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Abstract Nitrogen pollution of waters has sometimes caused

severe eutrophication, leading to the death of fishes and most

aquatic life. There is therefore a need for efficient and cost-

effective methods to remove nitrogen from ammonium-rich

wastewaters. Anaerobic ammonium oxidation (ANAMMOX)

is a promising process to remove nitrogen because this pro-

cess directly oxidizes ammonium (NH4
?) to dinitrogen gas

(N2) under anoxic condition. Nonetheless, a challenge of this

process is that chemolithoautotrophic Anammox bacteria

grow slowly at the beginning, thus resulting in low Anammox

biomass and instability of reactors. Such issues can be over-

come by granulation of the Anammox sludge. Here, we

review the characteristics of the Anammox bacteria, and the

formation, structure and flotation of Anammox granules

under high hydraulic loadings. We also evaluate the perfor-

mances of full-scale granular Anammox processes. The major

points are: 1) Anammox bacteria secrete a large amount of

extracellular polymeric substances (EPS), up to 415 mg g-1

of volatile suspended solids (VSS), containing many

hydrophobic functional groups that facilitate biomass granu-

lation. 2) Granulation enhances the sludge settling property

and retention time, which contributes to the extremely high

nitrogen removal rate of 77 kg m-3 d-1 of Anammox upflow

reactors. 3) Flotation of Anammox granules frequently occurs

under nitrogen removal rate higher than 10 kg m-3 d-1,

which is mainly due to the overproduction of EPS under high

hydraulic conditions.
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Introduction

Water pollution is a key problem for human beings (Wang

et al. 2010a, 2015b; Xue et al. 2011; Yin et al. 2012; Chai

et al. 2013; Yang et al. 2013; Dai et al. 2015; Deng et al.

2015; Xiao et al. 2015a, b, c; Sultan 2016; Wei et al. 2016).

There are a number of industrial wastewaters containing

high content of organic matters, heavy metals, fluorides,

salts, toxicants, pharmaceutics produced all around the

world (Amine-Khodja et al. 2006; Wiszniowski et al. 2006;

Chai et al. 2009, 2010; Yang et al. 2010; Jiang et al.

2013, 2014; Zhang et al. 2013; Kanakaraju et al. 2014; Li

et al. 2014;Wang et al. 2014; Wu et al. 2014, 2015; Xiao

et al. 2014; Li et al. 2015; Cai et al. 2016; Chen et al.

2016a; Tappin et al. 2016; Trubetskaya et al. 2016).

Among them, ammonium pollution has become an

increasing environmental concern afflicting humans and

the ecosystems in the world (Tang et al. 2011a; Shen et al.

& Ruiyang Xiao

xiao.53@csu.edu.cn

& Zongsu Wei

zongsuw@technion.ac.il

& Xiao-Bo Min

mxb@csu.edu.cn

Chong-Jian Tang

chjtang@csu.edu.cn

1 Department of Environmental Engineering, School of

Metallurgy and Environment, Central South University,

Changsha 410083, China

2 Chinese National Engineering Research Center for Control

and Treatment of Heavy Metal Pollution (CNERC–CTHP),

Changsha 410083, China

3 Grand Water Research Institute – Rabin Desalination

Laboratory, Wolfson Faculty of Chemical Engineering,

Technion – Israel Institute of Technology, Technion City,

32000 Haifa, Israel

123

Environ Chem Lett (2017) 15:311–328

DOI 10.1007/s10311-017-0607-5

http://orcid.org/0000-0001-9516-2202
http://crossmark.crossref.org/dialog/?doi=10.1007/s10311-017-0607-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10311-017-0607-5&amp;domain=pdf


2012; Jin et al. 2013; Peng et al. 2017b). The effluent

ammonium of wastewaters from monosodium glutamate

(MSG) manufacturing, food fermentation, and antibiotics

processing industries was detected to be 5000–5500 mg

L-1 (Shen et al. 2012; Jin et al. 2013). The discharge

during agricultural activities especially fertilizing and

livestock farming composed another source for ammo-

nium. As reported, 60% of nitrogen was lost to runoff

during fertilizer usage (Maciej 2000), while the swine

wastewater contains ammonium concentration as high as

1800 mg L-1 (Qiao et al. 2010). Further, the complicated

landfill leachate from municipal refuse becomes an

important ammonium release with high content

(2000–2500 mg L-1) (Wiszniowski et al. 2006; Li et al.

2011). Such high levels of ammonium released to water

bodies lead to fast bloom of algae and ultimately severe

eutrophication problem. Addressing this problem calls out

both science and technology development to reduce the

ammonium pollution with low cost.

While physicochemical approaches such as ammonium

stripping, struvite precipitation, and chlorination exhibit

high operational cost for nitrogen removal from ammo-

nium-rich wastewaters (van der Star et al. 2007; Peng et al.

2017a), the cost-effective biological method (e.g., nitrifi-

cation–dentrification process) has been widely used (Kue-

nen and Robertson 1994; van Loosdrecht and Jetten 1998;

Carneiro et al. 2010). In the traditional biological nitrogen

removal process, ammonium was first converted to nitrite

and then nitrate that was later denitrified to dinitrogen gas

(van Loosdrecht and Jetten 1998; Tang et al. 2009b, 2013b;

Ali et al. 2016a; Xiang et al. 2016). However, the steps of

nitrite oxidation to nitrate and subsequent reduction of

nitrate to dinitrogen gas demand excess of oxygen and

additional organic carbon as electron donor (van der Star

et al. 2007; Tang et al. 2011b). In order to further decrease

the operational cost, the complete autotrophic Anammox-

based process has been developed as a more economic and

sustainable way for nitrogen removal from ammonium-rich

wastewater (van der Star et al. 2007; Kartal et al. 2010;

Tang et al. 2011b). The anaerobic ammonium-oxidizing

bacteria (AAOB) used in Anammox belongs to Plancto-

mycetes (Strous et al. 2006). With 50% of contribution to

the total nitrogen cycle (Dalsgaard and Thamdrup 2002),

Anammox directly oxidizes ammonium to dinitrogen gas

using nitrite as electron acceptor under anoxic condition,

thereby reducing the denitrification steps and ultimately the

operational cost and sludge production (Strous et al. 1998;

Ma et al. 2016). Further, the nitrogen removal rate (NRR)

by Anammox process was improved to be as high as

77 kg m-3 d-1 (Tang et al. 2011b), which was consider-

ably higher than other biological nitrogen removal pro-

cesses. Thus, the reactor volumetric requirement could be

significantly reduced. Anammox-based process has

attracted more and more attention since its first discovery

in 1990s (Wett 2006; van der Star et al. 2007; Lackner

et al. 2014).

However, the Anammox, characterized by a strictly

chemoautotrophic pathway (Strous et al. 2006), utilizes

inorganic CO2 as carbon source (Strous et al. 1998; Jetten

et al. 2009), which is considered to be the highest energy-

consuming pathway for carbon fixation and cellular synthesis.

Thus, the cellular yield and bacterial growth rate are both

extremely low with doubling time as long as 11 days (Strous

et al. 1998). Likewise, Anammox bacteria are very suscepti-

ble to environmental conditions, including temperature, pH,

and hydraulic loadings (Tang et al. 2009b, 2011a, 2013b;

Chen et al. 2016b). Particularly, the existence of toxicants in

wastewater imposed severe inhibition on the Anammox pro-

cess (Tang et al. 2010b, 2011a, 2013c; Xing et al. 2015; Yu

et al. 2016; Zhang et al. 2016). Therefore, it has been a

challenge to cultivate a fast startup, stable operation, and

quick recovery for the Anammox process.

