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Abstract Groundwater contamination with arsenic and

fluoride has affected over 300 million people worldwide.

Ingestion of arsenic and fluoride for extended period of

time or at high concentration causes severe health effects.

Arsenic can cause thickening and discoloration of the skin,

cardiovascular disorders, cancer and skin lesions. Exces-

sive intake of fluoride leads to dental and skeletal fluorosis

and bone deformities. This report reviews the distribution

of arsenic and fluoride contamination, their sources,

mobilization and associated health risks. Remediation

technologies to remove arsenic and fluoride are presented.

Keywords Arsenic � Fluoride � Contamination � Health
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Introduction

Various natural and anthropogenic activities cause metal

and non-metal contamination of different aquatic and ter-

restrial ecosystems. Agricultural and industrial based

societies are being exposed daily to hazardous agricultural

pesticides, herbicides, uncontrolled sewage discharge,

toxic metals and other industrial chemicals (Husain et al.

2008; Bibi et al. 2008). Being toxic, arsenic and fluoride

both are one of the biggest contributors to global water

crisis and pose major health concerns resulting from

drinking water (Bibi et al. 2015a). This issue has been

aggravated due to increasing dependence on groundwater

in many countries. High levels of arsenic and fluoride are

simultaneously present in groundwater at numerous places

throughout the world. The cause of co-occurrence of these

contaminants in groundwater can be natural as well as

anthropogenic. Drinking water containing high concentra-

tions of fluoride and arsenic primarily from natural geo-

genic contamination is the major source of human exposure

(Gebel 1999; Ruiz-Payan et al. 2005). Arsenic and fluoride

release into environments by various natural process and

human activities (Bibi et al. 2015a; Vithanage and Bhat-

tacharya 2015; Rasool et al. 2016b). Arsenic occurs in

numerous forms depending upon pH and redox potential of

groundwater. On the other hand, high fluoride concentra-

tions present in groundwater from calcium (Ca) poor

aquifers and may also increase in groundwater where

cation exchange of sodium (Na) for calcium takes place

(Bibi et al. 2015b; Amna Ali et al. 2015; Ali et al. 2016).

There is knowledge on the toxicity of fluoride and

arsenic individually; however, very limited literature is

available about the effects of combined exposure to these

toxicants. An in situ experiment showed that Swiss albino

male mice exposure to arsenic and fluoride led to a

& Abida Farooqi

abida.farrukh@gmail.com

Sadia Bibi

sadia_envsci@yahoo.com

1 Key Laboratory of Tibetan environmental Changes and Land

surface Processes, Institute of Tibetan Plateau Research,

Chinese Academy of Sciences, Beijing,

People’s Republic of China

2 University of Chinese Academy of Sciences, Beijing 100049,

People’s Republic of China

3 State Key Laboratory of Soil and Sustainable Agriculture,

Institute of Soil Science, Chinese Academy of Sciences,

Nanjing 210008, People’s Republic of China

4 Ecoinformatics and Watershed Ecology Laboratory,

University of Adelaide, Adelaide, Australia

5 Environmental hydro geochemistry laboratory, Department

of Environmental Sciences, Quaid-i-Azam University,

Islamabad 45320, Pakistan

123

Environ Chem Lett (2017) 15:125–149

DOI 10.1007/s10311-016-0590-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10311-016-0590-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10311-016-0590-2&amp;domain=pdf


substantial depletion of blood d-aminolevulinic acid

dehydratase (ALAD) activity and glutathione (GSH) level

(Mittal and Flora 2006). In another laboratory experiment,

it was found that combined exposure to arsenic and fluoride

considerably reduced the levels of brain biogenic amines

(Flora and Mittal 2009). Arsenic and fluoride act as an

unseen exterminates in water as they do not impart any

odour, colour or taste. The present study provides a com-

prehensive overview about arsenic and fluoride contami-

nation, toxicity, sources and existing removal technologies

that are being used for the treatment. Moreover, problem

associated with current methods and future research

directions for removal technologies have also been dis-

cussed. This study will be very helpful to implement

suitable and cost-effective removal technology for safe

water supply to rural population in developing countries.

Arsenic contamination

Arsenic has been reported worldwide including Argentina

(Smedley and Kinniburgh 2002), Australia (Appleyard

et al. 2006), Bolivia (Archer et al. 2005), Chile (Romero

et al. 2003), Finland (Kurttio et al. 1999), Greece (Kouras

et al. 2007), Germany (Mkandawire and Dudel 2005),

Ghana (Asante et al. 2007), Hungary (Rowland et al.

2011), Italy (Angelone et al. 2009), Mexico (Camacho

et al. 2011), Romania (Rowland et al. 2011), Spain (Gar-

cı́a-Sánchez et al. 2005), Thailand (Williams et al. 1996)

and USA (Schreiber et al. 2000). However, the arsenic-

contaminated water via natural sources in various regions

of East and South Asia is of bigger apprehension and

affects the health of millions of people (Berg et al. 2001;

Polya et al. 2005; Mukherjee et al. 2006). In East Asia it

includes Cambodia (Luu et al. 2009), China (Xie et al.

2009), Mongolia (Guo et al. 2008), Taiwan (Liao et al.

2011) and Vietnam (Berg et al. 2001); and in South Asia

Bangladesh (Chen et al. 2011), India (Kar et al. 2010),

Nepal (Pokhrel et al. 2009) and Pakistan (Baig et al. 2012;

Rasool et al. 2016a, b). Arsenic-contaminated groundwater

affects the life of nearly 60 million people while arseni-

cosis has been reported among 700,000 people (Fewtrell

et al. 2005). The predominant form of inorganic arsenic in

aqueous oxic environments is arsenate [As(V) as H3AsO4,

H2AsO4
-1, HAsO4

-2 and AsO4
-3], whereas arsenite [As(III)

as H3AsO3 and H2AsO3
-] is more prevalent in anoxic

environments (Oremland and Stolz 2003). Zero-valent

(As0) and tri-valent (As3-) are rare in aquatic environments

(Goldberg and Johnston 2001; Mandal and Suzuki 2002).

Sources of arsenic

The sources of arsenic contamination in water could be

geogenic such as occurrence of arsenic in geological

formations in the form of arsenic-bearing rocks and min-

erals as well as human-induced, i.e. agricultural and

industrial, activities. The details are discussed below.

Geogenic source

Arsenic is present as a chief constituent of more than 200

minerals, together with elemental arsenic, sulphides,

arsenides, oxides, arsenites and arsenates (Smedley and

Kinniburgh 2002). Rittle et al. (1995) reported authigenic

arsenopyrite in sediments, and microbial precipitation is

responsible for the formation of orpiment (Newman et al.

1998). Many sources of arsenic contamination that are

present naturally include geothermal, biogeochemical and

geohydrological disbanding of arsenic compounds from

arsenopyrite (Mondal et al. 2006).

Anthropogenic sources

Anthropogenic sources of arsenic contamination include

processing of contaminated ores (Leist et al. 2000),

ingredient of pesticides (McArthur et al. 2001), feed

additives (Mondal et al. 2006), hazardous waste site

(seepage) (Mondal et al. 2006) and arsenic-contaminated

coal burning (McNeill and Edwards 1997; Abdullah et al.

