (Table 5).

Conclusion

In the homogeneous Fenton reaction, the conditions of 
should be optimized in order to evaluate full potential of 
·OH radicals to oxidize contaminants in water. These condi-
tions include dosages of Fe(II) and hydrogen peroxide, pH, 
and temperature. Excess concentrations of Fe(II) precipitate 
out as ferric hydroxide, and COD value increases by excess 
amount of hydrogen peroxide. Homogeneous Fenton reac-
tion is limited to acidic pH that results in unwanted sludge 
of iron-oxy hydroxides. Heterogeneous Fenton reaction sys-
tems are being developed by applying catalysts (e.g., fer-
ric oxides) and photolysis to enhance the effectiveness to 
eliminate contaminants in water. However, a more research 
is needed on advancing application of catalysts which are 

Table 4  (continued)

No. Dyes Catalyst Reaction conditions Results References

15. Reactive brilliant red X-3B Fe-pillared bentonite [Dye] = 10−4 mol/L
[Catalyst] = 0.5 g/L
[H2O2] = 10−2 mol/L
pH = 3.0

Removal > 98% in 100 min Li et al. (2006)

16. Rhodamine B Rice hull-based silica-
supported iron catalyst

[Dye] = 5.0 mg/L
[Catalyst] = 1.0 g/L
[H2O2] = 0.98 mmol
pH = 5.0

Removal = 99% in 120 min Gan and Li (2013)

17. Rhodamine B Cationic cyclopentadienyl 
iron silica

[Dye] = 25 mg/L
[Catalyst] = 5.0 g/L
[H2O2] = 1 M
pH = 3.0

Removal = 99% in 30 min Chen et al. (2013)
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Table 5  Treatment of antibiotics containing wastewater by different Fenton reaction processes

S. no. Antibiotics Reaction conditions Results References

1. Amoxicillin Box-Behnken-statistical 
experiment design [Amoxicil-
lin] = 10–200 mg/L

[H2O2] = 10–500 mg/L
[Fe(II)] = 0–50 mg/L Fe(II)

Removal = 100% degradation in 
2.5 min

Mineralization = 37% in 15 min

Ay and Fikret (2010)

2. Amoxicillin Central composite factorial 
design method [Amoxicil-
lin] = 450 µg/L

[H2O2] = 3.50–4.28 mg/L
[Fe(II)] = 254–350 µg/L
pH = 3.5, tempera-

ture = 20–30 °C

Removal = 100% in 30 min Homem et al. (2010)

3. Amoxicillin [Amoxicillin] = 10 mg/L
[Potassium ferroxalate] = 0.1 g/L
pH 6.0–8.0
UV light irradiation

TOC removal = 53% in 90 min
Decrease in toxicity to 65% to 

5%

Trovo et al. (2011)

4. Ampicillin [Ampicillin] = 20 mg/L
[H2O2] = 400 µmol/L
[Fe(II)] = 87 µmol/L Fe(II)
pH = 3.5

Removal = 100% in 3 min by 
photo-Fenton

Removal = 100% in 10 min by 
Fenton process

Rozas et al. (2010)

5. Amoxicillin, cefradine [Amoxicillin] = 1 g/L
[H2O2] = 166.5 mg/L
[Fe(II)] = 166.5 mg/L
pH = 3.0

Removal (amoxicillin) = 97.4% 
in 48 h

Removal (cefradine) = 22.5% 
in 48 h

Li et al. (2015)

6. Amoxicillin, cloxacillin [Amoxicillin] = 150 mg/L
[Cloxacillin] = 150 mg/L
H2O2:COD = 2
Fe(II):H2O2 = 76at pH = 3

COD removal = 79%
TOC removal = 73%
Ammonia–nitrogen 

removal = 81.9% in 90 min

Affam and Chaudhuri (2013)

7. Amoxicillin, cloxacillin [Amoxicillin] = 150 mg/L
[Cloxacillin] = 150 mg/L
[H2O2]:[COD] = 2.0, 

FeGAC = 3.5 g/L

COD removal = 87.5%
TOC removal = 78.0%
NH, -N removal = 98.2% in 

90 min, pH 3.0

Augstin et al. (2014)

8. Amoxicillin, cloxacillin [Amoxicillin] = 138 mg/L, 
[Cloxacillin] = 84 mg/L

[H2O2]/[COD] = 2.5, 
[Fe(II)]:[H2O2] = 2.0

COD removal = 89%
Degradation = 100% in 1 min

Elmolla and Chaudhuri (2012)

