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Abstract 1,3-Oxazines have a wide variety of biological

activities. Naphthoquinone scaffolds also exhibit several

biological responses such as antithrombotic, apoptosis and

lipoxygenase inhibitors. There is, therefore, a need to

develop efficient green methodologies for hybridizing the

two scaffolds in a single entity. Herein, we report a novel

protocol for the synthesis of 3-aryl-3,4-dihydro-2H-naph-

tho[2,3-e][1,3]oxazine-5,10-diones by one-pot three-com-

ponent condensation of 2-hydroxy-1,4-naphthoquinone,

aromatic amines and formaldehyde in glycerol at 50 �C.
After separation of products, the glycerol–water layer was

extracted using ethyl acetate and the dried glycerol layer

was successfully reused several times. The products were

obtained in 85–95 % yields in 5–10 min. This environ-

mentally benign protocol holds advantages of high yields,

operational simplicity and easy workup over our earlier

report.

Keywords Oxazines � MCRs � 2-Hydroxy-1,4-
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Abbreviations

CDCl3 Deuterated chloroform
1H-NMR Proton nuclear magnetic resonance

spectroscopy
13C-NMR Carbon nuclear magnetic resonance

spectroscopy

TLC Thin-layer chromatography

IR Infrared spectroscopy

FTIR Fourier transform infrared spectroscopy

ESI-HRMS Electrospray ionization-high-resolution mass

spectrometry

Introduction

1,3-Oxazine is present in numerous biodynamic heterocy-

cles as the core structure. It provides a focal intermediate

for variety of functional group interconversions (Meyers

and Smith 1972; Meyers and Malone 1974). 1,3-Oxazine

scaffolds exhibit potential biological and pharmacological

activities such as anti-tumour (Kuehne and Konopke 1962;

Chylinska and Urbanski 1963; Hsu and Lin 1996),

antibacterial (Chylinska et al. 1971; Latif et al. 1982), anti-

HIV (Pedersen and Pedersen 2000; Cocuzza et al. 2001),

analgesic (Kurtz 2005), antihypertensive (Kajino et al.

1991), antithrombotic (Buckman et al. 1998) and antiulcer

(Katsura et al. 1991). Moreover, 6-arylbenzoxazines and

naphthoxazines possess therapeutic potential for treatment

of Parkinson’s disease and as non-steroidal progesterone

receptor agonists, respectively (Zhang et al. 2002; Joyce

et al. 2003). Some of the biologically active oxazine

scaffolds are shown in Fig. 1.

Multicomponent reaction is an efficient economic

methodology which allows multiple bond formation

between simple starting materials generating highly com-

plex and diverse substrates in a single step. It results in

high atom economy and avoids purification processes for

the intermediates (Domling and Ugi 2000; Ruijter et al.

2011). Therefore, this approach is advantageous over

conventional linear type synthesis.

Glycerol has promising physical and chemical proper-

ties, which allows its use in many organic reactions that

employ various homogeneous and heterogeneous chemo-
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and biocatalysts (Wolfson et al. 2006, 2007, 2009). It has

high boiling point, negligible vapour pressure, low toxicity,

high polarity, biodegradability and also compatibility with

most organic and inorganic compounds. Its manufacture

from renewable sources makes it a promising solvent. In

addition to this, glycerol also allows isolation of products

by simple filtration, extraction and distillation processes.

Glycerol has emerged as a green solvent for numerous

organic reactions including Pd-catalysed Heck and Suzuki

cross-couplings, Cu-catalysed cross-coupling of diaryl

diselenides with aryl boronic acids, base- and acid-pro-

moted condensations, catalytic hydrogenation, transfer

hydrogenation and asymmetrical reduction (Gu and Jerome

2010; Diaz-Alvarez et al. 2011).

Our group has recently reported the synthesis of novel

3-aryl-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-

diones using ionic liquid [Bmim]BF4 as the reaction media

(Khanna et al. 2015). However, the use of ionic liquid has

several disadvantages such as toxicity because of possible

release into the soil or water courses and thus posing a

threat to the environment and also high costs make them

somewhat impractical for larger industrial applications.

Keeping in consideration the need of developing a greener

protocol involving environmentally benign, catalyst-free

reaction conditions, we investigated the synthesis of 3-aryl-

3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones

from 2-hydroxy-1,4-naphthoquinone (1.0 mmol), aromatic

amines (1.0 mmol) and formaldehyde (2.0 mmol) with

different hydroxylic solvents.