2015). Geothermal waste, mining and industrial discharge

are the main source of river pollution which is a chief

drinking water source for large number of people (Smedley

and Kinniburgh 2002). In California, acid seepage from

Richmond mine located at Iron Mountain reported

850,000 g-l of arsenic with highest concentration reported

so far (Nordstrom and Alpers 1999).

Mobilization

Arsenic concentration in groundwater is dependent on

several factors like depth of well, characteristic and nature

of aquifers whether confined or unconfined. Sahoo and

Kim (2013) proved the fact that soils contaminated with

arsenate and higher levels of silicate or phosphate may

increase the mobility of arsenic(V) in subsurface (Sahoo

and Kim 2013). In aqueous phase, mobilization of arsenic

has been affected by differential adsorptive affinities of

arsenite and arsenate to various mineral surfaces (i.e. alu-

mina, ferrihydrite; Mondal et al. 2006). Various chemical,

physical and microbial processes initiate the subsurface

arsenic mobilization (Islam et al. 2004). Theories proposed

to justify this mobilization include: (1) oxidation of

arsenic-containing pyrites (Bhattacharjee et al. 2005), (2)

iron oxide reduction release of arsenic(V) (Oremland and

Stolz 2003), (3) reduction of iron oxides by allochthonous

organic matter (from dissolved organics in recharging

waters; Santini et al. 2002), (4) exchange of adsorbed
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arsenic(V) with fertilizer phosphates (Larios et al. 2013),

(5) reduction by microbial oxidation of sedimentary carbon

(Stüben et al. 2003), (6) displacement of arsenic by car-

bonate (Anawar et al. 2004).

Mobility of arsenic in the environment is a defining

factor that determines the risk of exposure (Frankenberger

and Arshad 2002). Arsenic exists most commonly in water

as inorganic species arsenite (H3AsO3, H2AsO3
1-,

HAsO3
2-) and arsenate (H3AsO4, H2AsO4

1-, HAsO4
2-,

AsO4
3-), which dominate in reducing environments and at

oxidizing conditions (Zhang et al. 2008). Both arsenite and

arsenate are anionic species, but at typical pH values of 6–9

arsenite remains predominantly neutral. The neutral oxi-

dation state results in increased remedial difficulties (Mo-

han and Pittman 2007). Reduction process releases 10–13

times more arsenic than oxidation (Kanel et al. 2005).

However, the competition with organic anions for sorption

sites is the main process for solid-phase release of arsenic

while redox reactions perform only negligible role.

Health risk of arsenic

Prolonged exposure to 0.04 lg-kg-day or higher concen-

tration of arsenic leads to gastrointestinal, haematological

and other peripheral neuropathic effects (Brown and Ross

2002), while consumption of high concentration at once

results in digestive system problems, i.e. stomach pain or

vomiting, which lead to coma or death. Chronic poisoning

with arsenic results in hypertension, cardiovascular and

lung diseases, diabetes and different type of cancers (i.e.

lungs, skin, liver, kidney, uterus Escobar et al. 2016).

Drinking water contaminated with even low concentrations

of 5–10 lg L-l can cause depigmentation, skin lesion and

hyperkeratosis (Duarte et al. 2011). Brown and Ross (2002)

investigated that chronic arsenic dose of 0.04 lg-kg-day or

higher for 6 months to 3 years or slow dose of 0.01 lg--

kg-day or higher for 5–15 years can cause hyperpigmenta-

tion. In 2001, United State Environmental Protection

Agency (USEPA) replaced the 50 lg L-l old slandered

with 10 lg L-l, while Pakistan Environmental Protection

Agency (PAKEPA) still uses the old standard of 50 lg-l.

Removal of arsenic from water

Selection of removal technique depends on arsenic speci-

ation, physio-chemical properties of water and concentra-

tion of SO4
-2, PO4

3- and Fe, etc. All methods are subjected

on fundamental chemical processes that are applied dis-

jointedly, concurrently or in series. All arsenic removal

technologies require pH adjustment for optimized perfor-

mance (Bissen and Frimmel 2003). Removal processes like

sorption are predominantly sensitive to pH and function

well at low pH (Wang et al. 2004). Arsenic removal is

more efficient when it is present in pentavalent state as

oxianions, i.e. H2AsO4
- and HAsO4

2-, at a pH range

between 2 and 12 under oxidizing conditions, while the

trivalent arsenic (H3AsO3) can be found at pH below 9.2,

under reducing conditions (Wang et al. 2004). Due to this

fact, many arsenic removal methods use oxidation step

prior to other processes; however, this step is facilitated

with other physical or chemical modifications for efficient

arsenic removal. Diverse arsenic removal technologies are

generally based on six principles: (1) oxidation and filtra-

tion, (2) co-precipitation: oxidation of arsenic(III) to

arsenic(V) and then arsenic(V) removal by coagulation,

sedimentation and filtration, (3) biological oxidation:

microbial oxidation of arsenic(III) to arsenic(V) followed

by removal through iron and manganese oxides, (4)

adsorption, (5) ion exchange (by cation and anion exchange

resins) and (6) membrane technology. For optimized per-

formance, various arsenic treatment technologies require

pH adjustment as it directly affects arsenic speciation in

raw water (Bissen and Frimmel 2003). Removal processes

like sorption are predominantly sensitive to pH and func-

tion well at low pH (Wang et al. 2004) because for most

media types, a pH greater than 8.5 decreases the adsorption

capacity of the media and consequently increases the

replacement cost of single-use media.

Pre-treatment

A wide range of chemicals (chlorine, ozone bleaching

powder, hydrogen peroxide or potassium permanganate)

are used to oxidize arsenic(III) to arsenic(V) in different

conditions. However, use of these chemicals can lead to

undesirable by-products (Gallard and von Gunten 2002).

Ultraviolet light was also not effective, because 7000 times

the ultraviolet dose required for Escherichia Coli inacti-

vation oxidized only 73 % arsenic(III) (Clifford and

Ghurye 2002). Ultraviolet photooxidation shows promising

conversion of arsenic(III) when water is spiked with sul-

phite (Clifford and Ghurye 2002). Dodd et al. (2006)

studied arsenic(III) oxidation kinetics through chloramines,

ozone and aqueous chlorine relation for drinking water

treatment. In addition to chemical oxidation, arsenic

oxidative process has also been catalysed by some species

of bacteria that were applied in groundwater (Jain and

Singh 2012). This technique can be applied generally under

reducing aquifer conditions holding iron and manganese

(Jain and Singh 2012). Iron- and manganese-oxidizing

bacteria can transform arsenic(III) to arsenic(V) which is

naturally present in groundwater. Arsenic can be removed

by adsorption and co-precipitation. Prior to adsorption,

soluble iron and arsenic(III) are oxidized and then

arsenic(V) adsorbs onto iron hydroxide precipitates that are

eventually filtered out of solution. Arsenic removal
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efficiency is determined by iron and arsenic ratio and

preliminary iron concentration. In some cases, ferric

coagulant is added initially for efficient arsenic removal,

and this process is independent of pH in the range of

5.5–8.5 (Violante and Pigna 2009). Furthermore, at pH 4.0

more than in neutral or alkaline systems the formation of

aluminium arsenate precipitates seemed to be favoured

(Violante and Ricciardella 2006). However, high levels of

orthophosphates, silicates and organic matter weaken the

process as it increases the competition for sorption sites

(Fields et al. 2000a, b). Numerous studies also described

arsenic sorption on manganese oxides and chemical oxi-

dation (Tournassat et al. 2002). Hug et al. (2001) investi-

gated solar oxidation and developed a simple procedure for

arsenic removal at neutral pH through locally accessible

resources, without chemicals addition and pH adjustment,

in order to cater with arsenic problem in Bangladesh

drinking water. Furthermore, the formation of iron arsenate

precipitates onto the surfaces of iron oxides seems to be

favoured at low pH values (Violante and Gaudio 2007).