9. Azithromycin, clarithromycin [Azithromycin]/[Clarithromy-
cin] = 200 mg/L

[Fe(II)] = 0.45 mmol/L, 
 [Fe0] = 0.3 mmol/L

[H2O2] = 0.16/0.3 mmol/L, 
pH = 7.0

COD removal (azithromy-
cin) = 83%

COD removal (clarithromy-
cin) = 76%

Removal (azithromycin) = 90%
Removal (clarithromycin) = 76% 

in 1 h

Mohammadi et al. (2013)

10. Amoxicillin, ampicillin, cloxacil-
lin

[Amoxicillin] = 103 mg/L
[Ampicillin] = 104 mg/L
[Cloxacillin] = 105 mg/L
[Zinc oxide] = 0.5 g/L
pH = 11.0

Degradation = 100%
COD removal = 23.9%
TOC removal = 9.7% in 180 min

Elmolla et al. (2010)

11. Amoxicillin, ampicillin, cloxacil-
lin

[Amoxicillin] = 104 mg/L
[Ampicillin] = 105 mg/L
[Cloxacillin] = 103 mg/L
[COD]/[H2O2]/[Fe(II)] = 1:3:0.3
pH = 3.0

Degradation = 100% in 2 min
COD removal = 81.4%
DOC removal = 54.3% in 60 min
BOD/COD ratio improve-

ment = 10 min (amoxicillin), 
20 min (ampicillin), 40 min 
(cloxacillin)

Elmolla and Chaudhuri (2009a)



957Environmental Chemistry Letters (2018) 16:947–967 

1 3

Table 5  (continued)

S. no. Antibiotics Reaction conditions Results References

12. Amoxicillin, ampicillin, cloxacil-
lin

[Amoxicillin] = 104 mg/L
[Ampicillin] = 105 mg/L
[Cloxacillin] = 103 mg/L
[H2O2]:[COD] = 1.5
[Fe(II)]:[H2O2] = 20
pH = 3.0

Degradation = 100% in 2 min
BOD/COD ratio improved = 0 

to 0.4
COD removal = 80.8%
DOC = 58.4% in 50 min

Elmolla and Chaudhuri (2009b)

14. Amoxicillin, ampicillin, cloxacil-
lin

[Amoxicillin] = 100 mg/L
[Ampicillin] = 220 mg/L
[Cloxacillin] = 500 mg/L
[H2O2]:[COD] = 3.0
pH = 3.0

COD removal (all three antibiot-
ics) = ~ 80%

Elmolla et al. (2010)

15. Antibiotic fermentation waste-
water

COD = 3279 mg/L
TOC = 1296.3 mg/L
Color = 3000
[H2O2] = 150 mg/L
[Fe(II)] = 120 mg/L
pH = 4 .0

Color removal = 66.6%
COD removal = 72.4% after 

60 min

Xing and Sun (2009)

17. Ciprofloxacin [Ciprofloxacin] = 10 mg/L
[H2O2] = 2.5 mM
[Fe(II)] = 2.0 mg/L
pH = 2.8

Degradation = 80% in 1.8 min Lima et al. (2014)

18. Cefalexin [Cefalexin] = 200 mg/L
[Fe(II)] = 1 mM
pH = 3.0
Current density = 6.66 mA/cm2

TOC removal = 49%
Mineralization = 100%

Estrada et al. (2012)

19. Chloramphenicol [Chloramphenicol] = 50 mg/L
[GLDA] = 100 µmol/L
[FeS2] = 100 mg/L
[H2O2] = 1 mmol/L
pH = 8.0

Degradation = 83.3% Wu et al. (2016)

20. Chlortetracycline [Sludge] = 34 g/L
[Fe(II)] = 30 mg/L
[H2O2] = 30 mg/L
pH = 3.0

Removal (ultrasonication pro-
cess) = 67%

Removal (fenton oxidation pro-
cess) = 76%

Removal (ferro-sonica-
tion) = 82%

Pulicharla et al. (2017)

21. Ciprofloxacin, sulphamethoxa-
zole, trimethoprim

[Ciprofloxacin]/[sul-
phamethoxazole]/[Tri-
methoprim] = 4.24 × 10−2 
 mgcm2W−2L−1

[H2O2] = 2.5 mM
pH = 2.8

Removal = ~ 60% removal after 
240 min

Lima et al. (2017)

22. Clarithromycin, sulfamethoxa-
zole

[Clarithromycin]/[sulfamethoxa-
zole] = 100 ppb

[H2O2] = 50 mg/L
[Fe(III)] = 5 mg/L
pH = 4.0

Removal (clarithromycin) = 70%
Removal (sulfamethoxa-

zole) = 95%

Karaolia et al. (2014)

