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Abstract Resveratrol, or 3, 5, 4-trihydroxy-trans-stilbene,

is a naturally occurring polyphenol present in several

dietary sources such as grapes, soybeans, berries, pome-

granate and peanuts. Resveratrol has received recent

attention due to its diverse pharmacological activities.

However, resveratrol clinical efficacy is limited due to its

poor systemic bioavailability, of less than 1%, which is due

to its low aqueous solubility, extensive first-pass metabo-

lism and existence of enterohepatic recirculation. There-

fore, in order to overcome these limitations, various

nanocarriers including polymeric nanoparticles, solid lipid

nanoparticles, liposomes, micelles and conjugates have

been developed. These nanocarriers are able to enhance the

bioavailability of resveratrol by modulating the P-glyco-

protein, cytochrome P-450 enzymes and bypassing the

hepatic first-pass effect. Here we review resveratrol

nanoformulations for enhancing the efficacy of native

resveratrol.
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Introduction

Resveratrol (3,5,40- trihydroxy-trans-stilbene; C14H12O3;

Mw 228.25 Da) is a lipophilic (log Po/w 3.1) polyphenol

present in various plants and plant products, such as grapes,

wine, berries, soybeans, pistachio and peanuts (Neves et al.

2012; Singh and Pai 2014c; Summerlin et al. 2015; Varoni

et al. 2016). It was first isolated from the roots of white

hellebore (Veratrum grandiflorum O. Loes) in 1940s

(Takaoka 1940), and later, in 1963, from the roots of

Japanese plant Polygonum cuspidatum, where it is pro-

duced in response to environmental stress factors such as

injury, fungal infections, ozone exposure and UV irradia-

tion (Langcake and Pryce 1976; Nonomura et al. 1963). It

exists in nature as both cis and trans isomers, although trans

form is pharmacologically active and most abundant in

nature. However, due to its photosensitive nature, nearly

80–90% of the trans form undergoes isomerization to cis

form when exposed to sunlight or high-intensity white light

or ultraviolet (UV) light at 360 and 254 nm (Montsko et al.

2008; Trela and Waterhouse 1996; Vian et al. 2005).

The interest of scientific community in last few years has

increased considerably toward this molecule due to its pleio-

tropic effects, i.e., they have the ability to downregulate mul-

tiple signaling pathways. It has demonstrated several

pharmacological activities such as anticancer (Rai et al. 2016;

Yang et al. 2015), antioxidant (Albuquerque et al. 2015), anti-

inflammatory (Liu et al. 2015), neuroprotective (Rege et al.

2014), cardioprotective (Cheserek et al. 2016), anti-diabetic

(Yazgan et al. 2015) (Fig. 1). In fact, it has been found to be

responsible for ‘‘French Paradox,’’ which demonstrates that the

consumption of red wine decreases the incidence of cardio-

vascular diseases despite intake of a high fat diet (Criqui and

Ringel 1994; Renaud and de Lorgeril 1992). The anticancer

effects of resveratrol may be due to free radicals scavenging,
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suppression of cyclooxygenase activity, inhibition of enzymes

such as ribonucleotide reductase, DNA polymerases and pro-

tein kinase C (Sirerol et al. 2015; Varoni et al. 2016). It has also

been demonstrated to increase the activity of SIRT1 (amember

of the sirtuin family of nicotinamide adenine dinucleotide-de-

pendent deacetylases) which ultimately results in improved

cellular stress resistance and longevity (Buhrmann et al. 2016;

Lavu et al. 2008). In this review, we have highlighted the

implications of resveratrol nanoformulations in order to

increase its therapeutic efficacy and bioavailability. This article

is an abridged version of the chapter published by Arora and

Jaglan (2017) in the series Sustainable Agriculture Reviews

(http://www.springer.com/series/8380).

Nanocarriers for the delivery of resveratrol

Despite a lot of therapeutic activities of resveratrol, it has

been associated with poor bioavailability (less than 1%)

due to its poor aqueous solubility (0.03 g/L) and its

extensive metabolism in the intestine and liver called

enterohepatic recirculation (Mattarei et al. 2013; Sum-

merlin et al. 2015; Walle et al. 2004). Due to this entero-

hepatic recirculation, after its oral administration, a peak

plasma concentration is observed after 1 h and a second

peak is seen after 6 h (Almeida et al. 2009; Summerlin

et al. 2015). It also undergoes extensive phase I (oxidation,

reduction and hydrolysis) and phase II (glucuronic acid and

sulfate conjugation) metabolism to generate the key

metabolites; trans-resveratrol-3-O-glucuronide and trans-

resveratrol-3-sulfate, respectively (Gescher and Steward

2003; Kaldas et al. 2003; Marier et al. 2002; Neves et al.