Reduction in arsenic concentration has also been

observed due to water oxidation all through collection and

storage in houses (Ahmed 2001). Investigation carried out

in Bangladesh demonstrates that arsenic removal and sed-

imentation depend upon precipitating iron (Ahmed 2001).

Study showed that arsenic content reduced by more than

half through sedimentation of 380–480 lg L-l arsenic

contaminated well water with CaCO3 and 8–12 lg L-l

with iron but reduction up to desired level was not achieved

(Ahmed 2001). Different studies reported 0–25 % reduc-

tion in arsenic concentration via sedimentation process.

Generally, passive sedimentation has been suggested as

abortive approach as it failed to achieve desired arsenic

level (Kinniburgh and Kosmus 2002).

Biological removal

Microbial sorption, oxidation–reduction, complexation, co-

precipitation and methylation–demethylation can reduce or

mobilize arsenic contamination. Ex situ or in situ bioad-

sorption can be used; i.e. use of biofilm of either live or

dead microbes (Kamran et al. 2014; bacteria, algae, aquatic

macrophytes and biopolymers) for adsorption or co-pre-

cipitation of contaminants also ascertained to be useful

(Hartley et al. 2009; Kamran et al. 2015). Iron bacteria

facilitate both arsenic(III) and arsenic(V) adsorption and

precipitation onto the biological flocks (Hartley et al. 2009;

Wang and Zhao 2009). Various natural low-cost biological

materials, i.e. sedges, waste biomass milled bones, sor-

ghum and cellulose, have been investigated for remediation

(Kamran et al. 2016a). Teixeira and Ciminelli (2005)

investigated chicken feather biomass as adsorptive media

due to high protein contents. Selected arsenic(III)

adsorption at the rate of 270 lmol arsenic(III)/g of biomass

took place at relatively low pH (Teixeira and Ciminelli

2005). Natural biogenic hydroxyapatite (HAPb) acquired

from charred cow bones evidenced as favourable material

for arsenic(V) removal from water in specific conditions

(1000 lg L-l, 5 g L-l adsorbent, circumneutral pH, 24-h

contact time) (Czerniczyniec et al. 2007). Phytofiltration is

another emerging technique using plants to remove con-

taminants from water. Huang et al. (2004, 2015a, b) and

Kamran et al. (2016b) studied arsenic uptake by two

hydroponically cultured arsenic hyperaccumulating plants

(Pteris vittata and Pteris creticacv. Mayii) to remove

arsenic (20–500 lg L-l). Results show that P. vittata

reduced arsenic concentration from 20 to 0.4 lg L-l and

from 200 to 2.8 lg L-l in 24 h. Jasrotia et al. (2015)

studied the potential of aquatic plant species for phytore-

mediation of arsenic. Water hyacinth (Eichhornia cras-

sipes) and two algae (Chlorodesmis sp. and Cladophora

sp.) Cladophora sp. was perceived to tolerate up to

6 mg L-1 of arsenic, whereas water hyacinth and Chlor-

odesmis sp. could persist under 2 and 4 mg L-1 arsenic,

respectively. It was found that Cladophora sp. can reduce

arsenic concentration from 6 to 0.1 mg L-l, while water

hyacinth reduced only 20 % of arsenic. Thus, Cladophora

sp. was proposed to be the best option for coinciding

treatment of both arsenic-enriched sewage and brine.

A phytoremediation study was conducted to evaluate the

arsenic uptake potential of two Cyperaceae species,

Schoenoplectus americanus and Eleocharis macrostachya,

collected near the towns of Chihuahua State, Mexico

(Bundschuh et al. 2010). It was found that both species are

able to survive at high arsenic levels and can be used for

rhizofiltration because 97 % of the plants tolerate the

arsenic with no visible effect on plant growth. Bundschuh

et al. (2007) investigated dried macroalgae (Spyrogira

spp.) for arsenic removal from acid mine drainage, and

80–90 % removal was accomplished within 4 days.

Aquatic plant species, such as species Ranunculus tri-

chophyllus, Ranunculus peltatus spp. saniculifolius, L.

minor and Azolla caroliniana, and the leaves of Juncus

effusus, also had very high potential for arsenic phytofil-

tration when they were introduced into constructed treat-

ment wetlands or natural water bodies (Parmar and Singh

2015).

Another relatively emerging method is the biological

oxidation of manganese and iron as a treatment method for

arsenic removal. Groundwater contaminated with arsenic is

mostly under reducing conditions and contains iron and

manganese. Based on this fact the filters for removal of

iron and manganese are populated with iron- and man-

ganese-oxidizing bacteria, which can in turn oxidize

arsenic(III) efficiently. Currently, the role of microbial

processes in mineral oxide formation and removal of
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arsenic during water treatment is unknown. The formation

of manganese(III/IV) oxides contributes to abiotic arseni-

c(III) oxidation and immobilization of arsenic(V) by

sorption to ferric(III) oxides (Nitzsche et al. 2015a, b).

Biological iron and manganese oxidation has also been

applied for groundwater removal of arsenic without any

oxidizing agents (Zouboulis and Katsoyiannis 2005). Rate

of bacterial oxidation of arsenic(III) to arsenic(V) is con-

siderably higher than manganese oxide-added abiotic oxi-

dation (Katsoyiannis et al. 2004). Therefore, bacteria play

vital role in arsenic(III) oxidation and reactive manganese

oxide surfaces generation for dissolved arsenic(III) and

arsenic(V) removal.

Co-precipitation

Co-precipitation has been widely practised in various pilot-

scale applications to treat arsenic-contaminated water.

Three processes are normally used for chemical precipita-

tion (Chwirka et al. 2000; Sancha 2006): (1) lime soften-

ing, (2) gravity coagulation–filtration and (3)

microfiltration. Lime softening solely for arsenic removal

has limitations as it is not economical or cost-effective.

However, lime softening when accomplished for removing

hardness, this process can be further enhanced to remove

arsenic. Additional lime is added in order to increase the

pH above 10.5 and to remove arsenic. In this pH range

magnesium hydroxide precipitates and arsenic can be

removed by co-precipitation. However, arsenic co-precip-

itation by calcium carbonate (i.e. pH \0.5) is not very

efficient (removal efficiency\10 %; Fields et al. 2000b).

