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Abstract Excessive use of pesticides and herbicides is a

major environmental and health concern worldwide.

Atrazine, a synthetic triazine herbicide commonly used to

control grassy and broadleaf weeds in crops, is a major

pollutant of soil and water ecosystems. Atrazine modifies

the growth, enzymatic processes and photosynthesis in

plants. Atrazine exerts mutagenicity, genotoxicity, defec-

tive cell division, erroneous lipid synthesis and hormonal

imbalance in aquatic fauna and nontarget animals. It has

threatened the sustainability of agricultural soils due to

detrimental effects on resident soil microbial communi-

ties. The detection of atrazine in soil and reservoir sites is

usually made by IR spectroscopy, ELISA, HPLC, UPLC,

LC–MS and GC–MS techniques. HPLC/LC–MS and GC–

MS techniques are considered the most effective

tools, having detection limits up to ppb levels in different

matrices. Biodegradation of atrazine by microbial species

is increasingly being recognized as an eco-friendly, eco-

nomically feasible and sustainable bioremediation strat-

egy. This review presents the toxicity, analytical

techniques, abiotic degradation and microbial metabolism

of atrazine.
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Introduction

Atrazine (6-chloro-N-ethyl-N0-(1-methylethyl)-1,3,5-tri-

azine-2,4-diamine is a synthetic triazine herbicide used to

control grassy and broadleaf weeds in sugarcane, wheat,

conifers, sorghum, nuts and corn crops (Iriel et al. 2014;

Kumar et al. 2016; Zhao et al. 2017). It was first introduced

in twentieth century and often used alone or in amalga-

mation with other herbicides for agricultural applications

(Correia et al. 2007; Kadian et al. 2008; Lewis et al. 2009).

It is the second most widely consumed pesticide in the

world with annual consumption of about 70,000–90,000

tons (Kumar et al. 2013; Cheng et al. 2016). In India, about

340 tonnes of atrazine is consumed annually (Solomon

et al. 2013a, b).

Due to its long half-life of 41–231 days (Karlsson et al.

2016), low adsorption in soils and moderate aqueous sol-

ubility, it has a sky-scraping potential to contaminate not

only agricultural fields, but also ground and surface water

with the highest concentration up to 30 lg/L (Table 1)

(Cerejeira et al. 2003; Schwab et al. 2006; Kumar et al.

2013). It was banned in several countries like Italy (Huang

et al. 2009), Denmark (Glæsner et al. 2014), Finland and

Germany (Vonberg et al. 2014) in the year 1991 and

European Union banned atrazine in the year 1992 (White

2016) because its metabolites/residues had the potential to

persist in fields and surface water for several years (Beth-

sass and Colangelo 2013; Nousiainen et al. 2015) resulting
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in the contamination of surface and water bodies. Some

studies reveal the surpass levels of atrazine 3 and

0.1 lgL-1 found in drinking water of the USA and Europe

(Mahı́a et al. 2007). The maximum acceptable concentra-

tion (MAC) for atrazine in drinking water is 5 lg/L

(Cerejeira et al. 2003). The acceptable daily intake (ADI) is

derived on the basis of division of a NOAEL by appro-

priate uncertainty factors. It is one of the most widely used

herbicide, and several times it has been reported to be at

levels above the limits in water bodies (Graymore et al.

2001).

The production of atrazine increased from 0.26 metric

tonnes to 0.67 metric tonnes from the year 2009 to 2012

(Ministry of fertilizers and chemicals, Govt. of India).

Environment protection agency classifies atrazine in toxi-

city class III on a scale of I to IV (I being the most toxic). It

is registered for only two crops (apple and sugar) by the

central insecticides board and registration committee in

India (Bhushan et al. 2013). Atrazine has been classified as

an endocrine disrupting pesticide by the US Environmental

Protection Agency (Morales-Pérez et al. 2016). The Inter-

national Agency for Research on Cancer (IARC) has cat-

egorized atrazine in the list of carcinogenic pesticides

(Mahler et al. 2017). This review covers the toxicity,

analytical monitoring by using recent techniques and

degradation (chemical, photochemical and microbial)

aspects of atrazine.

Toxicity of atrazine

Agricultural chemicals have potential to alter species

composition, decrease diversity, interfere with normal

succession patterns and alter food webs as a whole (Lin

et al. 2016a, b, c). The intensification of industrial and

agricultural practices chiefly the utilization of pesticides

has in almost every way made our natural resources mis-

erable (Dutta et al. 2016). Various toxic effects of atrazine

on humans, plants, animals and microorganisms are dis-

played in Fig. 1.

Effect on nontarget plants

One of the most unintentional exposures of pesticides is to

the nontarget plants. Atrazine has shown to manifest

complete death or stunted growth, translocation, root or

shoot uptake, phenotype alteration, mutation and resistance

(Burken and Schnoor 1997; Szigeti and Lehoczki 2003;

Hassan and Nemat 2005; Nemat and Hassan 2006; Su and

Zhu 2006). The different results of atrazine accumulation

could be due to the use of different plant species, since

distinct mechanisms control the accumulation of atrazine in

target and nontarget plants. Concentration- and time-de-

pendent effects of atrazine exposure have been noticed.

Atrazine is absorbed by shoots and roots and transported

Table 1 Chemical and physical properties of atrazine and degradation products

General name IUPAC name Chemical

formula

Mw

(g/mol)

Solubility in

water (mg/L)

Log P (at

25 �C)

Density

(g/cm3)

Henry’s law

constant

(Pa m3 mol-1)

Atrazine 2-Chloro-4-ethylamino-6-

isopropylamino-1,3,5-triazine

C8H14ClN5 215.69 70 1.92 1.19 1.093291e-007

Hydroxyatrazine 4-(Ethylamino)-2-hydroxy-6-

(isopropylamino)-1,3,5-

triazine

C8H15N5O 197.24 5.9 2.09 1.3 6.36 9 10-08

Deisopropylatrazine 6-chloro-N-ethyl-1,3,5-triazine-

2,4-diamine

C5H8ClN5 173.6 – 1.19320 1.455 –

Deethylatrazine 2-Amino-4-isopropylamino-6-

chloro-s-triazine

C6H10ClN5 187.63 2700 1.90 1.38 3.55 9 10-07

N-Isopropylammelide 6-(Propan-2-ylamino)-1H-

1,3,5-triazine-2,4-dione

C6H10N4O2 170.17 33 -0.47500 1.51 –

Biuret Imidodicarbonic diamide C2H5N3O2 103.08 20,000 0.52490 1.432 –

Allophanate Urea-1-carboxylate C2H3N2O3
- 103.06 Insoluble 0.23740 1.581 –

Ammelide 6-Amino-1,3,5-triazine-2 C3H4N4O2 128.09 Insoluble -0.55380 1.573 –

2-Chloro-4-hydroxy-

6-amino-1,3,5-

triazine

2-Chloro-4-hydroxy-6-amino-

1,3,5-triazine

C3H3ClN4O 146.54 – -0.01830 2.1 –

Cyanuric acid 1,3,5-Triazine-

2,4,6(1H,3H,5H)-trione

C3H3N3O3 129.08 2000 -2.24850 2.5 8.7 9 10-15
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solely by xylem (Francisco 2001; Szigeti and Lehoczki

2003). Pre-emergence herbicides are used to stop the ger-

mination of plant seeds. Atrazine is absorbed by leaves as

well as roots and has postemergence as well as pre-emer-

gence activity on weeds (Ahrens and Newton 2008). The

negative effects of postemergence atrazine treatment upon

peroxidase, ascorbate peroxidase and lipid peroxidation

were determined in a 15-day experiment (Akbulut and

Yigit 2010). Target and nontarget plants exposed to atra-

zine usually suffer oxidative stress caused by the genera-

tion of reactive oxygen species such as superoxide anion

radical, hydroxyl radical, singlet oxygen and hydrogen

peroxide. Generation of H2O2 in roots of maize exposed to

atrazine was also assayed after chemical extraction in a

previous study. The most important mechanism used by

plants to prevent oxidative stress is through reactive oxy-

gen species scavenging (Burken and Schnoor 1997; Hassan

and Nemat 2005; Nemat and Hassan 2006; Szigeti and

Lehoczki 2003; Su and Zhu 2006). It has been noticed that

the exposure and accumulation of atrazine cause oxidative

toxicity and antioxidant response in Zea mays (Li et al.