Experimental

All the chemicals were commercial and purchased from

Sigma-Aldrich or Merck and used as received. Thin-layer

chromatography (GF254) was used to monitor reaction

progress. Melting points were measured on Buchi M-560

melting point apparatus and are uncorrected. IR (KBr)

spectra were recorded on a Perkin Elmer FTIR spec-

trophotometer, and the values are expressed as mmax cm
-1.

The 1H NMR and 13C NMR spectra were recorded on Jeol

JNM ECX-400P at 400 and 100 MHz, respectively, using

trimethylsilane as internal standard. The chemical shift

values are recorded on d scale, and the coupling constants

(J) are in Hz. Mass spectral data were recorded on Agilent

6520 QT of (ESI-HRMS) mass spectrometer.

General procedure for the synthesis of 3-aryl-3,4-

dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones

(IVa–n) (using IVa as an example)

A mixture of 2-hydroxy-1,4-naphthoquinone (174.1 mg,

1.0 mmol), 4-fluoroaniline (111.12 mg, 1.0 mmol), for-

malin (60.06 mg, 37 %, w/v, 2.0 mmol) and glycerol

(2 mL) was taken in a 50-mL round-bottomed flask. The

contents were stirred magnetically in an oil bath main-

tained at 50 �C for appropriate time as indicated in

Table 2. The progress of the reaction was monitored by

TLC using ethyl acetate/petroleum ether (30: 70, v/v) as

eluent. After completion of the reaction, the reaction

mixture was allowed to cool at room temperature and

diluted with water (5 mL). The solid separated was col-

lected by filtration at pump and washed with water fol-

lowed by 2–3 mL of ethanol. The products were

characterized by IR, 1H NMR, 13C NMR and mass

spectrometry.

Spectral data

3-(4-Fluorophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]ox-

azine-5,10-dione (IVa) Khanna et al. (2015) Yellow

solid; m.p. 191–193 �C (Lit. 194–197 �C); IR (mmax cm
-1)

(KBr): 1676, 1212, 1061; 1H NMR (400 MHz, CDCl3)

d = 8.08–8.02 (m, 2H, ArH), 7.72–7.65 (m, 2H, ArH),

7.09–7.06 (m, 2H, ArH), 6.97–6.92 (m, 2H, ArH), 5.44 (s,

2H, CH2), 4.42 (s, 2H, CH2).

Fig. 1 Some biologically active

1, 3-oxazines exhibiting

antitumor, anti-Parkinson and

non-steroidal progesterone

receptor agonists activity
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3-(4-Methoxyphenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]

oxazine-5,10-dione (IVb) Khanna et al. (2015) Yellow

solid; m.p. 159–161 �C (Lit. 163–164 �C); IR (mmax cm
-1)

(KBr): 1681, 1214, 1037; 1H NMR (400 MHz, CDCl3)

d = 8.08–8.01 (m, 2H, ArH), 7.69–7.66 (m, 2H, ArH),

7.07 (d, 2H, ArH, J = 9.2 Hz), 6.80 (d, 2H, ArH,

J = 8.4 Hz), 5.44 (s, 2H, CH2), 4.40 (s, 2H, CH2), 3.73 (s,

3H, OCH3).

3-(3,5-Dichlorophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]

oxazine-5,10-dione (IVc) Yellow solid; m.p. 150–152 �C;
IR (mmax cm-1) (KBr): 1681, 1214, 1037; 1H NMR

(400 MHz, CDCl3) d = 8.10–8.04 (m, 2H, ArH),

7.74–7.67 (m, 2H, ArH), 6.97–6.95 (m, 3H, ArH), 5.43 (s,

2H, CH2), 4.46 (s, 2H, CH2);
13C NMR (100 MHz, CDCl3)

d = 183.10, 178.67, 155.42, 149.15, 135.82, 134.40,

133.57, 131.43, 130.68, 126.66, 126.56, 126.16, 120.04,

116.63, 79.86, 46.10. HRMS (ESI) m/z calcd. for calcd. for

C18H11Cl2NO3: 360.0191, found: 359.0116 [M ? H]?.

3-(2-Bromo-4-methylphenyl)-3,4-dihydro-2H-naphtho[2,3-

e][1,3]oxazine-5,10-dione (IVd) Yellow solid; m.p.

192–194 �C; IR (mmax cm
-1) (KBr): 1682, 1218, 1060; 1H

NMR (400 MHz, CDCl3) d = 8.10–8.02 (m, 2H, ArH),

7.71–7.68 (m, 2H, ArH), 7.39 (s, 1H, ArH), 7.20–7.18 (m,

1H, ArH), 6.99–6.97 (m, 1H, ArH), 5.38 (s, 2H, CH2), 4.35

(s, 2H, CH2), 2.44 (s, 3H, CH3);
13C NMR (100 MHz,

CDCl3) d = 183.20, 179.07, 155.26, 144.08, 136.44,

134.26, 133.33, 131.62, 130.74, 129.01, 126.19, 126.07,

122.44, 119.93, 119.22, 83.11, 46.36, 20.36. HRMS (ESI)

m/z calcd. for calcd. for C11H7O3: 187.0395, found:

187.0392.