Coagulation

The coagulation–filtration process is rapidly used tech-

nique using iron(III) for arsenic(V) removal in water

treatment process on pilot scale. For effective arsenic

removal, the coexisting arsenic(III) is commonly converted

to arsenic(V) before removal. Research studies show more

efficient removal of arsenic(III) with higher initial con-

centrations; however, no significant removal efficiency was

observed for initial arsenic(III) concentrations in range of

10–100 lg-l. The process using iron(III) can safely meet

the permissible limit of 10 lg L-l, only when the initial

arsenic(III) concentration is less than 25 lg-l and the iro-

n(III) amount more than 5 mg L-l. The efficient removal

of arsenic(III) is limited due to the fact that arsenic(III) is

usually present in uncharged H3AsO3 form under neutral

pH conditions which is not adsorbed on iron oxy-hydrox-

ides (FeOOH); the product of iron(III) hydrolysis (Ou-

zounis et al. 2015).

Coagulation–filtration includes the adsorption of arsenic

to iron hydroxide. The process can trap arsenic(V) by

particle agglomeration. However, pre-oxidation is required

due to arsenic(III) removal efficiency and neutral charge at

natural pH conditions (Pokhrel et al. 2005). Generally,

water characteristics determine the efficiency and suit-

ability of the system, i.e. natural organic matter, dosage and

type of coagulant, pH and mixing intensity (Pokhrel et al.

2005). In general, under optimized conditions, coagula-

tion–filtration systems can achieve over 90 %

arsenic(V) removal and produce water with less than

5 lg-l of arsenic(V). Research shows that iron-based

coagulants, i.e. ferric sulphate and ferric chloride, are more

efficient in removing arsenic(V) as compared to alu-

minium-based coagulants (Pokhrel et al. 2005). Coagula-

tion-based microfiltration uses the same coagulation

process with modification of the granular media filtration

step. However, the membrane needs to be backwashed

periodically in order to remove solids and restore its

hydraulic capacity (Thirunavukkarasu et al. 2003). New

methods to remediate arsenic-contaminated water continue

to be studied, particularly to fill the need for accessible

methods that can significantly impact developing commu-

nities. A combination of cactus mucilage and ferric(Fe(III))

salt was investigated as a flocculation–coagulation system

to remove arsenic(As) from water. Arsenic(V) solutions,

ferric nitrate and mucilage suspensions were mixed and left

to stand for various periods of time. At neutral pH, removal

was dependent on iron(III) and mucilage concentration,

and the age of the iron(III) solution. It was found that

arsenic removal and settling rates were pH dependent;

arsenic removal was between 52 (high pH) and 66 % (low

pH) (Fox et al. 2016). Methylated arsenic is present

everywhere in earth system (Hu et al. 2015a, b). So far,

however, little information has been collected regarding

their removal by coagulation. Methyl substitution during

coagulation process has been used for monomethyl and

dimethyl arsenate from drinking water (Hu et al. 2015a, b).

By increasing the methyl group, negatively charged arsenic

species decreased, which decreased the removal of

methylated arsenic by coagulation. Hydroxide flocks

adsorption was the main mechanism in coagulation.

Additionally, traditional oxidants use and aid of coagula-

tion revealed inadequate assistance for refining coagulation

removal of dimethyl arsenate (Hu et al. 2015a, b).

Ion exchange

Ion exchange is physio-chemical method where exchange

of ions took place between a solid resin and solution phase.

The solid resin is typically a network of three-dimensional

hydrocarbons holding many electrostatically bound ioniz-

able groups. In treatment of drinking water, this technique

is mostly applied for removing hardness and nitrates. This

method can typically decrease arsenic concentrations from
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50 to 10 lg L-l (Nguyen et al. 2009). However, its effi-

ciency depends on the characteristics of untreated water

and the contaminants. However, ion exchange is less

common than precipitation–co-precipitation technology

(Nguyen et al. 2009).

Zirconium oxide nanoparticles (HAIX–Zr) impregnated

with hybrid anion exchange resins demonstrate high

arsenic removal capacity. Non-hazardous and easy-to-

transport, pre-calcined zirconium oxide has been used for

the synthesis of hydrous zirconium oxide and tested for

effective removal of arsenic(V) and arsenic(III). Over

several cycles of exhaustion and regeneration, phosphate

and silica competed for arsenic adsorption. Due to high

regeneration ability of hydrous zirconium oxide nanopar-

ticles (greater 90 %), hybrid anion exchange resins became

more sustainable option for regeneration and reuse of

hydrous zirconium oxide nanoparticles for effective

reduction of arsenic concentration for numerous cycles.

Dissimilar to other iron- or aluminium-based adsorbents,

hydrous zirconium oxide nanoparticles are chemically

stable at landfill conditions and could be disposed safely

without leaching arsenic (Padungthon et al. 2015).

Membrane technology

Membrane technology eliminates an extensive variety of

pollutants from water. But it also yields a higher volume of

residues and is considered more costly as compared to

other treatment technologies. Thus, adsorption precipita-

tion–co-precipitation and ion exchange are more com-

monly used. Four chief membrane techniques include:

reverse osmosis, microfiltration, ultrafiltration and

nanofiltration. All the afore-mentioned processes are

derived by pressure and depend on the size of particles to

be passed through the membranes or by the pore size of

membrane (Nguyen et al. 2009). The pore size determines

the force required to drive fluid across the membrane;

reverse osmosis and nanofiltration require higher pressure

(50–150 psi), while ultrafiltration and microfiltration

require relatively low pressure (5–100 psi) (Nguyen et al.

2009). Since arsenic species dissolved in water tend to have

relatively low molecular weights, only nanofiltration and

reverse osmosis membrane processes are likely to effec-

tively treat dissolved arsenic (Nguyen et al. 2009). Reverse

osmosis and nanofiltration primarily remove arsenic by

categorization of size. A semipermeable membrane when

exposed to a pressure gradient permits water to pass while

retaining specific ions. Reverse osmosis membranes

require higher driving pressures and are more selective

then nanofiltration membranes. Arsenic rejection in reverse

osmosis and nanofiltration is not sensitive to pH except that

arsenic(III) is more efficiently rejected at pH greater 8

(Twidwell et al. 2005) because it is uncharged at low pH

but anionic at higher pH. Jain and Singh (2012) investi-

gated removal efficiency of arsenic using nanofiltration

membranes in China by varying initial arsenic concentra-

tion, pH, natural organic matter and other ionic com-

pounds. Results show that nanofiltration point-of-use

(POU) systems were most suitable to treat arsenic-enriched

groundwater in areas of suburban China. Effective arseni-

c(III) removal by an oxalic acid complex is revealed by

hybrid distillation system of forward osmosis membrane. It

is very efficient process as it draws solute along with high

water fluxes and insignificant reverse fluxes in forward

osmosis to determine the factors involved in arsenic(III)

removal. Comparatively high water fluxes (28 LMH) for

forward osmosis mode and under the pressure lagging

osmosis was achieved by using 1000 ppm arsenic(III)

solution as the feed at 60 �C. Removal of arsenic(III) up to

21.6 % and water recovery (forward osmosis mode)

48.3 % (pressure restarted osmosis mode) were also

achieved in 2 h (Ge et al. 2016).

Adsorption technology

Adsorption technology has been extensively used to treat

arsenic-contaminated groundwater. The technology can

minimize arsenic concentrations to \10 lg L-l. Its effi-

ciency is affected by a variety of untreated water charac-

teristics and contaminants. The media used for adsorption

is usually column packed. The contaminants get adsorbed

as the contaminated water is passed through the column.