23. Chloramphenicol, ciprofloxacin, 
dipyrone

[Chloramphenicol]/[ciprofloxa-
cin]/[dipyrone] = 0.15 mM

[H2O2] = 22.5 mM
[Fe(II)] = 2.25 mM
pH = 3.5

Removal (chlorampheni-
col) = 52%

Removal (ciprofloxacin) = 42%
Removal (dipyrone) = 47% in 

45 min

Giri and Golder (2015)

24. Enoxacin [Enoxacin] = 50 mg/L
[Fe(II)] = 0.2 mmol/L
Current intensity = 300 mA

Residual yields = 54% and 43% 
after 120 min

Fluorine = 77%, nitrate = 5%, 
ammonia = 24% after 180 min

Annabi et al. (2016)

25. Flumequine [Flumequine] = 500 µg/L
[Fe(II)] = 0.5 mmol/L
[H2O2] = 2.0 mmol/L

Degradation (Fenton) = 40%
Degradation (photo-Fen-

ton) = 94% after 60 min

Silva et al. (2013)
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Table 5  (continued)

S. no. Antibiotics Reaction conditions Results References

26. Levofloxacin [Levofloxacin] = 200 mg/L
[Na2SO4] = 0.05 M
[Fe(II)] = 1 mM
pH = 3.0
Current inten-

sity = 6.67 mA cm−2

Removal = 100% in 120 min
TOC removal = 60% after 

360 min

Gong et al. (2016)

27. Levofloxacin [Levofloxacin] = 0.23 mM
[Na2SO4] = 0.05 M
[Fe(II)] = 0.2 mM
pH = 3.0
Current intensity = 300 mA

Mineralization = 100%
TOC = 95% for 8 h

Barhoumi et al. (2015)

28. Moxifloxacin [Moxifloxacin] = 0.15 mM
[Fe(II)] = 0.5 mM
pH = 3.0

Several intermediates were 
formed for the degradation of 
moxifloxacin, which was con-
firmed by LC–MS analysis

Yahya et al. (2017)

29. Norfloxacin [Norfloxacin] = 100 mg/L
[Fe0] = 100 mg/L
[H2O2] = 10 mmol/L
pH = 4.0

Degradation = 95% within 
40 min

Mineralization = 50%

Zhang et al. (2017)

30. Norfloxacin [Norfloxacin] = 0. 25 mM
[Na2SO4] = 0.05 M
[Fe(III)] = 0.1 mM
pH = 3.0
Current intensity = 60 mA

Mineralization = 97.7% after 5 h Özcan et al. (2016)

31. Norfloxacin [Norfloxacin] = 15 mg/L
[H2O2] = 2.1 mmol/L
pH = 7.0
(UV/H2O2)

Degradation = 100% degradation
Mineralization = 55% minerali-

zation

Santos et al. (2015)

32. Ofloxacin [Ofloxacin] = 10 mg/L
[Fe(II)] = 2 mg/L
[H2O2] = 2.5 mg/L

Degradation = 100% Michael et al. (2013)

33. Oxacillin [Oxacillin] = 203 µmol/L
[Fe(II)] = 90 µmol/L
[H2O2] = 10 µmol/L

Mineralization = 100% after 
5 min

Giraldo-Aguirre et al. (2017)

34. Ofloxacin, trimethoprim [Ofloxacin]/[trimetho-
prim] = 100 µg/L

[Fe(II)] = 5 mg/L
[H2O2] = 75 mg/L in solar light

Removal = 100% Michael et al. (2012)

35. Sulfasalazine [Sulfasalazine] = 100 mg/L
[Fe(II)] = 0.20 mM
[H2O2] = 16 mM

Removal = ~ 99.5%
TOC removal = 82.4%
COD removal = 41% in 60 min

Fan et al. (2011)

36. Sulfamethoxazole [Sulfamethoxazole] = 200 mg/L
[Fe(II)] = 1 mM
pH = 3.0

TOC removal = 80% (photo-elec-
tro-Fenton process) in 6 h

Mineralization = 63% (electro-
Fenton process)

TOC removal = 25% (electro-
Fenton process)

Wang et al. (2011)

37. Sulfamethoxazole [Sulfamethoxazole] = 50 mg/L
[Fe(II) = 2.6 mg/L
[H2O2] = 120 mg/L

Toxicity reduction = 80% to 20% Trovo et al. (2009)

38. Sulfamethoxazole [Sulfamethoxazole] = 200 mg/L
[Fe(II)] = 10 mg/L
[H2O2] = 300 mg/L
pH = 2.8

Removal = 100% Gonzalez et al. (2007)

39. Sulfamethazine [Sulfamethazine] = 50 mg/L
[Fe(II)] = 40 mg/L
[H2O2] = 600 mg/L

Degradation = 100% in 2 min Moya et al. (2010)
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Table 5  (continued)