2012). These modifications decrease the cell permeability

and resulting into excretion of resveratrol. To tackle these

challenges, various nanocarriers of resveratrol such as

nanoparticles, liposomes, micelles, conjugates, hydrogels

have been developed and evaluated in preclinical and

clinical trials (Table 1).

Fig. 1 Therapeutic applications of resveratrol for treatment for various diseases. CNS central nervous system. Modified from Lavu et al. (2008)

Drawing was performed using website http://www.servier.com
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Table 1 Nanocarriers developed for resveratrol delivery and their major outcomes

Nanocarrier Main excipients Size

(nm)

Outcome References

Nanoparticles PS 80, PLA 200 Resveratrol-loaded nanoparticles displayed significant

neuroprotection against MPTP-induced behavioral and

neurochemical changes in C57BL/6 mice

da Rocha Lindner et al.

(2015)

Liposomes PL 90G,

phospholipid

Gmbh, cholesterol

120 The co-encapsulation of resveratrol and 5-fluorouracil in

liposomes improved their anticancer activity on skin cancer cells

as compared to both the native drugs and the single entrapped

agents

Cosco et al. (2015)

Nanoparticles Gelatin,

glutaraldehyde

294 Resveratrol-GNPs demonstrated enhanced anticancer activity in

NCI-H460 cells than native resveratrol by decreasing antioxidant

status and increased nuclear fragmentation levels

Karthikeyan et al.

(2013, 2015)

Nanoemulsion Vitamin E, sefsol,

Tween 80,

Transcutol P

102 Resveratrol nanoemulsion formulation demonstrated high

scavenging efficiency using DPPH assay than ascorbic acid and

resveratrol solution

Pangeni et al. (2014)

Liposomes Chol, DPPC 131 Enhanced in vitro cytotoxicity of resveratrol encapsulated

liposomes in HT-29 colon cancer cells as compared to

resveratrol solution

Soo et al. (2016)

Nanoparticles Au, Ag 8–21 Resveratrol-Au nanoparticles and Ag nanoparticles demonstrated

higher antibacterial activity as compared to native resveratrol in

both gram positive and gram negative bacteria

Park et al. (2016)

Nanocapsules PCL, SMS, PS80 196 The co-encapsulation of resveratrol and curcumin into lipid

nanocapsules demonstrated pronounced effects with an

inhibition of 37–55% between day 16 and 22 after arthritis

induction

Coradini et al. (2015)

SNEDDS Lauroglycol FCC,

Labrasol,

Transcutol P

56 In vivo pharmacokinetics in Wistar rats studies demonstrated

enhanced area under curve (AUC) about 4.31-fold as compared

to the resveratrol solution

Singh and Pai (2015b)

Nanoparticles Zein, lysine,

sodium ascorbate

307 In vivo pharmacokinetics study demonstrated in Wistar rats

demonstrated enhanced oral bioavailability of resveratrol

nanoparticles up to 19.2-fold higher than for the resveratrol

solution

Penalva et al. (2015)

SMEDDS Ethyl oleate, Tween

80, and PEG-400

50 SMEDDS formulation demonstrated higher antioxidant capacity

with less toxicity than native resveratrol

Chen et al. (2015)

Nanoparticles CMCS, Tween 80 155 Resveratrol-CMCS nanoparticles demonstrated enhanced in vivo

absorption, prolonged duration of action and relative

bioavailability by 3.5 times in rats than that of native resveratrol

Zu et al. (2014)

S-SNEDDS HPMC,

Lauroglycol FCC,

Transcutol P

212 In vivo pharmacokinetic studies in rats demonstrated S-SNEDDS

formulation enhanced AUC0–8 by nearly 1.33-fold as compared

to liquid SNEDDS, at a drug dose of 20 mg/kg

Singh and Pai (2015a)

Nanoparticles Compritol 888

ATO, Gelucire

191 In vivo pharmacokinetic studies in rats demonstrated

approximately fivefold increase in the bioavailability as

compared to resveratrol suspension

Singh et al. (2016)

Nanoparticles TPGS, tristearin,

S-100

203 Resveratrol-TPGS-SLN demonstrated higher in vitro cytotoxicity

and in vivo pharmacokinetics in healthy Charles Foster rats

demonstrated as compared to resveratrol solution, respectively

Vijayakumar et al.