When adsorption sites reach the threshold, the column must

be regenerated or replaced with new media. Most com-

monly used adsorption media for arsenic removal includes

activated alumina (AA), iron-coated sand, granular ferric

hydroxide, indigenous cartridges and filters and other

mixed adsorbents. The effectiveness of sportive media is

dependent on the consumption of oxidizing agent that helps

to adsorb arsenic.

Activated alumina

Activated alumina (AA) was the first adsorptive medium

that was successfully used for arsenic removal from

drinking water supplies (Ungureanu et al. 2015). It is a

granular, porous material possessing good properties of

sorption. Activated alumina grains have a high surface area

for sorption and a usual diameter of 0.3–0.6 mm. It

removes arsenic through microbial oxidation of arsenic(III)

following a chemical adsorption step. A mixed culture of

heterotrophic bacteria with high arsenic(III) oxidizing

activity was obtained by acclimation to arsenic(III) from a

soil sample that was free from contamination. The resultant

mixed culture contained some genera of heterotrophic

arsenic(III)-oxidizing and arsenic-tolerant bacteria:
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Haemophilus, Bacillus and Micrococcus. The isotherms of

arsenic(III) and arsenic(V) adsorption on activated alumina

indicate that bacterial oxidation of arsenic(III) to

arsenic(V) proves to be a significant pre-treatment process

for arsenic removal (Baig et al. 2015; Ike et al. 2008).

Industrial based adsorbents (IBS)

Adsorption on industrial based adsorbents is a promising

technology for arsenic removal. Zero-valent iron, granular

ferric hydroxide, and modified iron, iron-coated sand and

iron oxide are commercially available as adsorbents. Main

driving force behind this process is chemisorption which is

an irreversible process (Emdadul et al. 2016). Iron-based

sorbents are considered a promising solution for arsenic

removal as compared to the performance of activated

alumina (Hussam and Munir 2007). Cornejo et al. (2008)

have proposed a method based on zero-valent iron, solar

radiation and lemon juice as adsorbent materials. By using

1.3 g L-l of steel wool and one drop (ca. 0.04 mL) of

lemon juice under solar radiation, arsenic removal attained

up to 99.5 %. This method is very efficient and economical

to treat arsenic-contaminated water. Ko et al. (2007) used

sand coated with colloidal iron oxide for arsenic removal.

Sylvester et al. (2007) used hybrid sorbent for arsenic

adsorption by using nanoparticles of hydrous iron oxide

while Chen et al. (2007) studied iron-impregnated activated

carbons and found it very effective for arsenic removal.

Iron oxide-coated Aspergillus niger biomass has also been

used for arsenic removal (Pokhrel and Viraraghavan 2008).

Thermodynamic study of the process demonstrated a

spontaneous arsenic sorption on biomass by chemisorption

process. Martin et al. (2007) synthesized iron(III) salt of

mobilized ligands Octolig-21 which is available commer-

cially, and it was found effective for arsenic removal from

aqueous solutions.

Indigenous material

Various adsorbants are available for arsenic adsorption that

have been developed from indiginous material. Iron ore,

oxidizing iron, clay and cellulose-containing red soil have

great capacity to adsorb arsenic, and some filters have been

developed based on these materials, i.e. cellulose filters

(Mandal 2015). A three-pitcher filter of brick chips and

sand as filtering media was developed in Bangladesh, and

baseline data collected after 1, 6 and 12 months demon-

strate that due to inadequate maintenance this technology is

only a short-term measure (Milton et al. 2007).

In recent years, various different adsorbents have been

developed for arsenic removal. Hlavay and Polya (2005)

characterized iron hydroxide-coated alumina for the treat-

ment of arsenic-contaminated water. Hydrous iron oxide

nanoparticles (Sylvester et al. 2007), chitosan (Chen and

Chung 2006), modified fungal biomass (Pokhrel and

Viraraghavan 2006), iron oxide minerals (Öztel et al.

2015a, b), activated neutralized red mud (Tor et al. 2009),

iron-containing mesoporous carbon (Baikousi et al. 2015),

natural haematite, magnetite and goethite (Dai et al. 2016)

and various other materials have been tested as promising

materials for arsenic removal. Coating natural biopolymer,

chitosan, on ceramic alumina using a dip coating process

has also been developed as a novel biosorbent (Boddu et al.

2008).

Agricultural wastes

Agricultural wastes are by-products, typically underused or

unused for animal feed. Agricultural by-products such as

rice husks were used for removal of arsenic from water,

and it was found that uptake of arsenic is directly propor-

tional to temperature change (Malik et al. 2009). Different

studies have used untreated rice husk for aqueous arsenic

remediation (Amin et al. 2006 more references). Arsenic

removal of both arsenic(III) and arsenic(V) using rice husk

column was attained using initial concentration of arsenic

100 g L-l with pH of 6.5 and 6.0, respectively. Blue Pine

(Pinus wallichiana) wood shavings, walnut (Juglans regia)

shell and chick pea testa were also used for arsenic reme-

diation from aqueous solutions. Different conditions that

affect the adsorption, such as pH, contact time, biosorbent

dose, and temperature and adsorbate concentration, were

studied. Blue Pine wood shavings proved a promising

potential as a remediation material for arsenic removal

from water samples. Walnut shell pieces also displayed

good efficiency for biosorption (88 %; Saqib et al. 2013).

Geological materials

Geological materials are emergent remediation materials for

house-level treatment in rural settlements, especially if the

materials are locally available and can be collected by the

population. Numerous natural iron- and aluminium-rich

minerals such as haematite (a-Fe2O3), goethite (a-

FeO(OH)), gibbsite (g-Al(OH)3) and soils or sediments

containing these minerals (e.g. oxisols, laterite), indigenous

limestone (Soyatal), iron-coated zeolites, clay minerals

(montmorillonite, bentonite) were tested in either laboratory

prepared or natural waters, and recognized as substitute

adsorbents for small water volumes (Alvarez-Silva et al.

2009; Armienta et al. 2009). Iron/manganese oxide-based

materials, like ‘‘greensand’’ and other several natural min-

erals, have also been inspected (Mohan and Pittman 2007).

Ordinary sand filters can also be a viable arsenic removal

option from groundwater up to around 400 lg L-l. This

method has been ascertained very effective at household
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level in Vietnam (Luzi et al. 2004). Recent technologies used

for arsenic removal are given in Table 1.

Fluoride

Fluorine is the 13th most abundant element on earth. It

cannot exist separately in environment without conjoining

with other substances to become fluoride. The chief source

of fluoride for human intake is contaminated groundwater

by geological sources (maximum concentrations reaching

30–50 mg L-l). Fluoride contamination level depends

upon the nature of rocks and existence of fluoride-bearing

minerals in groundwater. Fluoride concentrations in water

are dependent on fluorite solubility in calcium-poor aqui-

fers, and higher fluoride solubility should be expected in

the groundwater. Fluoride is naturally present in soil,

water, plants and animals in trace quantities. In ground-

water, fluoride concentrations range from trace quantities

to over 25 mg L-1 naturally. When fluoride is ingested

orally it is taken up by body tissues, with long-term

deposition in teeth and bones. With the increasing indus-

trialization, water bodies with excessive concentration of

fluoride are becoming a matter of great concern.