Formation of granular sludge is considered as an

effective means to overcome the negative effects caused by

various environmental conditions and diverse inhibitors

during the Anammox process (Hulshoff Pol et al. 2004; Liu

et al. 2009; Ni et al. 2010; Ali et al. 2013; Xing et al. 2015;

Zhang et al. 2016). Anammox bacteria can secrete extra-

cellular polymeric substances (EPS), and tend to aggregate

together to form granules even under high hydraulic shear

stress (van der Star et al. 2007; Tsushima et al. 2007; Tang

et al. 2011b; Speth et al. 2016). The aggregated granular

sludge with a larger diameter and higher density was prone

to settling inside reactors according to Stokes equation (Lu

et al. 2012, 2013; Chai et al. 2014; Yan et al. 2014, 2017).

Further, the granular sludge features a stable ecological

structure where anaerobic bacteria mainly distributes inside

the granules, and aerobic bacteria locate in the outside

layer of granules (Hulshoff Pol et al. 2004; Liu et al. 2009;

Ni et al. 2010; Tang et al. 2014; Gonzalez-Gil et al. 2015;

Speth et al. 2016; Song et al. 2017). For the case of

Anammox granules (Vazquez-Padin et al. 2010; Speth

et al. 2016), the aerobic ammonium-oxidizing bacteria

(AOB) (i.e., nitrifying bacteria) in the outer layer can

consume the low level dissolved oxygen in reactor. This

shell prevents the inhibitors in aqueous solution from

penetrating into the inner part of granules with Anammox

bacteria, effectively abating the negative influences caused

by oxygen and inhibitors.

Therefore, the granulation of Anammox biomass plays a

key role in stable and high-rate operation of Anammox

process. However, the formation of Anammox granules

and other related information and mechanism are still not

well addressed. The present review gives an overview on

the characteristics of Anammox bacteria and Anammox

granules. Particularly, formation and flotation of Anammox
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granules, together with related mechanisms, are compre-

hensively addressed. The full-scale application of granular

Anammox process is also discussed in this paper.

Bacteria in Anammox

Anammox is discovered as a new biochemical reaction for

nitrogen conversion in nature for the past two decades

(Strous et al. 1998). As compared to typical nitrifica-

tion/denitrification processes, Anammox utilizes nitrite

instead of oxygen as electron acceptor to oxidize ammonium,

whereas the electron donor is replaced by ammonium over

organic matter. The discovery of Anammox not only con-

tributes to the knowledge of global nitrogen cycle, but also

provides theoretical principles for developing new biological

nitrogen removal processes for wastewater treatments.

Types of Anammox bacteria

All identified Anammox bacteria belong to the order Bro-

cadiales, and are affiliated to the phylum Planctomycetales

(Strous et al. 2006). Up to date, there are 17 species

belonging to 6 genera, including Candidatus Brocadia

anammoxidans (Kuenen and Jetten 2001), Candidatus

Brocadia fulgid (Kartal et al. 2008), Candidatus Brocadia

sinica (Hu et al. 2010), Candidatus Kuenenia stuttgartiensis

(Schmid et al. 2000), Candidatus Jettenia asiatica (Quan

et al. 2008), Candidatus Anammoxoglobus propionicus

(Kartal et al. 2007), Candidatus Anammoxoglobus sulfate

(Liu et al. 2008), Candidatus Scalindua brodae, Candidatus

Scalindua wagneri (Schmid et al. 2003), Candidatus

Scalindua sinooilfield (Li et al. 2010), Candidatus Scalin-

dua zhenghei (Hong et al. 2011), Candidatus Scalindua

sorokinii (Kuypers et al. 2003), Candidatus Scalindua

arabica (Woebken et al. 2008), Candidatus Scalindua

japonica (Mizuto and Okabe 2014), Candidatus Scalindua

profunda (van de Vossenberg et al. 2013), Candidatus

Scalindua marina (Dang et al. 2010; Brandsma et al. 2011)

and Candidatus Scalindua pacifica (Dang et al. 2013). The

first five genera are identified from wastewater treatment

plants or lab-scale reactors, while the Candidatus Scalin-

dua has often been detected in natural habitats, especially

in marine sediments. All the discovered Anammox bacte-

rial species are chemolithoautotrophs that have the ability

to oxidize ammonium under anaerobic condition with CO2

as carbon source.

Compartmentalization in Anammox cell

The Anammox bacterial cryosubstituted cell structure is

found to be internal compartmentalized (Lindsay et al.

2001; Sinninghe Damste et al. 2002; Fuerst 2005; van

Niftrik et al. 2010). As observed under transmission

electron microscopy (TEM), the innermost compartment is

the anammoxosome, which is filled with material of

moderate electron density and granular texture, but devoid

of ribosome-like particles (Lindsay et al. 2001; Sinninghe

Damste et al. 2002). The anammoxosome, where Anam-

mox reaction occurs, is considered to be the most important

part of Anammox bacterial cells (Lindsay et al. 2001;

Sinninghe Damste et al. 2002). The anammoxosome is

surrounded by a single membrane (MB), which is shown as

MB 3 in Fig. 1. A riboplasm compartment containing both

ribosomes and a fibrillar nucleoid completely surrounds the

anammoxosome. The nucleoid appears to be attached to

the anammoxosome membrane. The riboplasm is sur-

rounded by a single intracytoplasmic membrane (MB 2 in

Fig. 1) and the paryphoplasm, in this case relatively elec-

tron transparent, surrounds the rim (MB 1 in Fig. 1) of the

cell. The typical characteristic of inner compartmentaliza-

tion simply makes the Anammox bacterial cells being

identified from other bacterial cells under TEM.

Distribution of Anammox bacteria

Anammox bacteria were frequently discovered in fresh

water and marine sediments (Quan et al. 2008; Li et al.

2010; Hong et al. 2011; Dang et al. 2013; Wang et al. 2015a;

Li and Gu 2016), featured by a diversely geographical dis-

tribution (Hu et al. 2010; Dang et al. 2013; van de

Vossenberg et al. 2013): nitrogen gas production was

reported during the anaerobic digestion tests using the sed-

iments from Lake Mendota, USA, to Lake Kizakiko, Japan.

Particularly, Anammox bacteria are broadly distributed in

ocean and contribute higher than 50% to the global nitrogen

cycle (Dalsgaard and Thamdrup 2002). The preconditions

for Anammox reaction occurrence were the coexistence of

ammonium and nitrite and absence of oxygen. In natural

water bodies, the oxidation of ammonium to nitrite occurs

due to low oxygen penetration; in the oxic/anoxic interfaces

of sediments in lakes, rivers, and ocean, nitrite coexist with

ammonium, which are the suitable habitat for Anammox

bacteria. In addition, wastewater treatment systems are also

the suitable places for Anammox bacterial growth where

oxygen supply is usually not sufficient and the oxidation of

ammonium to nitrite tends to occur (Wang et al. 2010b). For

example, Tsushima et al. (2007) detected that the abundance

of Anammox bacteria in denitrifying sludge was about

1.1 9 107–1.8 9 108 copies mg-1 VSS (VSS: volatile

suspended solids), while it reduced to 1.7 9 106–1.9 9 107

copies mg-1 VSS in nitrifying sludge and anaerobic diges-

tion sludge (Table 1). Yang et al. (2007) discovered that the

methanogenic sludge treating brewery wastewater also

contained Anammox bacteria. Pynaert et al. (2004) found

that the Anammox bacterial content in anaerobic granular

sludge was about 2.5 9 104 copies ng-1 (total DNA). These
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studies showed that Anammox bacteria are broadly dis-

tributed in natural ecosystems and wastewater treatment

plants. Thus, all these sludges and sediments could serve as

the inocula to enrich Anammox biomass.