(2016)

Nanocapsules PCL, Span 60,

polysorbate 80

150 Resveratrol nanocapsules reduced cell viability of B16F10

melanoma cells, decreased tumor volume, increased necrotic

area and inflammatory infiltrate of melanoma tumor in mice

Carletto et al. (2016)

Nanoparticles MCM-48 283 MCM-48-resveratrol nanoparticles demonstrated enhanced in vitro

cytotoxicity in HT-29 and LS147T colon cancer cell lines as

compared to native resveratrol

Summerlin et al. (2016)

Nanoparticles PEG–PLA 233 Resveratrol nanoparticles demonstrated comparable or enhanced

cytotoxicity, apoptotic cell death, 18F fluorodeoxyglucose uptake

and reactive oxygen species with respect to native resveratrol

Jung et al. (2015)

Nanoparticles Eudragit RL 100 180 In vivo pharmacokinetic studies in rats demonstrated enhanced

AUC0-24 (7.25-fold) of resveratrol nanoparticles as compared to

native resveratrol

Singh and Pai (2014a)
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Nanoparticles

The nanoparticles have several key advantages such as

improving the bioavailability by increasing aqueous solu-

bility, increasing resistance time in the body and ease of

surface modification due to the presence of functional

groups for targeted drug delivery systems (Arora and

Jaglan 2016; Mudshinge et al. 2011; Saneja et al. 2014a, b).

These nanoparticles prepared using polymers, solid lipid or

inorganic carriers have demonstrated improved efficacy of

resveratrol over native resveratrol. For example, recently,

solid lipid-based nanoparticulate system of resveratrol

demonstrated oral administration of resveratrol—solid lipid

nanoparticles decreased the serum biomarker enzymes

(serum glutamic oxaloacetic transaminase, serum glutamic

pyruvic transaminase and alkaline phosphatase) as com-

pared to control and marketed (SILYBON�) formulations

against paracetamol-induced liver cirrhosis. Moreover,

pharmacokinetic studies demonstrated enhanced bioavail-

ability (AUC0??=3411 ± 170.34 lg/mL/h) as compared

to resveratrol suspension (AUC0?? = 653.5 ± 30.10 lg/
mL/h) (AUC area under curve) (Singh et al. 2016). Sum-

merlin et al. (2016) developed resveratrol-loaded colloidal

mesoporous silica nanoparticles and demonstrated

enhanced saturated solubility of resveratrol by *95%.

Liposomes

Liposomes are the spherical vesicles composed of choles-

terol and natural non-toxic phospholipids (Allen 1997).

They have also gained enormous attention for resveratrol

delivery due to their biocompatibility, biodegradability and

ease of surface modification with targeting ligands (Ak-

barzadeh et al. 2013; Arora and Jaglan 2016). Recently,

combinatorial liposomes of resveratrol and paclitaxel have

been developed in order to tackle multi-drug resistance of

paclitaxel (PTX) (Meng et al. 2016). In vitro cytotoxicity

demonstrated that composite liposome could exhibit potent

cytotoxicity against the drug-resistant MCF-7/Adr cancer

cells.

Micelles

Polymeric micelles are formed by the self-aggregation of

amphipathic monomers, each containing a hydrophilic and

hydrophobic domain (Al-Achi andLawrence 2013). In a recent

study, resveratrol micelles were developed using methoxy-

poly(ethylene glycol)-b-polycaprolactone (mPEG-PCL) and

d-a-tocopherol polyethylene glycol succinate (Wang et al.

2015). In vitro cytotoxicity and cellular uptake demonstrated

enhanced uptake efficiency of resveratrol by doxorubicin

(DOX)-resistant breast cancer MCF-7/ADR cells and demon-

strated higher rates of apoptotic cell death. In another study,

combinatorial Pluronic� micelles of resveratrol and curcumin

were developed in order to prevent doxorubicin induced car-

diotoxicity (Carlson et al. 2014). In vitro cytotoxicity in ovarian

cancer (SKOV-3) and cardiomyocytes (H9C2) cells demon-

strated synergistic effects inSKOV-3cellswhile antagonistic in

H9C2 cells.

Nanoemulsions

Nanoemulsion is an emulsion system having the nanoscale

droplets size (0.1–500 nm) in which oil or water droplets

are finely dispersed in the opposite phase using a suit-

able surfactant in order to stabilize the system (Mason et al.