Sources of fluoride in groundwater

Geogenic sources

Chief source of fluoride in the groundwater is fluoride-

bearing rocks, and weathering or leaching from these rocks

contaminates the groundwater reserves (Handa 1975; Hem

1985). Highly reactive fluorine is naturally found as cal-

cium fluoride (CaF2). It is an indispensable constituent in

minerals like topaz, fluorite, fluorapatite, cryolite, phos-

phorite, theorapatite. Fluoride exhibits three forms, fluo-

rospar or calcium fluoride (CaF2), apatite or rock phosphate

(Ca3F (PO4)3) and cryolite (Na3AlF6). Fluoride concen-

tration is five times more in granite than in basalt rocks.

Likewise, higher concentration of fluoride is present in

shale than sandstone and limestone. Higher concentration

of fluoride is present in alkaline rocks (1200–8500 mg-kg)

(Dey et al. 2004). In groundwater low calcium and high

bicarbonate alkalinity favours high fluoride concentration.

Fluoride-contaminated water is soft with high pH and hold

huge amount of silica. Depending upon different variables,

groundwater fluoride concentration ranged from

\1.0 mg L-1 to more than 35.0 mg L-l.

Anthropogenic sources

Anthropogenic sources of fluoride contamination in

groundwater include: (1) agricultural field run-off and

infiltration due to use of fertilizers that contain high con-

centration of fluoride, (2) septic and sewage treatment

system discharges, (3) seepage from industrial waste.

Health risk of fluoride

According to World Health Organisation report (WHO

2004) more than 200 million people around the globe rely

on water containing fluoride concentrations that exceed the

World Health Organisation guidelines of 1.5 mg L-l.

Depending upon the amount of fluoride in drinking water

and extent of uptake, impact of fluoride uptake can be

beneficial or detrimental to mankind. In drinking water

fluoride has a narrow beneficial concentration range for

human health. Small quantities usually have beneficial

effect on rate and occurrence of dental caries, mainly

among children (Mahramanlioglu et al. 2002). On the other

hand, excess intake can lead to numerous diseases, i.e.

osteoporosis, arthritis, brittle bones, cancer, infertility,

brain damage, alzheimer syndrome and thyroid disorder

(Harrison 2005). Fluorosis is a common symptom of high-

fluoride ingestion revealed by teeth mottling in mild cases

and bone deformities and neurological damage in severe

cases (Fan et al. 2003). Some studies suggest that fluoride

may hamper the deoxyribonucleic acid (DNA) synthesis

(Zhou et al. 2004). High concentrations of fluoride can also

affect with carbohydrates, lipids, proteins, vitamins and

mineral metabolism (Islam and Patel 2011). Fluoride tox-

icity can take place by numerous ways. If ingested, fluoride

firstly affects the intestinal mucosa, and later in stomach it

can form hydrofluoric acid, followed by gastrointestinal

irritation (Islam and Patel 2011). It can also affect

numerous other enzymes disrupting oxidative phosphory-

lation, glycolysis, coagulation and neurotransmission (Is-

lam and Patel 2011). Individuals with kidney ailment have

a highest vulnerability to accumulative lethal effects of

fluoride (Xiong et al. 2007). In addition, lethal dose of

fluoride at once has been reported to disrupt kidney func-

tion over short-term exposures both in humans and in

animals (Xiong et al. 2007). Fluoride can affect brain and

pineal gland functions (Xiong et al. 2007). Fluoride mainly

accumulates in pineal gland within the body, at a concen-

tration higher than either teeth or bone (Xiong et al. 2007).

Fluoride exposure can also cause bladder cancer, pre-

dominantly among the workers exposed to high concen-

tration of fluoride in the workplace (Xiong et al. 2007).

Technologies for fluoride removal

The traditional fluoride removal technologies from drink-

ing water include liming along with fluorite precipitation.

The precipitation and coagulation processes with iron(III)

(Tressaud 2006), activated alumina (Ghorai and Pant 2005)
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and calcium (Yin et al. 2015a, b) have been studied

extensively.

Ion exchange and coagulation

Ion exchange (Meenakshi and Viswanathan 2007; Popat

et al. 1994) and reverse osmosis (Viswanathan and Mee-

nakshi 2009) have been mainly used for fluoride removal

from drinking water. Nevertheless, there are certain limi-

tations for the application of these methods including high

operational and maintenance costs, complex treatment

procedure and generation of secondary pollution.

Aluminium chloride (AlCl3) and polymer aluminium

chloride (PACl) coagulation behaviour towards fluoride

had been investigated at different basicity. Coagulants

attained optimum fluoride removal above pH 6–7, while

polymer aluminium chloride revealed higher removal

efficiency as compared to aluminium chloride (AlCl3)

above pH 4–9. Fluoride removal by these coagulants

increased with fluoride concentrations from 0 to

20 mg L-l. At high concentration of 80 mg L-l, removal

efficiency of aluminium chloride decreases to as low as

13.1 % due to the formation of soluble aluminium fluoride

(Al–F) complexes. On the other hand, this effect had not

been showed by polymer aluminium chloride due to the

stronger stability of aluminium species (Al13 or Alb).

Polymer aluminium chloride with diverse aluminium spe-

cies showed higher removal efficiency towards fluoride

than aluminium chloride, especially at high fluoride con-

centration or under acidic and alkaline pH conditions (He

et al. 2016a, b).

Toxic dissolved fluoride and calcium fluoride (CaF2)

nanoparticle pollution is a serious environmental concern

for the semiconductor industry. Coagulation combined

with electroflotation technique is applied to simultaneous

removal of suspended matter and fluoride. Under optimum

conditions, the solid–liquid separation efficiency is about

97 % in terms of turbidity removal which corresponds to a

residual turbidity of 4.4 nephelometric turbidity units

(NTU) complying with the standard limit (5 NTU), while

fluoride efficiency removal may reach 73 % corresponding

to 10 mg L-l, which is below the environmental recom-

mendations (Guzmán et al. 2016a, b). In general, coagu-

lation methods are effective in defluoridation, but they are

not successful in bringing fluoride concentration to desired

levels (He et al. 2016a, b).

Membrane technologies

Membranes have advantage that they do not require addi-

tives, but their key disadvantage is that they are relatively

expensive to install and operate. Moreover, they are prone to

fouling, scaling or membrane degradation (Aoudj et al.T
a
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le
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2015). In recent years, reverse osmosis membrane method

has developed as an ideal substitute to provide safe drinking

water without posing the complications related to other

conventional methods. Efficiency of the process depends

upon various factors, i.e. characteristics of raw water, tem-

perature and systematic monitoring and maintenance. This

method is highly effective for fluoride removal. Membranes

act as strong impediment to suspended solids, inorganic and

organic pollutants, pesticides, micropollutants and

microorganisms (Maheshwari 2006a, b). But the key short-

coming of this technique is that it removes all the ions present

in water. The process is competitively expensive than other

methods (Maheshwari 2006a, b).

Nalgonda technique

In some developing countries, Nalgonda technique is

commonly used for water defluoridation (Waghmare and

Arfin 2015). In this technique alum, lime and bleaching

powder added has been added to raw water followed by

rapid mixing, flocculation, sedimentation, filtration and

disinfection. Insoluble aluminium hydroxide flocks sedi-

ment along with co-precipitation of fluoride, while

bleaching powder acts as disinfectant. However, high

residual aluminium concentration (2–7 mg L-l) in the

treated water than the set World Health Organisation

standard (0.2 mg L-l; Ayoob et al. 2008b; Maheshwari

2006a, b) is the main disadvantage of this process.