Anammox granules

Formation of Anammox granules

Effect of different inocula

Anammox granulation that occurs in upflow reactors under

high loading rate was ascribed to the nature of the Anammox

bacteria. Inocula are an important factor that affects the fast

granulation of Anammox biomass leading to different startup

performance of Anammox reactors (Tang et al. 2008). As

tabulated in Table 2, the startup performance seeded with

different inocula experienced four phases (i.e., cell lysis, lag,

activity elevation, and stationary phase) (Tang et al.

2009b, 2013a). The startup time, especially the cell lysis

duration time, was significantly reduced by seeding flocculent

nitrifying sludge and denitrifying sludge as compared to the

anaerobic granular sludge (Tang et al. 2013a). However, the

nitrogen removal performance for reactor seeded with

anaerobic granular sludge was 2–3 times higher than floccu-

lent sludges (see Table 2). This higher nitrogen removal rate

was ascribed to the easier formation of Anammox granules

from anaerobic granular sludge. As reported by Tang et al.

(2010c), granular sludge was a good carrier for Anammox

bacterial growth providing nuclei for granulation. Thus, the

Anammox bacteria grow on the surface of the anaerobic

granular sludge resulting in the direct transition from anaer-

obic granular sludge to Anammox granules (Tang et al.

2011b, 2013a). The Anammox granules were gradually

enriched inside the upflow reactors and finally fully filled the

whole reactor (as shown in Fig. 2). Due to the challenging

and long startup period for Anammox granulation from the

flocculent denitrifying sludge and nitrifying sludge (Tang

et al. 2013a), researchers have selected the granular sludge

(anaerobic or aerobic) as inoculum to seed Anammox reactors

for improved nitrogen removal performance (Ni et al. 2009;

Tang et al. 2010a, c, 2011b; Xiong et al. 2013; Wang et al.

2016).

Fig. 1 Structure of compartmentalized Anammox bacteria cell based

on the TEM observation. The innermost compartment is the

anammoxosome, which is filled with material of moderate electron

density and granular texture, but devoid of ribosome-like particles.

The anammoxosome is surrounded by a single membrane (MB),

which is shown as MB 3. A riboplasm compartment containing both

ribosomes and a fibrillar nucleoid completely surrounds the anam-

moxosome. The nucleoid appears to be attached to the anammoxo-

some membrane. The riboplasm is surrounded by a single

intracytoplasmic membrane (MB 2) and the paryphoplasm, in this

case relatively electron transparent, surrounds the rim (MB 1) of the

cell Lindsay et al. (2001)

Table 1 Summary of quantification of Anammox bacterial 16S rRNA copy numbers in sludges taken from different wastewater treatment plants

Tsushima et al. (2007)

Sampling port Wastewater Copies mg-1

(dry weight)

C/N (g g-1) Timea (d) Nitrogen removal

rate (kg m-3 d-1)

Denitrification basin Domestic 3.0 9 107 4.0 143 0.044

Denitrification basin Domestic 3.1 9 107 5.1 223 0.032

Denitrification basin Domestic 1.6 9 108 0.9 37 0.083

Denitrification basin Night soil 1.1 9 107 12.4 69 0.048

Nitrification basin Landfill leachate 1.7 9 106 2.0 171 0.004

Oxidation ditch Domestic 5.0 9 107 0.9 203 0.026

Anaerobic digester Domestic 1.9 9 107 1.5 107 0.039

Aeration tank Night soil 2.4 9 107 3.0 54 0.058

Oxidation ditch Oxidation ditch 1.1 9 108 1.1 64 0.054

a The day when complete consumptions of 30 mg L-1 of NHþ
4 -N and NO�

2 -N were observed
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Formation process of Anammox granules

The structure of Anammox granules was divided into four

levels from micro-scale to macro-scale: single cell, microbial

cell cluster, subunit, and granule (Lu et al. 2012). The single

cell under TEM observation has been illustrated above,

whereas the microbial cell cluster was among 200 lm in

diameter (Fig. 3). Inside the microbial cell clusters, microbial

cells were assumed to be packed together by extracellular

polymeric substances (EPS). The neighboring microbial cell

clusters were connected by the filamentous bacteria-EPS

bonds (Lu et al. 2012). From the scanning electron micro-

scopy (SEM) picture, we can identify that considerable cocci

aggregate together (the white arrow), showing the microbial

cells cluster (Fig. 3d). The subunit was visually observable.

Figure 3a shows that an Anammox granule is consisted of

several subunits, as indicated by the white arrows. The sub-

units ranged about 1 mm, which could be separated from the

granule by external pressure. The force cohering these sub-

units to form a large scale (2–5 mm) granule might also be

from EPS bonding (Lu et al. 2012).

In conclusion, the Anammox cells first gather together

to form a microbial cell cluster, followed by the clusters

aggregation through the filamentous bacteria-EPS bonds to

form a subunit. Then, several subunits coheres each other

under the extensive mixing condition in high hydraulically

loaded upflow reactors, where collision among the subunits

easily occurs by the aiding of EPS. Finally, granules are

formed inside the upflow reactors.

Physical, chemical, and microbial properties

of Anammox granules

Size and density of Anammox granules

The red Anammox granules are obtained under high

hydraulic loading rates up to 200 L L-1 d-1 with superfi-

cial liquid upflow rate of 7 m3 m-2 h-1 (Tang et al.

2011b). The size distribution of the Anammox granules

ranged from 1.5 to 4 mm (Tang et al. 2011b; Lu et al.

2012, 2013). The average density of Anammox granules

reached 1.03 g mL-1 and the specific density reached

Table 2 Comparison of startup performance with different inocula Tang et al. (2013a)

Inoculum Cell lysis

phase (d)

Lag phase

(d)

Activity elevation

phase (d)

Stationary

phase (d)

Nitrogen removal

rate (kg m-3 d-1)

Anaerobic granular sludge 1–28 29–57 58–98 99–122 2.09

Denitrifying sludge 1–3 4–42 43–79 80–86 1.03

Nitrifying sludge 1–3 4–21 22–73 74–80 0.71

Fig. 2 Transition of Anammox granules from anaerobic granular

sludge a Day 10; b Day 150; and c Day 400. The red granules

indicate Anammox granules, while the gray or light black granules

are the inoculum of anaerobic granules. After about 400 days’

operation, the red Anammox granules are enriched but some of the

black anaerobic granules still exist in the upflow reactor (Tang et al.

2011b)
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91–120 g VSS L-1 (granules), which is indicative of a high

settling property. The large size and high density of

Anammox granules result in high settling velocity of

73–88 m h-1 (Chen et al. 2010; Tang et al. 2011b; Lu et al.

2013). The 5 min sludge volume index (SVI5), an impor-

tant parameter representing for settling performance, ran-

ges 24–25 mL g-1 VSS with a thickening process verified

by an SVI5/SVI30 ratio of 1 (Tang et al. 2011b; Lu et al.

2013). The compact Anammox granules with a high set-

tling property lead to high biomass retention in bioreactors

with Anammox biomass concentrations of 42–57 g L-1

(Tang et al. 2011b). Therefore, the nitrogen removal per-

formance of Anammox upflow reactors with carmine

granules was elevated to a considerably high value of

77 kg m-3 d-1 as compared the conventional biological

nitrogen removal process (typically lower than 0.5 kg m-3

d-1) (Tang et al. 2009b).

Morphology and ecological structure of Anammox

granules

The red-colored mature Anammox granule under SEM was

characterized by a cauliflower-like shape (Arrojo et al.