2012). Gao et al. (2011) indicated atrazine to be a potential

threat to seagrass seedling function, and the impact is much

higher for adult plants. Exposure to 10 lg/L atrazine sig-

nificantly lowers the plant fresh weight and total chloro-

phyll concentration, and up to 86.67% mortality was

recorded at the 100 lg/L concentration.

Basically plants have detoxification ability against var-

ious pesticides. Enzymes detected in plants responsible for

detoxification of various pesticides are cytochrome 450,

peroxidases, aryl acylamidases, esterases, lipases, pro-

teases, amidases, oxygenases and reductases (Jiang et al.

2016). It has been noticed that the increasing antioxidant

enzyme activities enable Pennisetum americanum seed-

lings to cope with the oxidative stress induced by moderate

concentrations (20 mg kg-1 or below) of atrazine. Cyto-

chrome P450 monooxygenase genes are known to be

involved in modification and detoxification of herbicide

atrazine in Oryza sativa (McGregor et al. 2008; Tana et al.

2015). Exposure to atrazine can trigger specific GT genes

and enzyme activities in Oryza sativa (Lua et al. 2013).

Another major detoxification mechanism in leaf tissue of

maize is through glutathione conjugation (GS-atrazine). It

is considered to be an important biotransformation mech-

anism of a atrzine in plants. The recovery of atrazine-in-

hibited photosynthesis is accompanied by a rapid

conversation of atrazine to GS-atrazine when atrazine was

directly introduced into the leaf tissue. This pathway is

relatively inactive in roots and shoots (Shimabukuro et al.

1970). Another detoxification pathway for atrazine in corn

corresponds to a chemical hydroxylation process. The

mechanism was also described under invitro conditions.

Benzoxazinones mixture (DIMBOA, DIBOA, 2-monoglu-

cosyl DIMBOA ? 2-monoglucosyl DIBOA) extracted

from corn plantlets were able to transform 91% of atrazine

into 2-hydroxyatrazine in 24 h. The natural concentration

of benzoxazinones in the vacuolar sap of corn seedlings

and the pH play a major role in high rate of atrazine

chemical hydroxylation in vivo (Raveton et al. 1997).

Occurrence of atrazine in water bodies can have serious

Fig. 1 Toxicity and detrimental effects of atrazine on humans, plants, animals and microorganisms
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detrimental effects on nontarget living organisms such as

freshwater algae (Baxter et al. 2015, 2016; Bai et al. 2015;

Andrus et al. 2013). Atrazine inhibited the growth of Ch-

lamydomonas mexicana and also leads to an increase in

carbohydrate content and chlorophyll a accumulation

(Kabra et al. 2014). The toxicity of atrazine along with its

metabolites desethylatrazine and deisopropylatrazine was

evaluated on the amphipods Hyalella azteca and Diporeia

sp., and the unicellular algae Pseudokirchneriella subcap-

itata. It was found to be the most toxic followed by

desethylatrazine and deisopropylatrazine and algae being

the most sensitive of all. In case of chronic exposure, Di-

poreia sp. was found to be sensitive as compared to H.

azteca by a large magnitude (Ralston-Hooper et al. 2009).

Photosynthetic process, cell division, lipid synthesis were

majorly affected in green alga, Raphidocelis subcapitata on

exposure to atrazine (Ma et al. 2006). According to Solo-

mon et al. (2013a, b), atrazine was not found to cause any

lethality or permanent cell damage, but it acts to inhibit

photo-phosphorylation.

Effects on aquatic fauna

Atrazine exhibited significant rate of micronuclei and

nuclear abnormalities in Channa punctatus (Nwani et al.

2011). Atrazine showed acute toxicity to leopard frog

(Rana pipiens), American toad (Bufo americanus), rainbow

trout (Onchorhynchus mykiss) and channel catfish (Ictalu-

rus punctatus) (Orton et al. 2006). Chironomus tentans was

also studied for the effect of atrazine and binary combi-

nation of atrazine with chlorpyriphos. The result depicted

atrazine not acutely toxic at even higher levels but when

used in combination with chlorpyriphos, methyl parathion

and malathion decreases the EC50 (effective concentra-

tion) values (Belden and Lydy 2001).

Also the toxicity of active ingredients to pesticide for-

mulations with regard to atrazine, chlorpyriphos and per-

methrin in glochidia and juvenile life stages of a freshwater

mussel (Lampsilis siliquoidea) were compared. The atra-

zine formulation (Aatrez) was more toxic than technical

grade atrazine in chronic tests with juvenile L. siliquoidea.

For other pesticides, acute and chronic toxicity of technical

grade pesticides were similar to the toxicity of pesticide

formulations. Atrazine and formulations did not cause any

significant acute toxicity in glochidia and juveniles

(Bringolf et al. 2007). In case of freshwater fish, Rhamdia

quelen, histopathological changes in liver revealed leuko-

cyte infiltration, hepatocyte vacuolization like steatosis and

necrosis areas, leading to raised lesion index levels in all

tested concentrations; process of osmoregulation was dis-

turbed and gills showed changes in pavement cells and

chloride cells (Mela et al. 2013). The effect of atrazine was

also evaluated on some immune parameters of red-eared

slider (Trachemys scripta). Lowered serum complement

and lysozyme activities, reduced leukocyte number as well

as their phagocytic activity and increased neutrophil/lym-

phocyte ratio depicted a positive correlation between

atrazine (high dose) concentration and immunosuppressive

effects (Soltanian 2016). The expression of carp HSP70

and 70-kDa heat shock cognate protein (HSC70) with

atrazine and chloropyriphos treatment alone or in combi-

nation was significantly up-regulated in common carp

(Cyprinus carpio L.) providing new insights into the

mechanisms used by fish to adapt to stressful environment

(Xing et al. 2013). Increased lipid peroxidation and decline

in cholesterol and total proteins in liver and muscles were

observed for atrazine, glyphosate and quinclorac in tad-

poles of Lithobates catesbeianus (Dornelles and Oliveira

2014).

Freshwater clam, Corbicula fluminea, was also studied

to evaluate the biochemical and genotoxic effects of the

herbicides atrazine and Roundup. Atrazine interfered

mostly in biotransformation, while Roundup interfered

mainly in antioxidant defenses leading to lipid peroxida-

tion. Herbicides mixture caused a significant increase in the

occurrence of DNA damage (Dos-Santos and Martinez

2014). Atrazine shows profound influence on the oxidative

stress markers and detoxifying enzyme of the exposed

zebra fish (Blahova et al. 2013). Atrazine also causes

changes in the glutathione S-transferase isoenzymes

(GSTs) activity and their transcription varied within each

organ and among organs of common carp (Xing et al.

2012). Atrazine behaves as enzyme inhibitor, impairing

hepatic metabolism, and produces genotoxic damage to

different cell types as studied in Plotosus lineatus (Santos

and Martinez 2012). Various concentrations of atrazine

also lead to continuous decline in levels of total protein and

serum albumin in grass carp, Ctenopharyngodon idella

(Khan et al. 2016a, b). Atrazine is also known to show

detrimental effects on the digestive gland of Crassostrea

gigas, pacific oyster by modulating important molecular

and biochemical parameters within relatively short time

period (Lee et al. 2017). Exposure to atrazine may be

associated with decreased birth weight and preterm deliv-

ery. According to Zadeh et al. (2016), hematological

parameters like hemoglobin, hematocrit and RBCs were

significantly decreased by chronic toxicity of atrazine in

fish, Tor grypus exposed to different levels of atrazine. The

increase in concentrations of lactate dehydrogenase (LDH)

and decrease in concentrations of creatinine phosphoki-

nases (CPK), serum glutamic-pyruvic transaminase

(SGPT) and alkaline phosphatase indicate an adverse effect

of atrazine on grass carp, Ctenopharyngodon Idella (Khan

et al. 2016a, b). In Channa punctatus, the biochemical

parameters such as serum total protein, glucose and

cholesterol values were found to decrease, while level of

214 Environ Chem Lett (2018) 16:211–237
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urea significantly increased in all treatments suggesting

anemia and hepatic damage. In a risk assessment study of

atrazine in American surface waters, it was found that

phytoplankton were the most sensitive organisms followed

by macrophytes, benthic invertebrates, zooplanktons and

fish. In estuarine crab, Neohelice granulata significant

decrease in glycogen content and significant diminished

content of vitellogenin proteins in ovary was detected after

atrazine toxicity (Silveyra et al. 2017). In zebrafish, Danio

rerio decrease in glutathione S-transferase and catalase and

an increase in superoxide dismutase, glutathione peroxi-

dase and reductase were observed indicating profound

influence of atrazine on the oxidative stress markers and

detoxifying enzymes (Blahova et al. 2013). Atrazine also

affects gill respiration and ion regulation function of fin-

gerlings (Caspian kutum) by damaging tissue, pavement

cells and ionocytes (Khoshnood et al. 2015).