2006; Solans et al. 2005). Pangeni et al. (2014) developed

resveratrol nanoemulsion using vitamin E/sefsol (1:1) as

the oil phase, Tween 80 as the surfactant and Transcutol P

as the co-surfactant in order to improve its efficacy. Their

Table 1 continued

Nanocarrier Main excipients Size

(nm)

Outcome References

Nanoparticles PLGA 170 In vivo pharmacokinetic studies in rats demonstrated enhanced

AUC0–? (10.6-fold) of resveratrol nanoparticles as compared to

native resveratrol

Singh and Pai (2014b)

Nanoparticles Chitosan, avidin,

biotin

257–319 In vivo pharmacokinetic studies in Kunming mice demonstrated

improved the drug bioavailability and liver targeting index

resveratrol nanoparticles as compared to native resveratrol

Bu et al. (2013)

The developed nanocarriers have been demonstrated to have better efficacy than the native resveratrol. Moreover, most of the excipients involved

in development of these nanocarriers have Generally Recognized as Safe (GRAS) status by the Federal Drug Agency (FDA)

AUC area under curve, MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, RVT resveratrol, PS80 Polysorbate 80, PLA poly(lactide), Chol

Cholesterol PL 90G Phospholipon 90G, i.n. intranasally, i.v. intravenously, DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, CUR curcumin,

PCL poly(e-caprolactone), GSO grape seed oil, SMS sorbitan monostearate, SNEDDS self-nanoemulsifying drug delivery systems, LPS

lipopolysaccharide from Salmonella enterica serovar, SMEDDS self-micro-emulsified drug delivery systems, CMCS carboxymethyl chitosan, S-

SNEDDS supersaturable self-nanoemulsifying drug delivery system, HPMC hydroxypropyl methylcellulose, SLN solid lipid nanoparticles, TPGS

D-a-tocopheryl polyethylene glycol 1000 succinate, S-100 soyaphosphotidyl choline, MCM-48 colloidal mesoporous silica, PEG-PLA poly-

ethylene glycol polylactic acid; FDG fluorodeoxyglucose, PLGA poly (DL-lactide-co-glycolide), CS chitosan

38 Environ Chem Lett (2018) 16:35–41
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study demonstrated higher scavenging efficiency using

DPPH assay and higher concentration of the drug in the

brain after intranasal administration of nanoemulsion. Lu

et al. (2015) developed resveratrol self-nanoemulsifying

drug delivery system (SNEDDS) using pomegranate seed

oil (PSO) as an oil phase in order to exert synergistic

effects with resveratrol with it. In vitro anticancer study

against MCF-7 cell line demonstrated enhanced inhibitory

rate of resveratrol SNEDDS about 2.03- and 1.24-fold than

that of SNEDDS prepared using isopropyl palmitate at a

concentration of 12.5 and 25 lg/mL, respectively.

Conjugates

Polymer drug conjugates are a new form of nanomedicines in

which drugs are covalently attached through the polymer via

cleavable bonds that cleaves at specific tumor-specific sites

but stable in systemic circulation (Arora and Jaglan 2016;

Pang et al. 2014). In a recent study, resveratrol–mPEG and

mPEG–polylactic acid conjugates demonstrated improved

pharmacokinetic profiles with significantly higher plasma

area under curve, slower clearance and smaller volume of

distribution as compared to native resveratrol (Siddalin-

gappa et al. 2015). In an another study, polymeric methoxy-

poly(ethylene glycol)-block-poly(e-caprolactone) resvera-

trol conjugates were developed and demonstrated the con-

jugate improved solubility and stability of resveratrol as

compared to resveratrol alone (Ng et al. 2015).

Hydrogels

Hydrogels (also called an aquagel) are three-dimensional

(3-D), polymeric networks consisting of crosslinked

hydrophilic components and have the ability to provide

local, sustained delivery of resveratrol. Recently, hya-

luronic acid–resveratrol hydrogel conjugates were prepared

using chemical crosslinking of oxidized (Oxi) hyaluronic

acid with resveratrol solution (Sheu et al. 2013). In vitro

cytotoxicity studies demonstrated that the hydrogels were

biocompatible and upregulated expression of type II col-

lagen, aggrecan and Sox-9 genes while downregulating IL-

1b, MMP-1, MMP-3, MMP-13 gene expression. Further,

these hydrogels have ability to reduce LPS-induced

inflammation and chondrocyte damage.

Conclusion

Resveratrol has emerged as one of the promising nutraceu-

ticals with a wide array of pharmacological activities such as

cancer preventive, cardioprotective, antioxidant anti-in-

flammatory and neuroprotective. However, its clinical effi-

cacy is hindered due to its poor systemic bioavailability. A

wide array of nanocarriers have been developed in order to

overcome its pharmacokinetic limitations and demonstrated

superior outcomes. The success of the nanocarriers can be

witnessed by approval of certain nanoformulations of clini-

cal drugs which are in the market such as Abraxane (pacli-

taxel), Lipusu (paclitaxel), Doxil (doxorubicin), DepoCyt

(cytarabine), Onco-TCS (vincristine). Moreover, these

nanocarriers have been fabricated using Generally Recog-

nized as Safe (GRAS) excipients by FDA. However, in order

to realize the full potential of resveratrol nanoformulations,

more comprehensive preclinical and clinical evaluations are

desired.
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