2006; Tang et al. 2011b). The granules surface mainly

consisted of spherical and elliptical bacteria; few or even

no bacilli and filamentous bacteria were observed on the

surface, suggesting the dominance of Anammox bacteria

(Tang et al. 2011b). Interestingly, the shapes of dominating

cocci in different Anammox granules under different

operational conditions were different. As reported, the

shapes of cocci showed a shrunken ball without effluent

recirculation, while they exhibited a gaseous ball shape

when recirculation was applied (Tang et al. 2011b). This

difference might be correlated to two factors. One is the

different substrate feeding strategies caused by effluent

recirculation dilution, although the main operational con-

ditions such as pH and hydraulic retention time (HRT)

were relatively stable. As reported, the genus of Anammox

bacteria was different under different substrate concentra-

tions. For example, Candidatus Kunenia dominated at high

substrate concentration while Candidatus Brocadia pre-

vailed at low substrate concentration (Tang et al. 2010a).

However, there is no further and direct evidence to confirm

whether these different morphologies of bacteria belong to

Brocadia or Kunenia. The other factor is correlated to

certain known or unknown substances contained in the

effluent (Tang et al. 2011b). Some soluble microbial

products (SMP) were released from the metabolism process

Fig. 3 Structure of Anammox granule. a a single granule (white arrows indicate subunits); b subunits separated from a granule; c SEM picture

of a granule (white rectangle indicates a subunit); and d the microbial cell clusters (white arrows) in a subunit Lu et al. (2012)
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of bacteria (Xie et al. 2013). After long-term operating with

effluent recirculation, these soluble microbial products

could also contribute to the morphological differences for

Anammox bacteria.

Figure 4 shows an example of the ecological structure of

Anammox granules (Vazquez-Padin et al. 2010). In the

outermost 200 lm layer of the granule, the biomass are

dominated by ammonium-oxidizing bacteria (AOB)

(Nitrosomonas spp.), the amount of which decreases at

depths of 200–600 lm. Anammox bacteria are mainly

located between 400 and 1000 lm in depth inside the

granule where dissolved oxygen could not penetrate. In the

depth interval among 400–600 lm, AOB and Anammox

bacteria coexisted. In addition, it should be pointed out that

the total number of bacteria decreased with the increase in

depth inside the granule. Thus, the activity was mainly

located within the 1000 lm of the granule. Furthermore,

the substrate penetration becomes more difficult for larger

Anammox granules (Ni et al. 2009). Therefore, a suit-

able diameter (i.e., less than 2 mm) for Anammox granules

is suggested (Ni et al. 2009; Lu et al. 2012).

Extracellular polymeric substances

Extracellular polymeric substances (EPS) are considered to

be a key reason for biomass granulation (Hulshoff Pol et al.

2004; Liu et al. 2009). They are secreted by bacteria as

sticky materials constituting proteins, polysaccharides,

humic acids, and lipids that assisted cell adhesion. There-

fore, EPS should be helpful to initiate the aerobic as well as

anaerobic granulation process (Hulshoff Pol et al. 2004;

Liu et al. 2009; Ni et al. 2010, 2015; Tang et al. 2011b;

Hou et al. 2015). Accumulation of the secreted EPS

improves the biological adhesion and microbial aggrega-

tion, since EPS could bridge bacterial cells and other par-

ticles into an aggregate (Liu and Tay 2002; Adav et al.

2008; Hori and Matsumoto 2010; Ismail et al. 2010; Hou

et al. 2015; Ni et al. 2015; Schluter et al. 2015). High

polysaccharide content was supposed to facilitate bacterial

adhesion and strengthen the microbial structure through a

polymeric matrix (Liu and Tay 2002; Adav et al. 2008).

Di Iaconi et al. (2006) reported that hydrodynamic shear

stress did not affect the EPS content and compositions, but

compact the granules. On the contrary, many researches

supported that the increased shear stress, including

hydraulic shear stress, gas-induced shear stress as well as

mechanic shear stress, could stimulate the EPS secretion

and contribute to the formation of granules (Liu and Tay

2002; Arrojo et al. 2006; Tang et al. 2011b; Song et al.

2017). Particularly, Tang et al. (2011b) pointed out that the

EPS content of Anammox granules are significantly

increased during long-term operation under increasing

loading rate with liquid and gas induced shear stresses.

However, the increase for polysaccharides was slower as

compared to proteins. The polysaccharide contents of

Anammox granules ranged from 60 to 115 mg g-1 VSS at

nitrogen removal rate higher than 70 kg m-3 d-1, whereby

the extracellular protein contents increased sharply to

300 mg g-1 VSS (Tang et al. 2011b).

The comparison of EPS content in different biological

granules is listed in Table 3. The autotrophic Anammox

granules contained a high EPS content as compared to the

heterotrophic granules (Tang et al. 2011b; Ni et al. 2015),

which is beyond our previous expectation. As reported, the

autotrophic bacteria usually secreted low EPS content

because they were using inorganic carbon as carbon source

instead of organic compounds (Tsuneda et al. 2003;

Vlaeminck et al. 2010; Tang et al. 2011b). However, the

Anammox bacteria secreted a large quantity of EPS under

high hydraulic loadings (Tang et al. 2011b; Ni et al. 2015).

Therefore, extensive granulation of Anammox biomass

inside upflow reactors occurs in a short hydraulic retention

time.

Still, the roles between polysaccharide and protein in

biomass granulation are controversial. Liu et al. (2004)

argued that the protein content was positively correlated

with surface hydrophobicity of bacterial cells. Hou et al.

(2015) also concluded that protein contained high content

of hydrophobic amino acids and loose structure to fully

expose inner hydrophobic groups, which promote Anam-

mox sludge aggregation. In contrast, several researchers

showed that polysaccharide plays a more significant role in

granulation (Chen et al. 2007; Adav et al. 2008; Ni et al.

2010). The polysaccharide possesses a number of

Fig. 4 Ecological structure of Anammox granule. a Depth distribu-

tion of aerobic ammonium-oxidizing bacteria (AOB) populations,

anaerobic ammonium-oxidizing bacteria (AAOB) and all bacteria

inside the granule. The value of depth equal to 0 mm corresponds to

the granule surface. b Image of a cryosectioned slice of a granule with

a triple hybridization of FISH (fluorescence in situ hybridization)

probes targeting AOB (light green), AAOB (pink) and all bacteria

(blue) Vazquez-Padin et al. (2010)
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negatively charged functional groups such as carboxyl and

hydroxyl which could function as a bridging interaction to

easily form granules (Adav et al. 2008). Chen et al. (2007)

proposed that b-polysaccharide could serve as the skeleton

of aerobic granular sludge. Furthermore, Ni et al. (2010)

considered that carbohydrates, rather than proteins, might

play a more important role in the formation of Anammox

granules because the proteins/carbohydrates ratio of

Anammox granules was just 0.51, considerably lower than

the average of methanogenic granules. These findings

indicated that the electrostatic attraction and bridging force

caused by polysaccharide should be taken into considera-

tion for Anammox granulation, although protein has shown

to play an essential role in the granulation process (Hou

et al. 2015).

Functional groups on granular surface

The functional groups on granular surface include nega-

tively charged carboxyl and hydroxyl groups in polysac-

charide (Hou et al. 2015). Further identification of

functional groups on Anammox granule surface is being

under investigation. It was previously estimated that the

functional groups might be less on autotrophic Anammox

biomass (Tsuneda et al. 2003; Vlaeminck et al. 2010; Tang

et al. 2011b; Chai et al. 2015). Hou et al. (2015) system-

atically analyzed the functional groups on Anammox bio-

mass by taking conventional activated sludge, nitrifying

sludge and denitrifying sludge as control. They observed

that the types of functional groups are similar for different

sludges since the position and numbers of Fourier trans-

form infrared (FTIR) peaks were quite close. With a closer

inspection of the intensity of these peaks, fewer hydrophilic

functional groups were found in EPS of Anammox sludge

compared to other sludges, such as acylamino and carboxyl

groups that have high polarity (Yuan et al. 2010; Hou et al.