Effects on other invertebrates and vertebrates

Oluah et al. (2016) studied the toxicity and the

histopathological effects of Atrazine on earthworms,

Nsukkadrilus mbae, and reported significant adverse

effects. Xu et al. (2006) compared atrazine and chloro-

toluron toxicity on Eisenia fetida and found atrazine as

more toxic to earthworms; combination showed synergistic

effect. Superoxide dismutase (SOD) activity showed an

increase. The exposure of chlorpyrifos to E. fetida in

combination with atrazine or cyanazine was evaluated, in

which the resultant toxicity was greater than the additive

(Lydy and Linck 2003). Previous studies suggest that the

pessimistic effects of atrazine on neuro-endocrine system

occur by changing pituitary hormone levels, such as folli-

cle-stimulating hormone (FSH) and luteinizing hormone

(LH) (Cox 2001; Yang et al. 2014). Altered LH leads to

prolonged prolactin secretion and subsequent stimulation

of the mammary gland proliferative changes and increased

incidence of mammary adenocarcinomas and fibroadeno-

mas (Jowa and Howd 2011; Simpkins et al. 2011). Atrazine

inhibits the release of gonadotropin-releasing hormone

(GnRH), which decreases the secretion of LH that may lead

to increased abortions in male Wistar rats (Stoker et al.

2002). Exposure to atrazine affects both germ cells as

reduced motility and sperm counts in male rats (Victor-

Costa et al. 2010: Pogrmic et al. 2009). Effects of atrazine

were also observed as a decrease in levels of serum lipids

and liver enzymes in adult mammals (Suzawa and Ingra-

ham 2008: Hayes et al. 2002). Atrazine supposedly

increases aromatase enzyme activity via inhibition of

phosphodiesterase, which increases the aromatization of

testosterone to estrogen (Hayes et al. 2006; Cooper et al.

2007). An increased estrogenic environment may favor

altered relative sex hormone levels may affect reproduction

and/or development and induction of cancers and prolif-

eration of preexisting estrogen-dependent cancers (Oka

et al. 2008). Other effects of metabolites of atrazine on the

immune system, central nervous system and cardiovascular

function have also been reported (Jin et al. 2010; Christin

et al. 2003). In adult humans, non-Hodgkin’s lymphoma

associates with the exposure of the compound (Schroeder

et al. 2001). According to Gely-Pernot et al. (2015), atra-

zine exposure interferes with normal meiosis, which affects

spermatozoa production in male mice. Oxidative stress and

disruptions in calcium homeostasis play an important role

in the induction of immunotoxicity in mice by atrazine as

depicted by Gao et al. (2016). It is also found to elicit

immunotoxic effects on murine lymphocytes, and its

presence in the environment might compromise immune

function in organisms (Chen et al. 2015a, b). Atrazine is

known to reduce the mating rate, number of progeny and

competitive fertilization ability; it also alters gene expres-

sion and production of proteins in Drosophila melanoga-

ster (Vogel et al. 2015). Marcus and Fiumera (2016)

observed reduced pupation rate, emergence rate and long-

evity of adult in D. Melanogaster after atrazine exposure.

Atrazine was also reported to be endocrine disrupters and

significant decrease in steroid levels (testosterone and 17b-

estradiol), and total proteins were also noted; the histology

of ovotestis showed degenerative changes including

azoospermia and oocytes deformation (Omran and Salama

2016). 57% reduction in testicular volume was marked in

atrazine exposed tadpoles. Also, primary spermatogonial

cells and nurse cells were reduced by 70 and 74%,

respectively (Tavera-Mendoza et al. 2002). Toxicity pro-

files of atrazine against microorganisms, aquatic lower

invertebrates, higher vertebrates and humans are presented

in Table 2.

The prime target of chlorinated atrazine on humans and

mammals is the disruption of the endocrine system (Jin

et al. 2014; Kroon et al. 2014; Weber et al. 2013). Sec-

ondly, it also induces oxidative stress by formation of

reactive oxygen species resulting in the reduced semen

quality sperm dysfunction and infertility of amphibians,

rats and pigs (Gely-Pernot et al. 2015; Jestadi et al. 2014;

Kniewald et al. 2000). In females, pesticides imbalances

sexual hormones intervene androgen or estrogens receptors

for improper function, irregularities of ovarian cycles,

instinctive abortion, defect in developmental births, etc.

(Bohn et al. 2011). Atrazine forms ROS, which cause

single- and double-strand breaks in DNA and thus is

genotoxic (Yang et al. 2010). The working of cardiovas-

cular system also gets affected by atrazine exposure (Lin

et al. 2016a, b, c; Cosselman et al. 2015). Atrazine is

known to cause hepatic damage, as liver is the primary

organ for atrazine metabolism in mammals (Campos-Per-

eira et al. 2012; Gojmerac and Kniewald 1989). Atrazine is

Environ Chem Lett (2018) 16:211–237 215
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Table 2 Toxicity and adverse effects of atrazine on humans, aquatic lower invertebrates, higher vertebrates and soil microorganisms

Living

groups

Scientific name Common

name/category

Mechanism of toxicity References

Algae Pseudokirchneriella

subcapitata

Micro algae Inhibition in population growth Khilji (2011)

Selenastrum capricornutum Green algae Algal population growth inhibition (IC50-

cell counts), percent lethality (LC50-

flow cytometry derived) and

photosynthetic electron transport

inhibition

Caux et al. (1996)

Raphidocelis subcapitata Microalgae Decreased in PSII yield Baxter et al. (2016)

Diporeia sp. Microalgae Cell division was majorly affected Ralston-Hooper et al. (2009)

Diporeia sp. Microalgae Photosynthetic process, cell division, lipid

synthesis were majorly affected

Ma et al. (2006)

Annelid Eisenia fetida Redworm Atrazine was more toxic to earthworm

than chlorotoluron. Combination

showed synergistic effect. SOD activity

shows increase

Xu et al. (2006)

Eisenia fetida Redworm Binary mixtures of chlorpyrifos with

atrazine and cyanazine demonstrated

greater than additive toxicity

Lydy and Linck (2003)

Nsukkadrilus funmie Nigeria

earthworm

Chloragogenous layer and epithelial

tissue damage; prominent vacuolations

and pyknotic cells

Oluah et al. (2016)

Mollusca Lampsilis siliquoidea

(Glochidia and juvenile stage)

Fatmucket clam Median effective concentrations for

chlorpyrifos were 0.43 mg/L for

glochidia at 48 h, 0.25 mg/L for

juveniles at 96 h, and 0.06 mg/L for

juveniles at 21 days

Bringolf et al. (2007)

Corbicula fluminea Freshwater clam Leading to lipid peroxidation Dos-Santos and Martinez

(2014)

Crassostrea gigas Pacific oyster Detrimental effects on digestive gland by

modulating important molecular and

biochemical parameters

Lee et al. (2017)

Arthropod Chironomus tentans Midge Not acutely toxic at even higher levels but

combination with chlorpyriphos, methyl

parathion, malathion decreases the

EC50

Belden and Lydy (2001)

Daphnia magna Water fleas The interactive effect of all the three

pesticides was synergistic and have

negative effect on liver, kidneys, etc.