S. no. Antibiotics Reaction conditions Results References

40. Sulfamethazine [Sulfamethazine] = 20 mg/L
[Fe(II)] = 3.5–28 mg/L
[H2O2] = 10–400 mg/L
Current intensity = 2mWCm−2

Mineralization = 70% after 
120 min

Kitsiou et al. (2014)

41. Sulfamethazine [Sulfamethazine] = 20 mg/L
[Ce–Fe-graphene] = 0.5 g/L
[H2O2] = 8 mM
pH = 7.0

Degradation = 99%
TOC removal = 73%

Wan et al. (2016)

42. Sulfanilamide [Sulfanilamide] = 0.6 mM
[Na2SO4] = 0.05 M
[Fe(II)] = 0.20 mM
pH = 3.0
Current intensity = 300 mA

Mineralization = 100% Ghenymy et al. (2014)

43. Sulfamonomethoxine [Sulfamonomethox-
ine] = 4.53 mg/L

[H2O2] = 0.49 mmol/L
[Fe(II)] = 19.51 µmol/L
pH = 4.0

Degradation = 98.5%
COD removal = 99% after 

120 min

Hui et al. (2012)

44. Sulfonamide [Sulfonamide] = 0.19 mM
Fe(II):H2O2 = 1.5
pH = 2.5

Degradation = 99.9%
COD removal 64.7–70.7% in 

15 min

Dehghani et al. (2013)

45. Sulfamethoxazole, trimethoprim [Sulfamethoxazole]/[trimetho-
prim] = 20 mg/L

[H2O2] (sulfamethoxa-
zole) = 2.6 mM

[H2O2] (trimethoprim) = 3.0 mM
[Fe(III)] = 0.5 mg/L
pH = 5.0

Mineralization (sulfamethoxa-
zole) = 70%

Mineralization (trimetho-
prim) = 90%

Dias et al. (2014)

46. Sulfamethoxazole, erythromycin, 
clarithromycin

[Substrate] = 100 µg/L
[Fe(III)] = 5 mg/L
[H2O2] = 50 mg/L
pH = 4.0

Removal = 100% Karaolia et al. (2017)

47. Swine wastewater (5 sulfona-
mide + 1 macrolide

[Antibiotics] = 1 mg/L
[Fe(II)] = 0.91 mmol/L, 

 [H2O2] = 1.37 mmol/L
[Fe(II)]:[H2O2] = 0.66, pH = 5.0

TOC removal = 40%
As removal = 78%, Cu 

removal = 36%
Pb removal = 18%, Toxicity 

removal = 25%

Ben et al. (2009)

48. Tetracycline [Tetracycline] = 20 mg/L
[Fe3O4
C] = 0.15 g/L,  [H2O2] = 3 mM
pH = 3.0

Removal = 79% in 44 min
Mineralization = 43.7% in 

120 min

Kakavandi et al. (2016)

49. Tetracycline [Tetracycline] = 100 mg/L
[Fe(II)] = 1.0 g/L, 

 [H2O2] = 150 mmol/L
pH = 3.7

Removal = 93.6% in 60 min
Mineralization = 31.8% after 

60 min

Hou et al. (2016)

50. Tetracycline [Tetracycline] = 40 mg/L
[Fe3O4
void
TiO2] = 0.25 g/L
[H2O2] = 0.377 M, pH = 3.0, 9.0

Degradation = 100% at pH 3.0
Degradation = 75% at pH 9 

within 6 min

Du et al. (2017)

51 Tetracycline [Tetracycline] = 40 mg/L
[Fe(II)] = 5 mg/L, 

 [H2O2] = 71.5 mg/L

Mineralization = 100% Turbay et al. (2013)
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applicable in a wide range of pH and can recycle iron in the 
Fenton reaction system.

Fenton oxidation process can efficiently remove a range 
of contaminants in water. For example, antibiotics such as 
ofloxacin, trimethoprim, sulfonamide and sulfamethoxa-
zole could be completely using the Fenton reaction system. 
However, Fenton reactions process needs to be combined 
with other methods to achieve thorough mineralization. 
Significantly, most of the studies in the literature on remov-
ing contaminants by Fenton reaction processes are on the 
bench scale, and a very little is known on performing at a 
pilot scale with polluted water. It is important Fenton reac-
tion system should be demonstrated by using contaminated 
water containing nitrate, bromide, and natural organic mat-
ter. These constituents of water scavenge ·OH radicals and 
thus decrease the effectiveness of the advanced oxidation 
processes. Furthermore, pilot and field scale testing of the 
selected Fenton reaction is required to demonstrate the 
capabilities, possible limitation, and reaction conditions of 
Fenton reaction processes to produce drinking water from 
contaminated source water.
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