Adsorption

Among several processes for fluoride removal from water,

adsorption offers most acceptable results and seems to be a

most striking method for fluoride removal in terms of design

simplicity, cost and operation (Mohapatra et al. 2009).

Activated alumina has been used for years among the

researchers for removal of fluoride (Craig et al. 2015). Farrah

et al. (1987) studied aluminium hydroxide (Al(OH)3), alu-

minium oxide (Al2O3) for fluoride adsorption for pH range

between 3 and 8. Results indicate that at pH less than 6 nearly

all amorphous gel gets dissolved and aluminium fluoride

(AlF) complexes were formed. The quantity of substrate

transformed into aluminium fluoride improved with weak-

ening pH and augmenting preliminary fluoride concentra-

tion. Ku and Chiou (2002) deliberated the influence of pH on

adsorption of fluoride, and highest fluoride removal

(16.3 lg-g) was establishedwhich ranged between pH 5 and

7. On the basis of low activation energy values, conclusion

was made that fluoride removal occurred due to non-specific

adsorption. Activated alumina surface was modified by

researchers in order to increase its efficiency. La(III) and

Y(III) were impregnated on aluminium in order to alter

alumina (Tokunaga et al. 1997). Comparisons were made

between impregnated alumina and original alumina under a

variety of conditions. The removal efficiency of modified

alumina was found highest for fluoride than phosphate,

arsenate and selenite. Broad research has been conducted for

defluoridation of water using diverse calcium salts because

calcium has great association with fluoride. Turner et al.

(2005) carried out defluoridation studies using calcite, and

batch studies were performed. Using atomic force micro-

scopy (AFM) and X-ray photoelectron spectroscopy (XPS)

and other potential measurements confirmed that combined

action of surface adsorption and precipitation reactions was

responsible for fluoride adsorption from water and degree of

adsorptionwas based on calcite surface area (Islam and Patel

2007). These adsorbents have extensively studied for

defluoridation as iron had strong attraction for fluoride.

Mostly adsorbents used for defluoridation need pH because

they are unstable at extreme pH values. Thus, wastewater

frompolishing industries contains high fluoride and stands as

a major environmental problem. Due to its magnetic prop-

erties and stability at lower pH, schwertmannite is being used

for the defluoridation of polluted wastewater (Eskandarpour

et al. 2008).

Nanotechnology

Nanotechnology is an emerging and promising technology

in a variety of fields. Use of nanoparticles as adsorbents for

the treatment of water has also gained broad consideration

in past few years. Due to their smaller sizes, huge surface

area, elevated mechanical strength and incredible electrical

conductivities carbon nanotubes (CNTs) have gained

enormous interest and became potential adsorbents. Li

et al. (2001) applied carbon nanotubes as supportive media

to deposit aluminium oxide (Al2O3) and discovered the

prospect of carbon nanotubes for defluoridation of drinking

water. Isotherms data indicated that best defluoridation

results were achieved in 5–9 pH range. Defluoridation of

water was performed using activated carbon nanotubes

which were developed by xylene decomposition in the

presence of ferrocene catalyst (Li et al. 2003). Wang et al.

(2009) carried out defluoridation by using aluminium

hydroxide (nanoscale in comparison with traditional

methods makes these nanoparticles more suitable media).

Zhao et al. (2010) combined the advantages of aluminium

hydroxide (Al(OH)3) and magnetic nanoparticles to fabri-

cate nanosized adsorbents with high surface area, high

affinity towards fluoride and good magnetic separability, to

develop a new kind of magnetic fluoride adsorbent.

Natural materials

Natural materials which are easily accessible in huge

quantity are being investigated for F-contaminated water
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(Biswas et al. 2010). Studies have also been carried out on

fluoride removal with the help of low-quality coal (Borah

and Dey 2009). Acid-modified raw laterite has also been

evaluated for defluoridation of water (Maiti et al. 2011).

Alteration of bentonite clay using lanthanum, magnesium

and manganese was also carried out for its adsorption and

defluoridation activity (Kamble et al. 2009). In order to

achieve effective fluoride removal, low-cost bentonite clay

was modified chemically by MgCl2 (Thakre et al. 2010).

Biosorption

Various biosorbents have been developed for fluoride

removal. Among a variety of biosorbents available for

defluoridation, wide attention has been given to derivatives

of chitin and chitosan because of their cost-effectiveness

and higher concentration of –NH- and OH functional

groups they showed considerable adsorption capacity for

different of water pollutants. These show significant

adsorption potential for the removal of various aquatic

pollutants. A comparison of adsorption efficiency for

defluoridation was made between chitin, chitosan and 20 %

La-chitosan adsorbents (Kamble et al. 2007). Fluoride

uptake comparison was made between distilled water and

contaminated actual water, and results indicate that appli-

cation was high in distilled water than field water due to

competing ions effect and high pH. Yao et al. (2009) have

tested modified chitosan for defluoridation of water. Opti-

mum pH for defluoridation was 7.0, and under acidic

conditions chitosan was found unstable. Several plant-

based biosorbents such as dried orange juice residue,

tamarind (Tamarindus indica) fruit shell carbon, Morringa

indica-based activated carbon have been studied very

recently by various investigators and reported for fluoride

removal from water with different degrees of success.

Neem leaf powder (NLP) developed from the mature

leaves of neem (Azadirachta indica) trees has also been

shown to be an active biosorbent for removal of fluoride

from water (Bharali and Bhattacharyya 2015a, b).

Waste materials

Industrialization produces enormous quantity of waste in

the form of by-products. To transform these materials into

cheap adsorbents will be the most appropriate use of these

waste products in order to treat wastewater. A variety of

treated and untreated industrial by-products are evaluated

for defluoridation of water. The ability of fly ash (a thermal

power plant waste) to remove fluoride from water and

wastewaters was studied (Husain et al. 2015). The residue

of industrial waste which is produced during process of

alum in thermal power plants was evaluated by Chaturvedi

et al. for defluoridation of water (Chaturvedi et al. 1990).

High fluoride removal efficiency was observed at high

temperature and low fluoride concentration under acidic

conditions. The highest removal efficiency was observed

by using Langmuir isotherm of 20.3 mg-g (Chaturvedi

et al. 1990). Marble powder, brick powder and hydrated

cement had been studied for the removal of fluoride from

drinking water (Bibi et al. 2015a, b).

Only few researchers have evaluated construction

materials as adsorbents for the treatment of fluoride-con-

taminated water. Yadav et al. (2006) evaluated and com-

pared brick powder for fluoride removal from water and

compared with analytical grade activated charcoal.

Removal % of brick powder was found 56.8 % for a pH

range of 6.0–8.0. While for activated charcoal, removal

efficiency decreased by increasing pH. Under optimum pH

interaction between metal and fluoride ions takes place.