Kungolos et al. (1999)

Neohelice granulata Estuarine crab Significant decrease in glycogen content

and significant diminished content of

vitellogenin proteins in ovary

Silveyra et al. (2017)

Drosophila melanogaster Fruit fly Reduces the mating rate, number of

progeny and competitive fertilization

ability; also alters gene expression and

production of proteins in

Vogel et al. (2015)

D. melanogaster Fruit fly Atrazine exposure reduces pupation rate,

emergence rate and longevity of adult

Marcus and Fiumera (2016)

Hyalella azteca Scud Significant H. azteca 96-h mortality

occurred within the first 2 h of

amendment at the upstream amendment

site

Ralston-Hooper et al. (2009)
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Table 2 continued

Living

groups

Scientific name Common

name/category

Mechanism of toxicity References

Amphibian Rana pipiens; Bufo americanus Leopard frog;

American toads

Older amphibian larvae were more

sensitive. The toxicity of 50:50 mixture

of atrazine and alachlor was greater than

additive

Howe et al. (1998)

Lithobates catesbeianus Bull frog Pessimistic effect on biochemical

parameters, lipid peroxidation, and

survival in tadpoles

Dornelles and Oliveira (2014)

Xenopus. Laevis African clawed

frog

Decrease in levels of serum lipids and

liver enzymes

Hayes et al. (2002)

Reptilian Trachemys scripta Red-eared slider Lowered serum complement and

lysozyme activities, reduced leukocyte

number as well as their phagocytic

activity

Soltanian (2016)

Pisces Rhamdia quelen Cat fish Histopathological changes in liver

revealed leukocyte infiltration,

hepatocyte vacuolization like steatosis

and necrosis areas, leading to raised

lesion index levels in all tested

concentrations; process of

osmoregulation was disturbed and gills

showed changes in pavement cells and

chloride cells

Mela et al. (2013)

Channa punctatus Snakehead Significant rate of micronuclei and

nuclear abnormalities

Nwani et al. (2011)

Tor grypus Shabout Hematological parameters like

hemoglobin, hematocrit and RBCs were

significantly decreased

Zadeh et al. (2016)

Plotosus lineatus Eel cattlefish Enzyme inhibitor, impairing hepatic

metabolism and produces genotoxic

damage to different cell types

Santos and Martinez (2012)

Ctenopharyngodon Grass carp Decline in levels of total protein and

serum albumin

Khan et al. (2016a, b)

Oreochromis niloticus Tilapia Significant rate of micronuclei and

nuclear abnormalities

De Campos et al. (2008)

Cyprinus carpio Common carp Effect of atrazine and chlorpyrifos on the

mRNA levels of HSP70 and HSC70 in

the liver, brain, kidney and gill of

common carp

Xing et al. (2013)

Oncorhynchus mykiss Rainbow trout Rainbow trout appeared to be less

sensitive than amphibian larvae

Howe et al. (1998)

Ictalurus punctatus Channel catfish Channel catfish appeared to be less

sensitive than amphibian larvae

Howe et al. (1998)

Danio rerio Zebra fish Influence on the oxidative stress markers

and detoxifying enzyme

Blahová et al. (2013)

Prochilodus lineatus Ray-finned fish Enzyme inhibitor, impairing hepatic

metabolism, and produces genotoxic

damage to different cell types

Santos and Martinez (2012)

Danio rerio Zebra fish Alters hormone networks via convergence

of NR5A activity and cAMP signaling,

to potentially disrupt normal endocrine

development and function in lower and

higher vertebrates

Suzawa and Ingraham (2008)

Caspian kutum Caspian white fish Gill respiration and ion regulation

function of fingerlings affected by

damaging tissue, pavement cells, and

ionocytes

Khoshnood et al. (2015)
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also responsible for cardiotoxicity and hepatotoxicity in

mice by disruption of ionic balance (Lin et al. 2016a, b).

The negative effects of atrazine on soil and aquatic biota

are enormous. The above studies decipher a clear picture

about the vulnerability of atrazine to terrestrial and aquatic

life forms. The detection of atrazine with better accuracy

and reliability is thus essential for safety of human health,

biota and environment.

Analytical methods for monitoring atrazine
in ecosystems

Basically, single environmental matrix can contained

multiple pesticides (Kaur et al. 2017; Kumar et al.

2016, 2017; Singh et al. 2016). The extraction, cleanup and

pre-treatment procedure depend upon the physiochemical

nature of pesticides and environmental matrix (Kaur et al.

2017; Kumar et al. 2016, 2017). There are number of

methods described for the analysis of different classes of

pesticides in different matrices (AOAC 1993; Kumar et al.

2015a, b, c, d; Prasad et al. 2013; Kumar and Singh 2016;

Singh et al. 2017). In day-to-day laboratory analysis,

AOAC method is most authentic. Most common steps for

the extractions of pesticides including atrazine have been

described by Kumar et al. (2015a, b, c, d) as per the

guidelines of AOAC (AOAC 1993; Kumar et al.

2015a, b, c, d; Prasad et al. 2013; Singh et al. 2016, 2017).

Highly sensitive and rapid analytical methods are

essential for monitoring of residual atrazine and its

metabolites in soil and water bodies (Table 3). It is mon-

itored by using spectroscopic, immunogenic and chro-

matographic methods which include infrared (IR)

spectroscopy, high-performance liquid chromatography

(HPLC)/HPLC–MS/HPLC–MS/MS, HPLC, enzyme-

linked immunosorbent assay (ELISA) and gas chro-

matography GC/GC–MS/GC–MS/MS (Miensah et al.

2015; Williams et al. 2014; Bonansea et al. 2013). Recently

nano-based solid-based extractions ultra-performance liq-

uid chromatography (UPLC) and GC/LC–MS methods

have been developed with very good recovery and detec-

tion limits up to ppb (Table 3). The detection of atrazine in

Table 2 continued

Living

groups

Scientific name Common

name/category

Mechanism of toxicity References

Rodentia Rattus norvegicus Male Wistar rats Affects both germ cells as reduces

motility and sperm counts in male rats

Victor-Costa et al. (2010) and

Pogrmic et al. (2009)

Inhibits the release of Gonadotropin-

releasing hormone (GnRH), which

decreases the secretion of LH that may

lead to increased abortions in male

Stoker et al. (2002)

Mus musculus Male mice Atrazine interferes with normal meiosis,

which affects spermatozoa production

Gely-Pernot et al. (2015)

Mus musculus Mice Atrazine leads to oxidative stress and

disruptions in calcium homeostasis

which induces immunotoxicity

Gao et al. (2016)

Rattus norvegicus Male Sprague–

Dawley rat

Non-dopaminergic cells respond and

hypoactivity-inducing effect

Rodriguez et al. (2017)

Primates Homo sapiens Postmenopausal

women

endocrine disrupting effects Inoue-Choi et al. (2016)

Human primary

hepatocytes

Short and chronic exposures leads to

cellular impact on human primary

hepatocytes and HepaRG cells

Nawaz et al. (2014)

Human

neuroblastoma

Induces apoptosis of SH-SY5Y human

neuroblastoma cells via the regulation

of Bax/Bcl-2 ratio and caspase-3-

dependent pathway

Abarikwu and Farombi (2015)

Induces SH-SY5Y human dopaminergic

neuroblastoma cells via microglial

activation

Ma et al. (2015)

Induces aromatase expression is SF-1

dependent and endocrine disruptor

Fan et al. (2007)

Disrupts the hypothalamic control of

pituitary–ovarian function

Cooper et al. (2000)
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biological media is quantified using GC coupled with MS

including different detectors like flame ionization detector

(Haiyan and Center 2015), electron capture detector

(ECD) (Miensah et al. 2015), nitrogen-phosphorus detector

(NPD) (Bonansea et al. 2013) and GC coupled with mass

spectrometer (Williams et al. 2014).

Quantification of atrazine was also done by a diode

array (Yang et al. 2014) and a UV detector (Kong et al.

2016). Immunogenic methods are usually based on ELISA

using sheep-based antibodies to atrazine (Na et al. 2012).

Other immunogenic methods have been developed in

which the antibody is bound to a ‘‘dipstick,’’ and this is

used to evaluate concentrations of atrazine in water or

liquid food samples (Kaur et al. 2007), while other sam-

pling approaches have used immuno-affinity systems to

concentrate atrazine prior to analysis by GC (Tran et al.

2013).

In water samples, atrazine was detected with GC

equipped with nitrogen phosphate detector (NPD) and the

percentage recovery is very high 96–98% (Nsibande et al.

2015). In sub-surface waters, the atrazine was quantified

by both the techniques, i.e., HPLC and GC equipped with

NPD, ECD and MS detectors (Barchanska et al. 2014). In

aquatic plants and sediments, the concentration of atrazine

was quantified by GC coupled with ECD detectors and the

recovery percentage is near about 90% (Bennett et al.