2015). Consistent with previous results for EPS contents,

the Anammox sludge surface characterized with less

hydrophilic functional groups helps sludge granulation in

upflow reactors.

Hemochrome content

Anammox granules possess a unique red color (Fig. 5)

which is quite different from conventional biomass used in

wastewater treatments (Tang et al. 2010a, 2011b). Gener-

ally, the color of aerobic granules and nitrifying granules is

yellow; the color of heterotrophic denitrifying granules,

hydrogen-producing granules as well as anaerobic metha-

nogenic granules is black mainly due to the formation of

metal sulfides (Hulshoff Pol et al. 2004; Franco et al. 2006;

Liu et al. 2009; Tang et al. 2009b, 2010c, 2011b, 2013a).

As reported, the Anammox bacteria contains enzymes such

as hydroxylamine oxidoreductase (HAO) and hydrazine

oxidoreductase (HZO) which are two key enzymes of

Anammox reaction pathways (Strous et al. 2006; Schmid

et al. 2008). These enzymes are rich in hemochrome (Klotz

et al. 2008; Schmid et al. 2008). For example, the HAO and

HZO contain 14–26 and 8–16 hemochromes, respectively

(Schalk et al. 2000; Cirpus et al. 2005, 2006; Shimamura

et al. 2007, 2008). The high content of hemochrome is

presumed to form the carmine color of Anammox sludge

(Tang et al. 2011b).

Naturally, higher activity of Anammox bacteria indi-

cates higher conversion rate that needs higher content of

enzymes including HAO and HZO, to catalyze the

Anammox reaction. Therefore, we can simply correlate the

biomass activity directly to the degree of red color. Tang

et al. (2011b) demonstrated that the heme c content of

Anammox granules significantly increased with the

improvement of nitrogen removal rate. As reported, the

heme c content finally reached 10 lmol g-1 VSS at

nitrogen removal rate higher than 70 kg m-3 d-1 (Tang

et al. 2011b). Correspondingly, the activity of the high-rate

Anammox granules finally reached at 5.6 kg kg-1

VSS d-1, which was much higher than the light red

Table 3 Extracellular polymeric substances (EPS) content in different microbial granules

Granular sludge EPS (mg g-1 VSS) Hydraulic

retention time (h)

Reference

Proteins (PN) Polysaccharides (PS) PN/PS

Anammox granules 164.4 ± 9.3 71.8 ± 2.3 2.29 0.16 Tang et al. (2011b)

Aerobic granules 40 16 2.5 8 Zheng and Yu (2007)

Phenol-degrading granules 240 ± 13 61.0 ± 9.4 3.93 N.A. Adav et al. (2008)

Anaerobic granules 42.7 ± 37.8 17.3 ± 6.8 2.5 N.A. Wu et al. (2009)

Hydrogen-producing granules 70.9 ± 4.5 115.6 ± 5.2 0.6 18 Mu and Yu (2006)

Nitrifying granules 56 ± 25a 18 ± 1a 3.1 2.8 Martı́nez et al. (2004)

Denitrifying granules N.A. N.A. 2.2 N.A. Franco et al. (2006)

a Unit is mg L-1

N.A. Not available
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Anammox biomass (lower than 1 kg kg-1 VSS d-1, Tang

et al. 2010a, b; Yu et al. 2016; Song et al. 2017). However,

a higher hemochrome content did not mean an increasing

activity. In our recent study, we found that the floated

Anammox granules gradually changed to black color with

low activity, but the hemochrome content within the

granules was still high (Song et al. 2017) due to the slow

degradation of hemochrome (Strous et al. 2006).

Operation of Anammox upflow reactor

Granular packing

The high performance and stability of Anammox reactors

largely depend on the quantity of granular sludge (Chen

et al. 2010; Tang et al. 2011b). Therefore, previous

researchers focused on developing enhanced strategies to

improve Anammox granular sludge concentration inside

reactors (Tsushima et al. 2007; Ma et al. 2011; Tang et al.

2011b). However, extremely high sludge concentration

also increased biomass dead zones, decreased pore volume

and shortened actual hydraulic retention time (Tang et al.

2010a, 2011b). The packing pattern of Anammox granules

directly determined the pore volume and sludge concen-

tration inside upflow reactors (Tang et al. 2010a). There-

fore, it affects the reactor performance significantly,

especially when the sludge concentrations inside Anam-

mox reactors was as high as 40–50 g L-1 (Tang et al.

2011b).

Tang et al. (2010a) developed a mathematical model

(Eq. 1) to simulate the relationship between granular

packing patterns and nitrogen removal performance for a

granule-based Anammox upflow anaerobic sludge blanket

(UASB) reactor following the principles of crystal lattice

packing.

R ¼ 0:527CXq 1� CX

qgranule

 !25:0
CX

qgranule � SV

 !0:16

c0:23

ð1Þ

where R is the conversion rate, kg m-3 d-1; CX is the

sludge concentration, mg L-1; q is the specific activity of

sludge, kg kg-1 VSS d-1; qgranule is the density of granular

sludge, g cm-3; SV is the sludge volume, %; c is the

substrate loading, kg m-3 d-1.

Simulation results suggested that the simple cubic

packing pattern was the favorable model for Anammox

granule packing, with optimal sludge concentrations of

46–49 g VSS L-1 and packing density of 52–55%. The

simple cubic packing not only provides high biomass

concentration, but also possesses high porosity inside the

reactor to reach the maximum value in performance. Sen-

sitivity analysis indicates that when the granules concen-

tration is lower than 37.8 g VSS L-1, the best way to

improve reactor performance is to increase the sludge

concentration; otherwise, it is more advisable to enhance

substrate loading to achieve higher substrate conversion

rate in the high-rate Anammox UASB reactor (Tang et al.

2010a).

Dissolved oxygen

As aforementioned, the Anammox granules possess a

stratified ecological structure for resisting external detri-

mental effects. Usually, the operation of Anammox reac-

tors is not strictly anaerobic. Thus, oxygen was

accompanied in influent without oxygen elimination

methods, or diffused into reactor from sampling ports.

Thus, the Anammox granules would face the oxygen

penetration during the long-term operation. The intrusion

Fig. 5 Red Anammox granules cultivated with low (a) and high (b) hydraulic loadings in upflow reactors Tang et al. (2010a, b c, 2013a, b, c)
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of oxygen resulted in the stratification of microbial species.

The anoxic pockets in the interior of the granules are

suitable to harbor Anammox bacteria that are strictly

anaerobic bacteria and totally inhibited by 0.5% air satu-

ration (Strous et al. 1997). While in the outer layer (or

surface) of Anammox granule, AOB (ammonium-oxidizing

bacteria) would consume excess oxygen. The stratification

structure of AOB on surface and Anammox bacteria in

inner section of Anammox granules contributes to

stable and high-rate operation of Anammox reactors

especially under the non-strictly anaerobic conditions.

Flotation of Anammox granules and control strategies

After granulation of Anammox biomass was realized,

flotation of Anammox granules could occur. The increase

in nitrogen removal rate was usually accompanied with

increased hydraulic loading rate and nitrogen gas produc-

tion, resulting in extensive mixing between gas bubbles and

granules. Thus, the nitrogen gas bubbles produced by

Anammox bacteria were trapped inside the granules (Tang

et al. 2009a; Chen et al. 2010, 2014). As a result, the

density of the granules decreased resulting in the sludge

flotation and even sludge washout. In this situation, reactor

performance eventually deteriorated during the continuous

elevation of nitrogen loading rate. Moreover, the floated

granules assembled continuously in the settler and blocked

up the effluent pipe, resulting in malfunction of the reactor

operation (Song et al. 2017). Therefore, the flotation of

Anammox granules is a significant problem that affects the

high rate and stable operation of Anammox reactors (Tang

et al. 2009a; Chen et al. 2010, 2014; Song et al. 2017).