Other competing ions did not interfere with the defluori-

dation process. By increasing the contact time from 15 to

20 min, the defluoridation efficiency increased up to 54.4

per cent by brick powder and up to 80 per cent with acti-

vated carbon. Comparison between two adsorbents

revealed that brick powder had better adsorption efficiency

and it is cost-effective. Concrete (gas), a material used for

construction had also proved very effective adsorbent for

defluoridation (Oguz 2005). Hydrated cement had also

been tested as a potential adsorbent for defluoridation. The

potential of hydrated cement (HC) for the removal of

excess fluoride from aqueous solution has also been tested

(Kagne et al. 2008). The kinetics of defluoridation effi-

ciency from water by alumina cement granules (ALC) has

also been examined (Ayoob et al. 2008a). A comparison of

fluoride removal efficiency of ALC from synthetic water

and natural ground water was also studied by Ayoob and

Gupta (2009).

Agricultural waste

The use of agricultural waste products for treatment of

water is very cost-effective option because of their easy

availability and cost-effectiveness. Parmar et al. (2006)

used aluminium- and calcium chloride (Al/CaCl3)-treated

corn cobs powder for defluoridation of water. Al-/Ca-

treated cobs showed excellent results. Mohan et al. (2008)

used different agricultural materials including coconut

shell, shell fibres and rice husk in order to remove pollu-

tants, i.e. fluoride. Carbon of coconut shell proved best

adsorbent. Sivabalan et al. (2003) studied fluoride adsorp-

tion by using palm seed coat charcoal. Adsorption process

depends upon pH, and adsorption efficiencies were found

higher in range of 4–8. Zirconium-treated coconut shell

carbon was examined to treat water contaminated by flu-

oride (Sathish et al. 2007). Researchers have also investi-

gated the potential of zirconium-impregnated cashew nut
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shell carbon and compared its performance with that of

cashew nut shell carbon for fluoride removal from aqueous

solutions (Alagumuthu and Rajan 2010).

Six principles (biological oxidation, oxidation–filtration,

co-precipitation, adsorption, ion exchange and membrane

technology) are the basis of different technologies avail-

able for the removal of arsenic and fluoride from contam-

inated water. Every technique has its own merits and

demerits. Typical treatment efficiencies for processes

operated under normal conditions are provided in Tables 1

and 2. Figure 1 provides the comparison for different

materials that have been used recently for arsenic and

fluoride removal, and their adsorption capacities have been

compared. In case of arsenic adsorption capacities of

nickel- and iron-based materials are much higher than other

materials, while for fluoride, aluminium-based materials

showed tremendous adsorption capacity towards fluoride.

Conclusion

Drinking water contamination by arsenic and fluoride is a

problem just about anywhere in the world, predominantly in

developing countries of Asia. These contaminants are

(a)

(b)

Fig. 1 Comparison of uptake capacities of different materials used during 2015–2016: a for As, b for F
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generally present in geological formations, so remediation

technologies are the only option to diminish the effect.

Traditional treatment processes such as coagulation–filtra-

tion, lime softening, iron/manganese oxidation and mem-

brane filtration have been used in water treatment plants for

the removal of these contaminants. Ion exchange, filtration

and adsorption have been employed at domestic level.

Advanced technologies, i.e. biological treatment, reactive

membrane, phytoremediation, are also used for water treat-

ment of arsenic contamination. Yet, various techniques are

still at experimental stage and some have not been estab-

lished at full scale. It is suggested that combination of ion

exchange, filtration and adsorption as a low-cost chemical

treatment with bioremediation could be advantageous for the

decontamination of drinking water. Arsenic and fluoride

alleviation approach should be adopted according to the

specific geographic and morphological characteristics and

socio-economic conditions of the area. All removal tech-

nologies discussed above have advantages and disadvan-

tages, so suitable technology for specific situation should be

opted. Technologies should be modified on pilot-scale

implementation to effectively remove these contaminants by

reducing operational andmaintenance cost in a user-friendly

manner. Inmany affected areas, arsenic and fluoride removal

method could be the only alternative for safe water supply.

So it is strongly recommended that efficient technologies that

are found effective and safe should be indorsed for arsenic

and fluoride removal in affected areas to evade ingestion of

these toxins via drinking water.
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Electrochemical oxidation and removal of arsenic using water-

soluble polymers. J Appl Electrochem 45:151–159

Santini JM, Sly LI, Wen A, Comrie D, Wulf-Durand PD, Macy JM

(2002) New arsenite-oxidizing bacteria isolated from australian

gold mining environments-phylogenetic relationships. Geomi-

crobiology 19:67–76

Saqib ANS, Waseem A, Khan AF, Mahmood Q, Khan A, Habib A

et al (2013) Arsenic bioremediation by low cost materials

derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans

regia). Ecol Eng 51:88–94

Sathish RS, Raju N, Raju G, Nageswara Rao G, Kumar KA,

Janardhana C (2007) Equilibrium and kinetic studies for fluoride

adsorption from water on zirconium impregnated coconut shell

carbon. Sep Sci Technol 42:769–788

Schreiber M, Simo J, Freiberg P (2000) Stratigraphic and geochem-

ical controls on naturally occurring arsenic in groundwater,

eastern Wisconsin, USA. Hydrogeology 8:161–176

Sehaqui H, Mautner A, de Larraya UP, Pfenninger N, Tingaut P,

Zimmermann T (2016) Cationic cellulose nanofibers from waste

pulp residues and their nitrate, fluoride, sulphate and phosphate

adsorption properties. Carbohydr Polym 135:334–340

Sevcenco A-M, Paravidino M, Vrouwenvelder JS, Wolterbeek HT,

van Loosdrecht MC, Hagen WR (2015) Phosphate and arsenate

removal efficiency by thermostable ferritin enzyme from Pyro-

coccus furiosus using radioisotopes. Water Res 76:181–186

Shih YJ, Huang RL, Huang YH (2015) Adsorptive removal of arsenic

using a novel akhtenskite coated waste goethite. J Clean Prod

87:897–905

Singh TP, Majumder C (2015) Removal of fluoride from industrial

waste water by using living plant (Ipomoea aquatica). Mete-

orites 28:30

Sivabalan R, Rengaraj S, Arabindoo B, Murugesan V (2003)

Cashewnut sheath carbon: a new sorbent for defluoridation of

water. Ind J Chem Technol 10:217–222

Sklari S, Pagana A, Nalbandian L, Zaspalis V (2015) Ceramic

membrane materials and process for the removal of As(iii)/

As(v) ions from water. J Water Process Eng 5:42–47

Smedley P, Kinniburgh D (2002) A review of the source, behaviour

and distribution of arsenic in natural waters. Appl Geochem

17:517–568

Song K, Kim W, Suh CY, Shin D, Ko KS, Ha K (2013) Magnetic iron

oxide nanoparticles prepared by electrical wire explosion for

arsenic removal. Powder Technol 246:572–574

Stüben D, Berner Z, Chandrasekharam D, Karmakar J (2003) Arsenic

enrichment in groundwater of West Bengal, India: geochemical

evidence for mobilization of As under reducing conditions. Appl

Geochem 18:1417–1434

Suriyaraj S, Bhattacharyya A, Selvakumar R (2015) Hybrid Al2O3/

bio-TiO2 nanocomposite impregnated thermoplastic polyur-

ethane (TPU) nanofibrous membrane for fluoride removal from

aqueous solutions. RSC Adv 5:26905–26912

Environ Chem Lett (2017) 15:125–149 147

123
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