3-(3-Chlorophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]

oxazine-5,10-dione (IVe) Khanna et al. (2015) Yellow

solid; m.p. 173–175 �C (Lit. 173–175 �C); IR (mmax cm
-1)

(KBr): 1678, 1209, 1052; 1H NMR (400 MHz, CDCl3)

d = 8.12–8.05 (m, 2H, ArH), 7.74–7.68 (m, 2H, ArH),

7.22–7.18 (m, 1H, ArH), 7.12–7.11 (m, 1H, ArH),

7.02–6.95 (m, 2H, ArH), 5.49 (s, 2H, CH2), 4.49 (s, 2H,

CH2).

3-(4-Chlorophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]

oxazine-5,10-dione (IVf) Khanna et al. (2015) Yellow

solid; m.p. 180–182 �C (Lit. 183–184 �C); IR (mmax cm
-1)

(KBr): 1676, 1212, 1061; 1H NMR (400 MHz, CDCl3)

d = 8.09–8.03 (m, 2H, ArH), 7.73–7.67 (m, 2H, ArH),

7.25–7.22 (m, 2H, ArH), 7.06–7.04 (m, 2H, ArH), 5.47 (s,

2H, CH2), 4.46 (s, 2H, CH2).

3-(4-Bromophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]

oxazine-5,10-dione (IVg) Khanna et al. (2015) Yellow

solid; m.p. 190–192 �C (Lit. 196–198 �C); IR (mmax cm
-1)

(Film): 1678, 1213, 1058; 1H NMR (400 MHz, CDCl3)

d = 8.09–8.03 (m, 2H, ArH), 7.73–7.67 (m, 2H, ArH),

7.25–7.22 (m, 2H, ArH), 7.06–7.04 (m, 2H, ArH), 5.47 (s,

2H, CH2), 4.46 (s, 2H, CH2).

3-(3-Acetylphenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]ox-

azine-5,10-dione (IVh) Khanna et al. (2015) Yellow

solid; m.p. 179–181 �C (Lit. 183–184 �C); IR (mmax cm
-1)

(KBr): 1681, 1206, 1061; 1H NMR (400 MHz, CDCl3)

d = 8.07–8.02 (m, 2H, ArH), 7.70–7.67 (m, 3H, ArH),

7.54–7.52 (m, 1H, ArH), 7.38–7.29 (m, 2H, ArH), 5.52 (s,

2H, CH2), 4.52 (s, 2H, CH2), 2.56 (s, 3H, CH3).

3-(4-Iodophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]ox-

azine-5,10-dione (IVi) Yellow solid; m.p. 140–142 �C;
IR (mmax cm-1) (KBr): 1682, 1218, 1060; 1H NMR

(400 MHz, CDCl3) d = 8.07–8.02 (m, 2H, ArH),

7.72–7.67 (m, 2H, ArH), 7.54 (d, 2H, ArH, J = 8.4 Hz),

6.88 (d, 1H, ArH, J = 8.4 Hz), 5.45 (s, 2H, CH2), 4.45 (s,

2H, CH2);
13C NMR (100 MHz, CDCl3) d = 183.20,

178.79, 155.45, 147.15, 138.29, 134.29, 133.43, 131.49,

130.71, 126.57, 126.08, 120.60, 120.08, 85.28, 46.10.

HRMS (ESI) m/z calcd. for calcd. for C18H11Cl2NO3:

417.9940, found: 417.9935 [M ? H]?.

3-(3-Chloro-4-fluorophenyl)-3,4-dihydro-2H-naphtho[2,3-

e][1,3]oxazine-5,10-dione (IVj) Khanna et al.

(2015) Yellow solid; m.p. 162–164 �C (Lit.

162–164 �C); IR (mmax cm
-1) (KBr): 1682, 1216, 1062; 1H

NMR (400 MHz, CDCl3) d = 8.09–8.03 (m, 2H, ArH),

7.73–7.66 (m, 2H, ArH), 7.16–7.14 (m, 1H, ArH),

7.05–6.95 (m, 2H, ArH), 5.42 (s, 2H, CH2), 4.42 (s, 2H,

CH2).