2000). In water and soil samples, the solid-phase extrac-

tion method is used to concentrate the samples prior for

analysis, all the three methods, i.e., GC coupled with all

three detectors mentioned above, ELISA and HPLC

equipped with UV detector (Hernandez et al. 2000; Lioy

et al. 2000). The detection limit of atrazine in biological

media moves to a greater extent as it was 0.1 lg/L in the

year 2000 (Yokley et al. 2000) and it moves to 50 ng/L in

the year 2008 (Gervais et al. 2008). It is all due to the new

innovations in day-to-day life. In 2000, the detection was

only SPE and GC based. Using styrene di-vinyl benzene

sorbents, the detection limits increase to 10 ng/L (Bruz-

zoniti et al. 2006). Tandem mass spectroscopy combined

with ultra-performance liquid chromatography detects up

to 50 ng/L of the atrazine in biological media (Kuklenyik

et al. 2012).

Qie et al. (2013) developed a technique direct com-

petitive ELISA method (dcTELISA) based on thermistor

enzyme for faster detection of atrazine in large-scale

samples. In this method, ATZ competes for b-lactamase-

labeled ATZ (ATZ–E) for the binding sites on anti-ATZ

monoclonal immune response (mAb) which is covalently

linked to form immunocomplexes from immune reactor

with b-lactamase-labeled ATZ and atrazine. The detection

limit was very good with high recovery rate (88–107%) in

silage and fresh corn stalk samples. Another novel method

for detection of atrazine was based on the SPR (SepiaT
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b
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pterin reductase) determination of P450 mRNA levels in

Saccharomyces cerevisiae. The selected oligonucleotide

probe that exhibits specificity for P450 mRNA was suc-

cessfully immobilized on the sensor chip. The mRNA was

quantified. It is a highly sensitive and rapid method that

permits the detection of atrazine within 15 min (Kim et al.

2003). Kaoutit et al. (2004) also gave a simple conducting

polymer-based biosensor approach. A glassy carbon elec-

trode was prepared which is operated at open circuit and

served for the immobilization of the enzyme polyphenol

oxidase (PPO) during the anodic electropolymerization of

polypyrrole (PPy). The concentration of atrazine in aque-

ous solution is attributed to its inhibitory power toward the

catalytic activity of PPO. This biosensor helps in easy

detection of photosynthetic inhibiting herbicide monitoring

because of its analytical performance and simplicity. A

protein-based conjugate method was developed for binding

of atrazine with anti-atrazine monoclonal antibodies. Here

immobilization was done on gold particles based on test

strip method assessed with a photometric device to detect

atrazine in very low limits (130 ng/mL) (Byzova et al.

2010). An immunochromatography (ICG) strip test for

detection of atrazine in water samples was also developed.

Monoclonal antibody (MAb) specific to atrazine was pro-

duced from the cloned hybridoma cell (AT-1-M3) and used

to develop a direct competitive enzyme-linked

immunosorbent assay (DCELISA) and ICG strip. The limit

of detection was 3 ng/mL, and it requires only 10 min

getting the results and that too in a single step. It came out

to be a sensitive and accurate technique (Shim et al. 2006).

A disposable immunomagnetic electrochemical sensor

involving magnetic particles was developed for the detec-

tion of atrazine. The sensor was based on a magnetic

monolayer of magnetic particles coated with streptavidin,

formed on a gold electrode after application of a magnetic

field. The atrazine interacts with biotinyl–Fab fragment

K47, and the immune reactions were characterized by

impedance spectroscopy. A decrease in electron transfer

resistance was observed which could be attributed to

rearrangements in the magnetic monolayer. The limit of

detection is in the range 10–600 ng/ml; it is a sensitive

approach for detection of atrazine acting as an antigen

(Helali et al. 2006). Another novel immunoassay was for-

mulated that involved direct coating of haptens on micro-

titer plates for detection of atrazine. The assay allows

hapten-coated plates and uses affinity-purified atrazine

which showed very high sensitivity. The limit of detection

for atrazine is in the range 0.02–0.7 ng/mL (Suri et al.

2008). Detection of atrazine and triazines in water has also

been carried out flow injection chemiluminescence analy-

sis. The aliphatic amines in traizines react with tris(2,20-
bipyridyl)ruthenium(III) to produce chemiluminescence.

The presence of natural organic matter (NOM)

significantly increased the chemiluminescence, masking

the signal generated by atrazine. Isolating the target analyte

via solid-phase extraction (SPE) prior to analysis removed

this interference and concentrated the samples. The

detection limit is 14 ± 2 ng/L (Beale et al. 2009). Pardieu

et al. (2009) devised an electrochemical sensor based on

molecularly imprinted conducting polymer (MICP). The

recognition of atrazine can be quantified by the variation of

the cyclic voltammogram of MICP. It shows selectivity

toward triazine family and shows a large range of detection

from 10-9 to 1.5 9 10-2 mol/L. Impedance spectroscopy

transduction combined with the immunosensor technology

has been used for the determination of atrazine. The

immunoreaction of atrazine on the attached anti-atrazine

antibody leads to an increase in the charge transfer resis-

tance which is proportional to the concentration of atrazine.

Its limit of detection was 10 pg/mL (Ionescu et al. 2010).

Another approach based on antibody replicas for atrazine

detection was formulated by Schirhagl et al. (2011).

Antibodies were used to pattern the nanoparticles for sur-

face imprinting the polymer layer to produce replicas. Liu

et al. (2011) constructed a MIP (molecularly imprinted

polymers) chemosensor from a core–shell nanostructure.

Vinyl-substituted zinc(II) protoporphyrin (ZnPP) was used

as both fluorescent reporter and functional monomer to

synthesize atrazine-imprinted polymer shell. The limit for

detection is 1.8 mM. Bioluminescent reported bacteria are

also utilized for detection of atrazine. Increase in biolu-

minescent signals is recorded for E. coli. For better inter-

action between insoluble atrazine and bacterial cells,

centrifugation of bacterial cells and analyte dilutions can be

performed (Jia et al. 2012). An electrochemical

immunosensor for atrazine detection was developed by

immobilization of gold nanoparticles on the gold electrode

surface. The increase in surface area of work electrode

leads to more anti-atrazine monoclonal antibodies capture.

Ferricyanide was used as an electrochemical redoxindica-

tor; immunosensor was characterized by cyclic voltam-

metry and electrochemical impedance spectroscopy. The

limit for detection is as low as 0.016 ng/mL (Liu et al.

2014). A field effect transistor was developed based on

network of single-walled carbon nanotubes which consti-

tute carbon nanotubes field effect transistors and act as

conductor channel for the determination of atrazine in

various biological samples with detection limit up to

0.001 ng/mL (Belkhamssa et al. 2016).

Photochemical degradation of atrazine

Several chemical methods have been developed for the

degradation during time to time. Konstantinou et al. (2001)

have studied the photocatalytic degradation of atrazine and
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other s-triazine herbicides by using particulate TiO2 as

photocatalyst under simulated solar light. The degradation

process is highly efficient with traces of atrazine (at ppb

level) being decomposed in very short times to less than

0.1 ppb. The process has been shown to lead to the for-

mation of 2,4,6-trihydroxy-1,3,5-triazine (cyanuric acid) as

the final product of the degradation process for all the

investigated herbicides with several intermediates, rather

than to the complete mineralization often observed for

other classes of substrates. Monitoring of degradation

products has been done using liquid, gas and ion chro-

matography, and the overall degradation process has been

monitored through dissolved and particulate organic car-

bon measurements.

Atrazine degradation by Fenton’s reagent has been

determined as a function of reagent’s concentration and

ratios and pH in batch treatments (Barbusiński and Filipek

2001). The actual number and nature of oxidation products

have been shown to vary with the concentration. The

optimum Fenton’s reagent treatment has been achieved

with 1:l molar ratios of FeSO4 and H2O2 (2.69 mM), pro-

ducing two main terminal products viz, 2-chloro-4,6-di-

amino-s-triazine (23%) and 2-acetamido-4-amino-6-

chloro-s-triazine (28%). Chloride release of 55 ± 9%

indicated that dehalogenated s-triazines accounted for the

balance of 14C. Atrazine degradation has been found to be

pH dependent and decreases from 99% at pH 3 to 37% at

pH 9.