The flotation of Anammox granules has attracted a great

deal of attention in recent years (Tang et al. 2009a, 2011b;

Chen et al. 2010, 2014; Song et al. 2017). It seems that

flotation of granules is inevitable during the operation of

high-rate Anammox reactors, yet the mechanism of flota-

tion still remains unclear. Most researchers insisted that the

physical property of Anammox is the key reason. For

example, Chen et al. (2010) reported that flotation occurred

due to the blocking of gas tunnels and thus ineffective

exhaust of nitrogen gas to the outside. Tang et al. (2009a)

applied force analysis to evaluate the bubble column inside

UASB reactor, and confirmed that gas accumulation led to

the whole granules flotation. Our recent study compared

the physical, chemical, and microbial properties of settled

and floated granules (Song et al. 2017). It was found that

EPS secretion, especially the protein content, of Anammox

granules increased with the increase in nitrogen removal

rate, thereby imposing the adhesion and bridging ability to

form big granules from small aggregates. Gas bubbles were

trapped between the joint of aggregates consequently

(Fig. 6), and the gas tunnels from inner part to the surface

of granules were easily blocked by the high EPS secretion

(Chen et al. 2010). Furthermore, the direct adhesion of

hydrophobic bubbles on EPS-rich granular surface was also

favored (as shown in Fig. 6b). Due to the decrease in

granules density, flotation of Anammox granules inevitably

occurred in upflow reactors and was further enhanced with

increasing gas production rates. Consequently, deteriora-

tion of reactor performance prevailed.

In order to recover the reactor performance after gran-

ules’ flotation, several methods were taken to relieve the

flotation. Chen et al. (2010) and Lu et al. (2012) proposed

the breaking–returning strategy in which the floated gran-

ules were first taken out of the reactor, and then broken into

small pieces to release the gas bubbles entrapped in gran-

ules (Fig. 7). The sludge density was thus increased and

would settle down to the reaction zone after returning to

upflow reactors. But it should be pointed out that the

ecological structure of the granules was also destroyed

after complete breaking. A long recovery time was required

to reform the granular ecological structure and restore the

performance of Anammox reactors (Chen et al. 2010).

Tang et al. (2009a) started shear force enhancement by

introducing high hydraulic loadings to break the large gas

column into small gas bubbles. In this way, the granules’

flotation was also relieved. Manual stirring with a stick to

drive out the gas bubbles from the floated Anammox

granules was also tested (Song et al. 2017), which can drive

away the bubbles attached on the surface of the granules

but cannot drive away the bubbles inside the granules.

Thus, sludge flotation re-occurred after re-adhesion of gas

bubbles during the continuous operation under high nitro-

gen removal rate. It is clear that the strategies based on

physical properties of Anammox granules are not final

methods to overcome sludge flotation. With the existence

of high EPS and functional groups on sludge surface,

attaching chemical precipitates with relatively high density

(e.g., CaCO3) onto sludge surface in an appropriate content

would increase the sludge density and enhance the granules

settling ability significantly (Trigo et al. 2006; Xiong et al.

2013; Ali et al. 2016b; Song et al. 2017). In addition to

these solutions, promising alternatives to control Anam-

mox granular flotation are strongly recommended in future

studies.

Full-scale application of Anammox granules

in wastewater treatment

Anammox process has been widely used for nitrogen

removal from ammonium-rich wastewater (Kartal et al.

2010; Tang et al. 2008, 2011b; Wang et al. 2010b; Lackner

et al. 2014). The development of granule-based Anammox

reactors with NRR higher than 70 kg m-3 d-1 further

increased the application significance of Anammox process
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for treatment of wastewaters including sludge liquor,

landfill leachate, monosodium glutamate (MSG) wastew-

ater and pharmaceutical effluents (van der Star et al. 2007;

Wang et al. 2010b; Tang et al. 2011a; Lackner et al. 2014;

Zhang et al. 2015). However, due to the slow growth rate of

the Anammox bacteria, the application of full-scale

Anammox-based process required an extremely long per-

iod, mainly due to the slow startup course (van der Star

et al. 2007; Lackner et al. 2014). For the first full-scale

Anammox reactor (70 m3) located in Rotterdam, Nether-

land (NL), the startup lasted 3.5 years (van der Star et al.

2007). It took about 4 years for enrichment of Anammox

biomass in the first full-scale Anammox reactor (60 m3)

implemented in China for treatment of MSG wastewater

(built by Zhejiang University). In order to accelerate the

startup, an upscaling strategy of ‘‘lab-pilot-full-scale’’

Anammox biomass enrichment has been proposed by Wett

(2006), van der Star et al. (2007) and Tang et al. (2008), as

shown in Fig. 8. Previous studies demonstrate that it was a

prerequisite to enrich a large amount of Anammox biomass

in lab scale as well as pilot-scale reactors. Then, the har-

vested Anammox biomass were used as seeding sludge to

continuously feed full-scale reactors for enhanced Anam-

mox reaction (Wett 2006; van der Star et al. 2007; Tang

et al. 2008).

Once the Anammox reaction initiates inside reactors,

the startup performance would be significantly acceler-

ated (Wett 2006; van der Star et al. 2007; Tang et al.

Fig. 6 Pictures of Anammox granular flotation (a) and gas bubbles adsorbed on granule surface (b). The red Anammox granules with smaller

density tend to be floated after adsorption of dinitrogen gas bubbles produced by Anammox bacteria

Fig. 7 Mechanisms of granulation (a) and flotation (b) of Anammox

biomass. Anammox bacteria first aggregate to form small Anammox

cell cluster. Then, small cluster grow to large cluster and subsequent a

small granule. After blocking the gas tunnels to the granular surface,

nitrogen gas pocket(s) would be formed thus reducing the density of

the granules. Flotation and washout of Anammox granules conse-

quently occurs Lu et al. (2012)
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2013a; Xiong et al. 2013). Therefore, after successful

implementation of the first full-scale reactor, the Anam-

mox biomass has been largely enriched, resulting in the

widespread installations of full-scale Anammox-based

processes. By the year 2014, there were more than 100

full-scale Anammox–based processes around the world,

among which more than 50% are sequencing batch reac-

tors (SBR), 88% being operated as single-stage systems,

and 75% for side-stream treatment of municipal

wastewater (Lackner et al. 2014). Although the granular

systems only consisted 20% of all full-scale applications,

the nitrogen removal performance was substantially

higher (Lackner et al. 2014). For example, the nitrogen

removal rate of the first full-scale Anammox reactor

(designed by Paques) with granular sludge reached

9.5 kg m-3 d-1, while the average nitrogen loading for

full-scale SBR (without granular sludge) is about

1.7 kg m-3 d-1 (Lackner et al. 2014). Since 2006, Paques

has designed granular reactors as one-stage implementa-

tions, with the majority of their systems applied for

industrial wastewater treatments. This shift from two- to

one-stage installations was mainly driven by the lower

investment costs (Lackner et al. 2014).

Most of the full-scale Anammox processes were applied

to treat reject water with low COD (chemical oxygen

demand)/N ratio, especially in Europe (van der Star et al.

2007; Lackner et al. 2014). For example, the first full-scale

reactor (70 m3) in Rotterdam, NL (van der Star et al. 2007)

and the largest full-scale reactor (22,000 m3) in Blue

Plains, USA (Lackner et al. 2014) were all used to treat

reject water from wastewater treatment plants. The

Anammox process was then expanded to treat landfill

leachate, slaughterhouse effluents, potato processing

wastewater, distillery effluent, and even metal processing

wastewater (Lackner et al. 2014).