3-(4-Chloro-3-nitrophenyl)-3,4-dihydro-2H-naphtho[2,3-e]

[1,3]oxazine-5,10-dione (IVk) Khanna et al.

(2015) Yellow solid; m.p. 204–206 �C (Lit.

208–211 �C); IR (mmax cm
-1) (Film): 1681, 1212, 1058; 1H

NMR (400 MHz, CDCl3) d = 8.11–8.06 (m, 2H, ArH),

7.76–7.69 (m, 2H, ArH), 7.59 (s, 1H, ArH), 7.45–7.42 (m,

1H, ArH), 7.26–7.25 (m, 1H, ArH), 5.50 (s, 2H, CH2), 4.52

(s, 2H, CH2).

3-(4-Nitrophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]ox-

azine-5,10-dione (IVl) Khanna et al. (2015) Yellow

solid; m.p. 216–218 �C (Lit. 216–218 �C); IR (mmax cm
-1)

(Film): 1679, 1213, 1060; 1H NMR (400 MHz, CDCl3)

d = 8.19–8.16 (m, 2H, ArH), 8.10–8.05 (m, 2H, ArH),

7.75–7.68 (m, 2H, ArH), 7.14–7.12 (m, 2H, ArH), 5.54 (s,

2H, CH2), 4.59 (s, 2H, CH2).

3-(3-Bromophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]

oxazine-5,10-dione (IVm) Khanna et al. (2015) Yellow

solid; m.p. 170–173 �C (Lit. 170–173 �C); IR (mmax cm
-1)

(Film): 1678, 1212, 1060; 1H NMR (400 MHz, CDCl3)

d = 8.08–8.03 (m, 2H, ArH), 7.72–7.66 (m, 2H, ArH),

7.25 (s, 1H, ArH), 7.14–7.01 (m, 3H, ArH), 5.46 (s, 2H,

CH2), 4.47 (s, 2H, CH2).
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3-(2-Methylphenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]ox-

azine-5,10-dione (IVn) Khanna et al. (2015) Yellow

solid; m.p. 160–162 �C (Lit. 160–162 �C); IR (mmax cm
-1)

(KBr): 1680, 1222, 1066; 1H NMR (400 MHz, CDCl3)

d = 8.11–8.01 (m, 2H, ArH), 7.71–7.65 (m, 2H, ArH),

7.22–7.17 (m, 2H, ArH), 7.09–7.01 (m, 2H, ArH), 5.37 (s,

2H, CH2), 4.24 (s, 2H, CH2), 2.37 (s, 3H, CH3).

Results and discussion

We report herein a facile and efficient one-pot synthesis of

3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-dione

derivatives by one-pot three-component condensation of

2-hydroxy-1,4-naphthoquinone, aromatic amines and

formaldehyde in glycerol at 50 �C. The optimum reaction

conditions were established using 2-hydroxy-1,4-naphtho-

quinone (I) (1.0 mmol), 4-fluoroaniline (IIa) (1.0 mmol)

and formaldehyde (III) (2.0 mmol), as standard compo-

nents. The model reactions were performed in various

hydroxylic solvents such as MeOH, EtOH, water, ethylene

glycol, PEG-400, PEG-600 and glycerol under catalyst-free

conditions at varying temperatures. Initially, the reaction

was attempted in MeOH under reflux which was complete

in 10 min and afforded 52 % of the desired 3-(4-fluo-

rophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-

5,10-dione as confirmed by spectral analysis (Table 1,

entry 1). The reaction in EtOH under reflux was also

complete in 10 min and afforded 54 % of the desired

product (Table 1, entry 2). The product formation was also

observed when the reaction was carried out in EtOH–water

and MeOH–water (1:1, v/v) at reflux, though with inferior

yields of 40 and 51 %, respectively (Table 1, entries 3–4).

Reaction attempted in ethylene glycol at 60 �C gave the

desired naphtho[2,3-e][1,3]oxazine-5,10-dione in higher

yield (83 %) (Table 1, entry 5). Reaction in ethylene glycol

at higher temperatures (80 and 100 �C) did not have much

influence on the reaction yield and time (Table 1, entries

6–7). The above reaction when performed in PEG-400 and

PEG-600 resulted in a mixture of products even after 8 h as

observed by TLC using ethyl acetate/petroleum ether (30:

70, v/v) as eluent (Table 1, entries 8–9). The same reaction

was then attempted using glycerol as the solvent which

yielded 91 % of the desired 3-(4-fluorophenyl)-3,4-dihy-

dro-2H-naphtho[2,3-e][1,3]oxazine-5,10-dione in just

5 min (Table 1, entry 10).