In a modified approach, the effects of an inorganic

ligand tetrapolyphosphate on the molecular oxygen acti-

vation and the subsequent aerobic atrazine degradation by

Fe@Fe2O3 core–shell nanowires were investigated at a pH

range of 6.0–9.0 (Wang et al. 2014a, b). It was observed

that the addition of tetrapolyphosphate enhanced the rate of

aerobic atrazine degradation dramatically (955 times)

which was even 10 times that of the traditional organic

ligand ethylenediamine tetraacetate. The rate enhancement

has been attributed to enhanced reduction in Fe(III) to

Fe(II) and the subsequent activation of molecular oxygen,

owing to the suppressed hydrogen evolution, in the pres-

ence of tetrapolyphosphate, from the reduction in proton by

Fe@Fe2O3 core–shell nanowires, making more electrons

available for the reduction in Fe(III). Moreover, the com-

plexation of tetrapolyphosphate with ferrous ions ensures

enough soluble Fe(II) for Fenton reaction and also provides

another route to produce more hydroxyl (�OH) radicals in

the solution via the single-electron molecular oxygen

reduction pathway, thus increasing the rate dramatically.

Ozone being a powerful oxidant has been used in the

presence of hydrogen peroxide for degradation of atrazine.

Tandem solid-phase extraction procedure was used which

includes a C18 reverse-phase support and a strong cation

exchanger (Nélieu et al. 2000). It was found that ammeline

(2, 4-diamino-6-hydroxy-s-triazine) is the major end pro-

duct (20% at pH 8) and 2-chloro-4,6-diamino-s-triazine as

competitor whose ratio was dependent on the hydroxyl

radical content. A number of new intermediates identified

were aminoaldehydes and a carbinolamine (Nélieu et al.

2000). Triazine has also been degraded by electrochemical

advanced oxidation processes such as anodic oxidation,

electro-fenton and photoelectro-fenton using a small open

and cylindrical cell with a boron-doped diamond anode.

Anodic oxidation has been carried out either with a stain-

less steel cathode or an O2 diffusion cathode able to gen-

erate H2O2 formed at the boron-doped diamond surface in

all electrochemical advanced oxidation processes. In the

bulk form, Fenton’s reaction between added Fe2? and

electrogenerated H2O2 in electro-Fenton and photoelec-

tron-Fenton, Hydroxyl radical (�OH) is the main oxidant

(Borras et al. 2010). It has been observed that almost

overall mineralization (94%) is achieved. Atrazine decay

always follows a pseudo-first-order reaction, being more

rapidly destroyed from �OH in bulk than at the boron-doped

diamond surface. The formation of dealkylated aromatic

intermediates such as desethylatrazine and desethylde-

sisopropylatrazine and cyanuric acid has been revealed by

reverse-phase HPLC, and short linear carboxylic acids such

as formic, oxalic and oxamic have been identified and

quantified by ion-exclusion HPLC. It has been observed

that all initial nitrogen is transformed into NO3
- and NH4

?

ions (followed by ionic chromatography) in electro-fenton

and photoelectro-fenton but not in anodic oxidation, where

36% of nitrogen is released from the solution probably as

volatile NOx species.

The recent results showed approximately 80% of atra-

zine was degraded by ozonation in the presence of

hydroxylamine, while only 20% was degraded by ozona-

tion alone. The atrazine degradation involved dealkylation,

dechlorination–hydroxylation and olefination (Yang et al.

2016a, b). It has been found that at lower pH the degra-

dation efficiency of atrazine was enhanced by UV/chlorine

compared to UV or chlorine alone. The oxidation products

of atrazine resulting from dealkylation, dechlorination–

hydroxylation, alkylic-hydroxylation, alkylic-oxidation,

alkylic-hydroxylation dehydration, deamination–hydroxy-

lation and dechlorination–hydrogenation in UV/chlorine

process were detected, which were slightly different from

those formed in UV/H2O2 (Kong et al. 2016). Similar

products were noticed when nitrite was added to enhance

atrazine degradation during ozonation (Yang et al.

2016a, b). The experimental results of electrophotocat-

alytic reduction (hydroxyl radical reduction) of atrazine

with an initial concentration of atrazine (100 mg/L) show

that more than 99% of atrazine oxidation was obtained

after 30 min of treatment and reaction kinetic constant was

about 0.146/min. The analysis with liquid chromatography

Environ Chem Lett (2018) 16:211–237 223

123



Table 4 Microorganisms involved in biodegradation of atrazine under in situ and experimental conditions

Microbial species Enzymes and genes

involved

Degradation products Accession

numbers

References

Agrobacterium

radiobacter J14a

AC (atzA), HAEA (atzB),

IAIA (atzC), CAH

(atzD) BH (atzE), AH

(atzF)

Hydroxyatrazine, deethylatrazine and

deethyl-hydroxyatrazine

– Struthers et al. (1998) and De

Souza et al. (1998)

Alcaligenes sp.

SG1

AC (atzA), HAEA (atzB),

IAIA (atzC), CAH

(trzD) BH, AH

– – K.L.Boundy-Mills (unpublished)

and Zhang et al. (2011)

Arthrobacter sp. – – – Wang et al. (2013)

Arthrobacter sp.

C3

trzN Dechlorination Wang et al. (2016)

Arthrobacter sp.

strain DAT1

trzN, atzB, atzC – JN833464.1 Wang and Xie (2012)

Arthrobacter sp. – Cyanuric acid HQ665017 El Sebai et al. (2011)

Arthrobacter strain

DNS 10

– Cyanuric acid HQ914648 Zhang et al. (2011)

Arthrobacter sp.

T3AB1

– – GU459313.2 Liu et al. (2010)

Arthrobacter sp.

GZK-1

– – FJ766438 Getenga et al. (2009)

Arthrobacter sp.

AD26

– – – Qingyan et al. (2008)

Arthrobacter strain

HB5

– Hydroxyatrazine, cyanuric acid – Wang et al. (2006)

Arthrobacter sp.

MCM

– – AY589014 Vaishampayan et al. (2007)

Arthrobacter strain

MCM B-436

– – – Vaishampayan et al. (2007)

Arthrobacter

nicotinovorans

HIM

– 1,3,5-Trimethyl-1,3,5-triazone-

2,4,6(1H,3H,5H)-trione

– Aislabie et al. (2005)

Arthrobacter sp.

strain DNS10

strzN, atzB and atzC – Zhang et al. (2011)

Arthrobacter sp.

AD1

– – Cai et al. (2003)

Arthrobacter

aurescens TC1

AC (trzN), HAEA (atzB)

IAIA (atzC)

Isopropylamine – Strong et al. (2002)

A. radiobacter

J14a

– Hydroxyatrazine, deethylatrazine and

deethyl-hydroxyatrazine.

– Struthers et al. (1998)

Aminobacter

aminovorans

– Cyanuric acid – Rousseaux et al. (2001)

Arthrobacter

crystallopoietes

– Cyanuric acid – Rousseaux et al. (2001)

Bacillus subtilis

strain HB-6

– Hydroxyatrazine, cyanuric acid HM116874 Wang et al. (2014a, b)

Bacillus

licheniformis

– Deetylatrazine, deisopropylatrazine and

hydroxyatrazine

– Marecik et al. (2008)

Bacillus

megaterium

– Deetylatrazine, deisopropylatrazine and

hydroxyatrazine

– Marecik et al. (2008)

Botrytis cinerea – Deetylatrazine, deisopropylatrazine and

hydroxyatrazine

– Marecik et al. (2008)

Comamonas sp. A2 – Hydroxyatrazine, N-isopropylammelide,

and cyanuric acid

EU016085 Yang et al. (2010)

Chelatobacter

heintzii

– Cyanuric acid – Rousseaux et al. (2001)
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Table 4 continued

Microbial species Enzymes and genes

involved

Degradation products Accession

numbers

References

Clavibacter

michiganese

ATZ1

AC (atzA), HAEA (atzB) – – De Souza et al. (1998)

E. cloacae strain

JS08

trZD Hydroxyatrazine (HA) N-

isopropylammelide deethylatrazine

(DEA), deisopropylatrazine (DIA), and

cyanuric acid

FJ810807 Solomon et al. (2013a, b)

Enterobacter

cloacae 99

CAH (trzD), BH, AH

(trzF)

Hydroxyatrazine, deethylatrazine and

deethyl-hydroxyatrazine.