Speth et al. (2016) investigated the Anammox biomass

(Fig. 9) in a full-scale partial nitritation and Anammox

(PNA) process (600 m3) in Olburgen, NL. They discovered

23 near-complete draft genomes that represent the majority

of the microbial community, among which 19 have no

close relatives being previously cultivated or sequenced

and 6 belong to bacterial phyla without any cultivated

members. A metabolism diagram (Fig. 9c) of the granules

in the full-scale reactor has been proposed. As shown in

Fig. 9c, organic carbon (C–org) was oxidized to carbon

dioxide (CO2) on the granule surface by autotrophs. Also,

on the granule surface, NHþ
4 was oxidized to nitrite (NO�

2 )

that was either reduced to nitric oxide (NO) or further

oxidized to nitrate (NO�
3 ). The NO

�
3 formed in the granules

was reduced again in the anaerobic core, either with C–org

or molecular hydrogen (H2) as electron donor. H2 can be

formed through fermentation of organic carbon by CHB2

and CFX1 (two hydrogenase–encoding organisms). This

cyclic feeding resulted in additional organic carbon

removal from the system. NO formed from NO�
2 could

combine with NHþ
4 , producing dinitrogen gas by

Anammox.

Gonzalez-Gil et al. (2015) analyzed the microbial

community composition of the granules taken from the

lower port of the first full-scale Anammox reactor, NL.

Pyrosequencing results showed that, besides Anammox

bacteria (Brocadiacea, 32%), substantial numbers of het-

erotrophic bacteria Ignavibacteriacea (18%) and Anaero-

linea (7%) along with heterotrophic denitrifiers (15%)

existed in the granules. These bacteria may form a network

in which heterotrophic denitrifiers could cooperate to

achieve a well-functioning denitrification system as they

can utilize the nitrate intrinsically produced by Anammox

reaction. It is possible that the Anammox process in a full-

scale reactor triggers various reactions overall leading to

Fig. 8 Upscaling enrichment strategy for startup of Anammox

process treating monosodium glutamate wastewater. A series of

lab–scale Anammox reactors (1 L) were utilized to enrich seed

matured Anammox granules with high activity; then the seed matured

granules were used to inoculate pilot-scale reactors (2.5 m3) to

amplify the production of Anammox biomass which were finally used

as the inocula to startup full-scale reactors (60 m3). This lab-pilot–

full-scale Anammox system, located in Yiwu City, was initially built

in 2005
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efficient denitrification and a sink of carbon as biomass in

Anammox granules.

Conclusion

Anammox process is considered to be the most sustainable

nitrogen removal technology for ammonium-rich wastew-

ater treatments due to the high nitrogen removal perfor-

mance, low operational cost, and reduced sludge

production. However, due to the extremely slow growth

rate of the chemolithoautotrophic Anammox bacteria, the

enrichment of Anammox biomass is quite difficult, and the

process is easily inhibited by environmental conditions,

which significantly restricts the application of this envi-

ronmental-friendly process. Granulation of Anammox

biomass provides an effective method for stable and high-

rate operation of Anammox upflow reactors. Anammox

bacteria could secrete large amount of extracellular poly-

meric substances and many hydrophobic functional groups,

which significantly contributes to Anammox biomass

granulation. The Anammox granules feature a

Fig. 9 Biomass from the

Olburgen partial nitritation and

Anammox reactor. a Untreated

sample consisting of both

flocculent and granular biomass;

b Washed sample containing

predominantly granular

biomass; and c Schematic

diagram of nitrogen conversions

in the Olburgen PNA reactor.

Organic carbon (C–org) was

oxidized to carbon dioxide

(CO2) on the granule surface by

autotrophs. Also, on the granule

surface, NHþ
4 was oxidized to

nitrite (NO�
2 ) that was either

reduced to nitric oxide (NO) or

further oxidized to nitrate

(NO�
3 ). The NO�

3 formed in the

granules was reduced again in

the anaerobic core, either with

C–org or molecular hydrogen

(H2) as electron donor. H2 can

be formed through fermentation

of organic carbon by CHB2 and

CFX1 (two hydrogenase-

encoding organisms). This

cyclic feeding resulted in

additional organic carbon

removal from the system. NO

formed from NO�
2 could

combine with NHþ
4 producing

dinitrogen gas by Anammox

Speth et al. (2016)
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stable ecological structure with AOB on the surface and

Anammox bacteria in the inner section of granules, which

also improve the stability of Anammox reactors. Unfortu-

nately, flotation of Anammox granules occurs inevitably

under high shear stress and high nitrogen loading condi-

tions. Floated granules assemble continuously in the settler

and block up the effluent pipe, resulting in malfunction of

the reactor operation. However, the mechanism behind the

flotation still remains unclear, and effective control meth-

ods are highly desirable during the subsequent investiga-

tions. Since the granular Anammox process exhibits much

higher nitrogen removal performance, more full-scale

granular Anammox upflow reactor for treatment of

ammonium-rich wastewater should be installed in future.
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Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MS (2003)

Anaerobic ammonium oxidation by anammox bacteria in the

Black Sea. Nature 422:608–611. doi:10.1038/nature01472

Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van

Loosdrecht MCM (2014) Full-scale partial nitritation/anammox

experiences: an application survey. Water Res 55:292–303.

doi:10.1016/j.watres.2014.02.032

Li M, Gu JD (2016) The diversity and distribution of anammox

bacteria in the marine aquaculture zones. Appl Microbiol

Biotechnol 100:8943–8953. doi:10.1007/s00253-016-7690-6

Li H, Chen S, Mu BZ, Gu JD (2010) Molecular detection of anaerobic

ammonium-oxidizing (Anammox) bacteria in high-temperature

petroleum reservoirs. Microb Ecol 60:771–783. doi:10.1007/

s00248-010-9733-3

Li XF, Barnes D, Chen J (2011) Performance of struvite precipitation

during pretreatment of raw landfill leachate and its biological

validation. Environ Chem Lett 9:71–75. doi:10.1007/s10311-

009-0248-4

Li MM, Zhu JY, Gan M, Wang QF, Shi QJ, Chai LY (2014)

Characteristics of chromium coprecipitation mediated by

acidithiobacillus ferrooxidans DC. Water Air Soil Pollut

225:2071. doi:10.1007/s11270-014-2071-1

Li PJ,Xia JL,Yang S,Nie ZY, SuDL,GaoQR, ZhangC,MaYL (2015)

Optimizing production of pectinase from orange peel by penicil-

liumoxalicum PJ02 using response surface methodology. Waste

Biomass Valoriz 6:13–22. doi:10.1007/s12649-014-9317-4

Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ,

Fuerst JA (2001) Cell compartmentalisation in planctomycetes:

novel types of structural organisation for the bacterial cell. Arch

Microbiol 175:413–429. doi:10.1007/s002030100280

Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force

in the formation of biofilm and granular sludge. Water Res

36:1653–1665. doi:10.1016/S0043-1354(01)00379-7

Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric

substances on the formation and stability of biogranules. Appl

Microbiol Biotechnol 65:143–148. doi:10.1007/s00253-004-

1657-8

Liu ST, Yang FL, Gong Z, Meng FG, Chen HH, Xue Y, Furukawa K

(2008) Application of anaerobic ammonium-oxidizing consor-

tium to achieve completely autotrophic ammonium and sulfate

removal. Bioresour Technol 99:6817–6825. doi:10.1016/j.bior

tech.2008.01.054

Environ Chem Lett (2017) 15:311–328 325

123

http://dx.doi.org/10.1371/journal.pone.0061330
http://dx.doi.org/10.1371/journal.pone.0061330
http://dx.doi.org/10.1111/mec.13015
http://dx.doi.org/10.1111/mec.13015
http://dx.doi.org/10.1016/j.bej.2006.03.002
http://dx.doi.org/10.1016/j.watres.2005.11.044
http://dx.doi.org/10.1146/annurev.micro.59.030804.121258
http://dx.doi.org/10.1146/annurev.micro.59.030804.121258
http://dx.doi.org/10.1007/s00248-014-0546-7
http://dx.doi.org/10.1007/s00248-011-9849-0
http://dx.doi.org/10.1007/s00248-011-9849-0
http://dx.doi.org/10.1016/j.bej.2009.11.014
http://dx.doi.org/10.1016/j.bej.2009.11.014
http://dx.doi.org/10.1016/j.watres.2015.02.031
http://dx.doi.org/10.1016/j.watres.2015.02.031
http://dx.doi.org/10.1016/j.watres.2010.07.021
http://dx.doi.org/10.1016/j.watres.2010.07.021
http://dx.doi.org/10.1016/j.watres.2003.12.002
http://dx.doi.org/10.1016/j.watres.2003.12.002
http://dx.doi.org/10.1016/j.watres.2009.11.039
http://dx.doi.org/10.1016/j.watres.2009.11.039
http://dx.doi.org/10.1080/10409230902722783
http://dx.doi.org/10.1016/S1001-0742(12)60204-6
http://dx.doi.org/10.1080/09593330.2013.811542
http://dx.doi.org/10.1080/09593330.2013.811542
http://dx.doi.org/10.1016/j.seppur.2012.10.042
http://dx.doi.org/10.1007/s10311-013-0428-0
http://dx.doi.org/10.1016/j.syapm.2006.03.004
http://dx.doi.org/10.1111/j.1574-6941.2007.00408.x
http://dx.doi.org/10.1111/j.1574-6941.2007.00408.x
http://dx.doi.org/10.1126/science.1185941
http://dx.doi.org/10.1126/science.1185941
http://dx.doi.org/10.1111/j.1462-2920.2008.01733.x
http://dx.doi.org/10.1111/j.1462-2920.2008.01733.x
http://dx.doi.org/10.1111/j.1574-6976.1994.tb00129.x
http://dx.doi.org/10.1111/j.1574-6976.1994.tb00129.x
http://dx.doi.org/10.1038/nature01472
http://dx.doi.org/10.1016/j.watres.2014.02.032
http://dx.doi.org/10.1007/s00253-016-7690-6
http://dx.doi.org/10.1007/s00248-010-9733-3
http://dx.doi.org/10.1007/s00248-010-9733-3
http://dx.doi.org/10.1007/s10311-009-0248-4
http://dx.doi.org/10.1007/s10311-009-0248-4
http://dx.doi.org/10.1007/s11270-014-2071-1
http://dx.doi.org/10.1007/s12649-014-9317-4
http://dx.doi.org/10.1007/s002030100280
http://dx.doi.org/10.1016/S0043-1354(01)00379-7
http://dx.doi.org/10.1007/s00253-004-1657-8
http://dx.doi.org/10.1007/s00253-004-1657-8
http://dx.doi.org/10.1016/j.biortech.2008.01.054
http://dx.doi.org/10.1016/j.biortech.2008.01.054


Liu XW, Sheng GP, Yu HQ (2009) Physicochemical characteristics

of microbial granules. Biotechnol Adv 27:1061–1070. doi:10.

1016/j.biotechadv.2009.05.020

Lu HF, Zheng P, Ji QX, Zhang HT, Ji JY, Wang L, Ding S, Chen TT,

Zhang JQ, Tang CJ, Chen JW (2012) The structure, density and

settlability of anammox granular sludge in high-rate reactors.

Bioresour Technol 123:312–317. doi:10.1016/j.biortech.2012.

07.003

Lu HF, Ji QX, Ding S, Zheng P (2013) The morphological and

settling properties of ANAMMOX granular sludge in high-rate

reactors. Bioresour Technol 143:592–597. doi:10.1016/j.bior

tech.2013.06.046

Ma YG, Hira D, Li ZG, Chen C, Furukawa K (2011) Nitrogen

removal performance of a hybrid anammox reactor. Bioresour

Technol 102:6650–6656. doi:10.1016/j.biortech.2011.03.081

Ma B, Wang SY, Cao SB, Miao Y, Jia F, Du R, Peng YZ (2016)

Biological nitrogen removal from sewage via anammox. Biore-

sour Technol 200:981–990. doi:10.1016/j.biortech.2015.10.074

Maciej D (2000) Activities in nonpoint pollution control in rural areas

of Poland. Ecol Eng 14:429––434. doi:10.1016/S0925-

8574(99)00066-X

Martı́nez F, Lema J, Mendez R, Cuervo-Lopez F, Gomez J (2004)

Role of exopolymeric protein on the settleability of nitrifying

sludges. Bioresour Technol 94:43–48

Mizuto K, Okabe S (2014) Ecophysiology of anammox bacterium

‘Candidatus Scalindua japonica’. Master Thesis

Mu Y, Yu HQ (2006) Biological hydrogen production in a UASB

reactor with granules. I: physicochemical characteristics of

hydrogen-producing granules. Biotechnol Bioeng 94:980–987

Ni BJ, Chen YP, Liu SY, Fang F, Xie WM, Yu HQ (2009) Modeling

a granule-based anaerobic ammonium oxidizing (ANAMMOX)

process. Biotechnol Bioeng 103:490–499. doi:10.1002/bit.22279

Ni BJ, Hu BL, Fang F, Xie WM, Kartal B, Liu XW, Sheng GP, Jetten

M, Zheng P, Yu HQ (2010) Microbial and physicochemical

characteristics of compact anaerobic ammonium-oxidizing gran-

ules in an upflow anaerobic sludge blanket reactor. Appl Environ

Microbiol 76:2652––2656. doi:10.1128/AEM.02271-09

Ni SQ, Sun N, Yang HL, Zhang J, Ngo HH (2015) Distribution of

extracellular polymeric substances in anammox granules and

their important roles during anammox granulation. Biochem Eng

J 101:126–133. doi:10.1016/j.bej.2015.05.014

Peng C, Chai LY, Tang CJ, Min XB, Ali M, Song YX, Qi WM

(2017a) Feasibility and enhancement of copper and ammonia

removal from wastewater using struvite formation: a compara-

tive research. J Chem Technol Biotechnol 92:325–333. doi:10.

1002/jctb.5009

Peng C, Chai LY, Tang CJ, Min XB, Duan CS, Yu C (2017b) Study

on the mechanism of copper–ammonia complex decomposition

in struvite formation process and enhanced ammonia and copper

removal. J Environ Sci. doi:10.1016/j.jes.2016.06.020

Qiao S, Yamamoto T, Misaka M (2010) High-rate nitrogen removal

from livestock manure digester liquor by combined partial

nitritation-anammox process. Biodegradation 21:11–20. doi:10.

1007/s10532-009-9277-8

Quan ZX, Rhee SK, Zuo JE, Bae JW, Park JR, Lee ST, Park JH

(2008) Diversity of ammonium-oxidizing bacteria in a granular

sludge anaerobic ammonium-oxidizing (anammox) reactor.

Environ Microbiol 10:3130–3139. doi:10.1111/j.1462-2920.

2008.01642.x

Schalk J, De VS, Kuenen JG, Jetten MS (2000) Involvement of a

novel hydroxylamine oxidoreductase in anaerobic ammonium

oxidation. Biochemistry 39:5405–5412. doi:10.1021/bi992721k

Schluter J, Nadell Carey D, Bassler BL, Foster KR (2015) Adhesion

as a weapon in microbial competition. ISME J 9:139–149.

doi:10.1038/ismej.2014.174

Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten

M, Metzger JW, Schleifer KH, Wagner M (2000) Molecular

evidence for genus level diversity of bacteria capable of

catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol

23:93–106. doi:10.1016/S0723-2020(00)80050-8

Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K,

Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, Damsté
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