– Cheng et al. (2005), Eaton and

Karns (1991), Cook and Hutter

(1984) and Beilstein et al.

(1981)

Ensifer sp. atzA, atzB, atzC, atzD,

atzE and atzF

Cyanuric acid – Ma et al. (2017)

Hendersonula

toruloide

– Cyanuric acid and CO2 – Wolf and Martin (1975)

Klebsiella sp.

KB02

– – HM989008 Sopid (2012)

Klebsiella sp. A1 – Hydroxyatrazine, N-isopropylammelide,

and cyanuric acid

EU016084 Yang et al. (2010)

Klebseilla

pneumonia 99

trzC, rzD, trzE Ammelide or cyanuric acid – Karns and Eaton (1997)

Nocardioides sp.

SP12

– – – Piutti et al. (2003)

Nocardia sp. – Cyanuric acid – Giardina et al. (1980)

Nocardia sp. – 2-Hydroxy-4,6-bis(alkylamino)-s-

triazines

– Giardina et al. (1979)

Nocardia sp. AM – – – Giardina et al. (1985) and

Giardina et al. (1982)

Nocardioides

EAA-3 and

EAA-4

trzN, atzB, and atzC Hydroxyatrazine, desethylatrazine, and

desisopropylatrazine

– Omotayo et al. (2016)

Nocardioides sp. AC (trzN) Hydroxyatrazine, – Topp et al. (2000b)

Proteobacteria

Actinobacteria

Bacteroidetes

rzN-atzBC-trzD

trzN-atzABC-trzD

trzN-atzABCDEF-trzD

– – Udiković-Kolić et al. (2010)

Pseudaminobacter

C147

AC (atzA), HAEA (atzB),

IAIA (atzC), CAH, BH,

AH

Hydroxyatrazine – Topp et al. (2000a)

Pseudomonas ADP AtzA, AtzB, AtzC, CAH

(atzD), BH (atzE),

AH(atzF)

Hydroxyatrazine and CO2 – Mandelbaum et al. (1995)

Pseudomonas

ZXY-1

– – – Zhao et al. (2017)

Pseudomonas

YAYA6

– Cyanuric acid – Yanze-Kontchou and Gschwind

(1994)

Pseudomonas

putida

– Deisopropylatrazine and deethylatrazine – Behki and Khan (1986)

Pseudomonas

fluorescens

– Deisopropylatrazine and deethylatrazine – Behki and Khan (1986)

Pseudomonas

stutzeri

– Deisopropylatrazine and deethylatrazine – Behki and Khan (1986)

Pseudomonas

huttiensis

NRRLB-12228

EAA, IAIA (trzC), CAH

(trzD), BH,a AHa

– – Eaton and Karns (1991) and Cook

and Hutter (1984)
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technique permits to identify, quantify and see the evolu-

tion of atrazine by-products which are generated by

dechlorination, dealkylation and alkylic-oxidation mecha-

nisms (Komtchou et al. 2016). The photodegradation study

of atrazine was demonstrated using either Pt–TiO2 or TiO2

as a photocatalyst under 352 nm light irradiation. The Pt–

TiO2-catalyzed atrazine degradation reached 76% in 3 h

without adding H2O2 solution or aeration, which was more

than 10% higher than the TiO2-catalyzed reaction. The

decomposition product of Pt–TiO2-catalyzed atrazine

degradation was mainly cyanuric acid (Chen et al. 2017).

Shamsedini et al. (2017) noticed the maximum atrazine

removal rate was at pH = 11 in the presence of Fe3?–TiO2

catalyst = 25 mg/L and the initial concentration of atra-

zine equal to 10 mg/L.

Microbial degradation of atrazine

Microorganisms are endowed with enormous and remark-

able metabolic capabilities to utilize xenobiotics which are

their carbon and energy source. A number of microbial

Table 4 continued

Microbial species Enzymes and genes

involved

Degradation products Accession

numbers

References

Pseudomonas sp.

CN1

IAIA (atzC), CAH, a BH

a AHa

– – De Souza et al. (1998)

Rahnella aquatilis Deetylatrazine, deisopropylatrazine and

hydroxyatrazine

– Marecik et al. (2008)

Ralstonia

brasilensis M91

3 AC (atzA), HAEA

(atzB)

IAIA (atzC), CAH (trzD),

BH, a AHa

– – Cheng et al. (2005), De Souza

et al. (1998) and Radosevich

et al. (1995)

Ralstonia picketii

D

CAH (atzD), BH (atzE)

AH (atzF)

– Cheng et al. (2005)

Rhizobium sp.

PATR

AC (atzA) – – Bouquard et al. (1997)

Rhodococcus N186 BCD, AM (thcB) – – Shao and Behki (1996)

Rhodococcus MB-

P1

Plasmid coded Deethylatrazine’ and deisopropylatrazine – Batra et al. (2009)

Rhodococcus

corallinus

trzA, NRRLB-15444R

TC (trzA), DIHA

– – Shao and Behki (1995)

Rhodococcus B30 – 2-Chloro-4-amino-6-(isopropylamino)-s-

triazine 2-chloro-4- [(l-hydroxyprop-2-

yl)aminol-6-(isopropylamino)-s-

triazine

– Behki and Khan (1994)

Rhodococcus sp.

TE1

AM (atrA) – – Shao and Behki (1995) and Behki

et al. (1993)

Stenotrophomonas

maltophilia

– Cyanuric acid – Rousseaux et al. (2001)

Stachybotrys

chartarum

– Cyanuric acid and 2-chloro-4,6-diamino-

s-triazine

– Wolf and Martin (1975)

Stenotrophomonas

maltophilia

– Deetylatrazine, Deisopropylatrazine

and hydroxyatrazine

– Marecik et al. (2008)

Umbelopsis

isabellina

– Deetylatrazine, Deisopropylatrazine

and hydroxyatrazine

– Marecik et al. (2008)

Volutella ciliata – Deetylatrazine, Ddeisopropylatrazine

and hydroxyatrazine

– Marecik et al. (2008)

Xanthomonas sp.

ARB2

– Deethylatrazine (DEA) and

deisopropylatrazine (DIA)

– Sawangjit (2016)

AC atrazine chlorohydrolase, HAEA hydroxyatrazine ethylaminohydrolase, IAIA N-isopropylammelide isopropylamidohydrolase, TC s-triazine

chlorohydrolase, AM atrazine monooxygenase, DEAM eethylatrazine monooxygenase, DIHA deisopropyhidroxylatrazine amidohydrolase, EAA

N-ethylammelide amidohydrolase, TH s-triazine hydrolase, CAH cyanuric acid hydrolase, BH biuret hydrolase, AH allophanate hydrolase
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Fig. 2 Physical and biochemical pathways involved in the microbial

biodegradation of atrazine. AC atrazine chlorohydrolase, AM atrazine

monooxygenase, HDEH hydroxyl dechloroatrazine ethylaminohydro-

lase, NEC N-ethylammeline chlorohydrolase, DEM deethylatrazine

monooxygenase, NIAIA N-isopropyl ammelide Isopropyl

aminohydrolase, DIHA deisopropylhydroxyatrazine aminohydrolase,

NEAC N-ethylammeline chlorohydrolase, 2, 4 D6 NEA 1, 3, 5

TEH = 2, 4-dihydroxy-6-(N0-ethyl) amino-1, 3, 5-triazine ethy-

laminohydrolase, HDAEH hydroxydechloro atrazine ethylaminohy-

drolase, NIIA N-isopropylammelide isopropylaminohydrolase
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species and strains have been shown to exhibit atrazine

metabolism as listed in Table 4. Prokaryotic (Gram-posi-

tive and Gram-negative bacteria) and eukaryotic microbial

species are involved in atrazine biodegradation both in situ

and under in vitro conditions. Bacterial and fungal species

usually dechlorinate the atrazine molecule leading to the

formation of hyroxyatrazine, deisopropylatrazine and

deethylatrazine. Xanthomonas sp. ARB2 (Sawangjit 2016);

Enterobacter cloacae JS08 (Solomon et al. 2013a, b);

Klebsiella sp. KB02 (Sopid 2012); Comamonas sp. A2

(Yang et al. 2010); Stenotrophomonas maltophilia, Rah-

nella aquatilis (Marecik et al. 2008); Chelatobacter

heintzii, Aminobacter aminovorans, Stenotrophomonas

maltophilia (Rousseaux et al. 2001); Pseudaminobacter

C147 (Topp et al. 2000a); Bacillus subtilis HB-6 (Wang

et al. 2014a, b); Arthrobacter sp. (Getenga et al. 2009; Liu

et al. 2010; El Sebai et al. 2011; Zhang et al. 2011; Wang

and Xie 2012; Wang et al. 2013); Bacillus licheniformis, B.

megaterium (Marecik et al. 2008); Arthrobacter nicoti-

novorans HIM (Aislabie et al. 2005); Nocardioides sp.

SP12 (Piutti et al. 2003); Arthrobacter aurescens TC1

(Strong et al. 2002); Arthrobacter crystallopoietes (Rous-

seaux et al. 2001); and Nocardioides sp. (Topp et al.

2000b). Some fungal species, viz. Umbelopsis isabellina,

Volutella ciliate and Botrytis cinerea, were also found to

be involved in degradation of atrazine (Marecik et al.

2008). Microbial species perform atrazine biodegradation

by three major pathways out of which one is purely

hydrolytic, while remaining two others are mixed (hy-

drolytic–oxidative) (Fig. 2). The first intermediate product

hydroxyatrazine was first extensively converted by Pseu-

domonas spp. ADP consisting of three gene products atzA,

atzB and atzC (Martinez et al. 2001). The dechlorination

method (hydrolytic) which is catalyzed by enzyme atrazine

chlorohydrolase (atzA or trzN gene product) shows

dechlorination followed by elimination of N alkyl sub-

stituents to yield cyanuric acid (Solomon et al. 2013a, b).

These three genes are widespread and almost found in all

the atrazine-degrading strains worldwide (Rousseaux et al.

2001; Topp et al. 2000a). Usually in Gram-positive strains,

atzA is replaced by trzN which belongs to hydrolase

enzyme which removes several functional groups from the

parent compound (Wang et al. 2005; Topp et al. 2000b).

The second pathway engrosses the N-dealkylation of the

atrazine into deethylatrazine or deisopropylatrazine which

is further dealkylated into deisopropyldeethylatrazine or

further undergoes hydrolytic to yield cyanuric acid.

Rhodococcus strains N186 and 21 and SpTE1 show

oxidative reactions by producing enzymes AtzA and TriA

which actively deaminates the atrazine metabolites (Sef-

fernick et al. 2001). Dechlorination of dealkylated atraizine

is commonly shown by Rhodococcus corallinus NRRLB-

containing hydrolase AtzB (Seffernick et al. 2002).

Further, in the upper degradation pathway it gets converted

into two different aminohydrolases which is encoded by

atzB and atzC. Then, the final hydrolytic reaction which is

encoded by trzF/atzF, trzD/atzD and trzE/atzE converts

cyanuric acid into carbon dioxide (Udiković-Kolić et al.

2010; Wackett et al. 2002).

Nitrogen released from atrazine metabolism serves as a

nitrogen source for atrazine-degrading bacteria (Vaisham-

payan et al. 2007; Dutta and Singh 2013; Yang et al. 2010).

Some bacteria initiate degradation of atrazine involving the

enzyme atrazine chlorohydrolase through the mechanism

of hydrolytic dechlorination. Aminohydrolases catalyze

two hydrolytic deamination reactions that hydroxyatrazine

undergoes; N-isopropylammelide (Getenga et al. 2009;

Qingyan et al. 2008) or N-ethylammelide (Topp et al.

2000a) is formed as the intermediate metabolites. These

ammelides are finally converted to cyanuric acid (Yang

et al. 2010). Another route followed for atrazine degrada-

tion is N-dealkylation of the lateral ethyl and isopropyl

chains to deethylatrazine, deisopropylatrazine and

deethyldeisopropylatrazine (Zhang et al. 2011). These

dealkylated atrazine metabolites undergo hydroxylation,

and cyanuric acid is formed as the ultimate metabolite

(Vaishampayan et al. 2007). Cyanuric acid, formed by

either of the metabolic routes, is acted upon by cyanuric

acid amidohydrolase, biuret amidohydrolase and allo-

phanate hydrolase enzymes leading to the cleavage of the

cyanuric acid to carbon dioxide and ammonia (El Sebai

et al. 2011).

Conclusion

The demand for pesticides is on rise globally, especially in

emerging economies of the world. India is the second most

populated country of the world and is at the center of green

revolution. It is, however, under ever-increasing demand of

fulfilling the food requirements of huge population and

thus relying heavily on synthetic herbicides as a weed

control measure. As a consequence, environmental pollu-

tion, contamination of reservoirs, effect on food chains and

life-threatening toxicities are certain to happen. Atrazine

and its adverse effects are considered a highlighted threat

to the environmental sustainability. Hence, an urgent need

is felt to diverted resources and coordinated efforts to

minimize its use, and at the same time, it is essential to

monitor its impact on vertebrates, invertebrates and, most

importantly, on microbial flora. Microbial biodegradation

using in situ approach and use of transgenic strains having

enhanced enzymatic activities and superior adaptability is

considered a valid option for future studies. In future, use

of biopesticides is expected to relieve our dependency on

atrazine in order to minimize environmental pollution.

228 Environ Chem Lett (2018) 16:211–237

123



Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Human and animal rights This study does not involve work

References

Abarikwu SO, Farombi EO (2015) Atrazine induces apoptosis of SH-

SY5Y human neuroblastoma cells via the regulation of Bax/Bcl-

2 ratio and caspase-3-dependent pathway. Pest Biochem Physiol

118:90–98. doi:10.1016/j.pestbp.2014.12.006

Ahel M, Evans KM, Fileman TW, Mantoura RFC (1992) Determi-

nation of atrazine and simazine in estuarine samples by high-

resolution gas chromatography and nitrogen selective detection.

Anal Chim Acta 268(2):195–204. doi:10.1016/0003-2670(92)

85213-P

Ahrens JF, Newton M (2008) Benefits of triazine herbicides in the

production of ornamentals and conifer trees. The Triazine

Herbicides (Chapter 18), p 225234. ISBN: 978-0-444-51167-6

Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005)

Characterization of Arthrobacter nicotinovorans HIM an atra-

zine-degrading bacterium from agricultural soil New Zealand.

FEMS Microbiol Ecol 52(2):279–286. doi:10.1016/j.femsec.

2004

Akbulut GB, Yigit E (2010) The changes in some biochemical

parameters in Zea mays cv. ‘‘Martha F1’’ treated with atrazine.

Ecotoxicol Environ Saf 73:1429–1432. doi:10.1016/j.ecoenv.

2010.05.023

Albanis TA, Hela DG, Sakellarides TM, Konstantinou IK (1998)

Monitoring of pesticide residues and their metabolites in surface

and underground waters of Imathia (N. Greece) by means of

solid-phase extraction disks and gas chromatography. J Chro-

matogr A 823(1):59–71. doi:10.1016/S0021-9673(98)00304-5

Amistadi MK, Hall JK, Bogus ER, Mumma RO (1997) Comparison

of gas chromatography and immunoassay methods for the

detection of atrazine in water and soil. J Environ Sci Health B

32(6):845–860. doi:10.1080/03601239709373116

Andrus JM, Winter D, Scanlan M, Sullivan S, Bollman W, Waggoner

JB, Brain RA (2013) Seasonal synchronicity of algal assem-

blages in three Midwestern agricultural streams having varying

concentrations of atrazine, nutrients, and sediment. Sci Total

Environ 458:125–139. doi:10.1016/j.scitotenv.2013.03.070

AOAC (Association of Official Analytical Chemists) (1993) Peer

verified methods program. AOAC, manual on policies and

procedures. AOAC, Arlington

Bai X, Sun C, Xie J, Song H, Zhu Q, Su Y, Fu Z (2015) Effects of

atrazine on photosynthesis and defense response and the

underlying mechanisms in Phaeodactylum tricornutum. Environ

Sci Pollut Res 22(22):17499–17507. doi:10.1007/s11356-015-

4923-7
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