Therefore, Table 1 clearly shows that the best optimized

reaction condition for the one-pot catalyst-free synthesis of

naphtho[2,3-e][1,3]oxazine-5,10-diones was using glycerol

as the solvent at 50 �C. To realize the generality of this

protocol, a series of naphtho[2,3-e][1,3]oxazine-5,10-dione

derivatives were synthesized by one-pot condensation of

2-hydroxy-1,4-naphthoquinone, various aromatic amines

and formaldehyde in glycerol at 50 �C. Both electron-

withdrawing and electron-releasing aromatic amines were

employed under the optimized reaction conditions to yield

the desired products in good yields (Fig. 2; Table 2).

All our attempts to prepare bis-derivatives from o- and

p-phenylene diamines were unsuccessful.

A study regarding the recovery and reuse of glycerol

was also performed. The products were separated by sim-

ple filtration from the mixture of glycerol and water. The

filtrate so obtained was then extracted with ethyl acetate.

Ethyl acetate layer was separated and the solvent was

removed. The glycerol–water layer was dried at 90 �C
under vacuum and then directly reused for reaction. Mar-

ginal loss in the yield (90 and 88 %) of IVa was observed

in the second and third cycles. However, the yields

decreased gradually in fourth and fifth cycle (85 and 82 %).

A probable mechanism involved in the formation of

products is outlined in Fig. 3. Initial condensation of

formaldehyde and aromatic amine (ArNH2) gives an imine

intermediate ‘A’ which further reacts with 2-hydroxy-1,4-

naphthoquinone to form ‘B’. Lastly, condensation of ‘B’

with formaldehyde gives ‘C’ with loss of H2O that

undergoes cyclization to give the final product IV.

Conclusion

In conclusion, we have developed an eco-friendly catalyst-

free methodology for the synthesis of 3-aryl-3,4-dihydro-

2H-naphtho[2,3-e][1,3]oxazine-5,10-diones from 2-hy-

droxy-1,4-naphthoquinone, aromatic amines and

formaldehyde in glycerol at 50 �C. Inexpensive,

Table 1 Optimization of reaction conditions for the synthesis of

3-(4-fluorophenyl)-3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-

dione (IVa)

Entry Solvent Time (min) Temp (�C) Yield (%)

1. MeOH 10 Reflux 52

2. EtOH 10 Reflux 54

3. EtOH–H2O (1:1) 5 Reflux 40

4. MeOH–H2O (1:1) 5 Reflux 51

5. Ethylene glycol 15 60 83

6. Ethylene glycol 10 80 85

7. Ethylene glycol 10 100 88

8. PEG-400 8 h 50 –a

9. PEG-600 8 h 50 –a

10. Glycerol 5 50 91

Reaction carried out using 2-hydroxy-1,4-naphthoquinone (1.0

mmol), 4-fluoroaniline (1.0 mmol) and formaldehyde (2.0 mmol)
a Mixture of products
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Fig. 2 One-pot multicomponent synthesis of 3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones. Reaction conditions: 2-hydroxy-1,4-

naphthoquinone (1.0 mmol), aromatic amines (1.0 mmol) and formaldehyde (2.0 mmol) in glycerol at 50 �C

Table 2 Synthesis of 3-aryl-

3,4-dihydro-2H-naphtho[2,3-

e][1,3]oxazine-5,10-dione

(IVa–n)

Entry Ar Product IV Time (min) Yield (%)

Lit. (Khanna et al.) Obs. Lit. (Khanna et al.) Obs.

1. 4-FC6H4 IVa 15 5 85 91

2. 4-(OCH3)C6H4 IVb 15 10 89 87

3. 3,5-Cl2C6H3 IVc – 5 – 88

4. 2-Br,4-(CH3)C6H3 IVd – 5 – 87

5. 3-ClC6H4 IVe 20 7 90 96

6. 4-ClC6H4 IVf 15 8 88 90

7. 4-BrC6H4 IVg 15 7 88 85

8. 3-(COCH3)C6H4 IVh 15 5 91 99

9. 4-IC6H4 IVi – 5 – 98

1. 3-Cl,4-FC6H3 IVj 20 7 90 89

11. 4-Cl,3-(NO2)C6H3 IVk 20 10 88 92

12. 4-(NO2)C6H4 IVl 20 5 89 97

13. 3-BrC6H4 IVm 15 5 90 90

14. 2-(CH3)C6H4 IVn 20 5 87 86

High yields and shorter reaction times are the noticeable features

Fig. 3 Probable mechanism of the reaction. Glycerol polarizes

formaldehyde for attack of aromatic amine leading to imine formation

giving A which reacts with 2-hydroxy-1,4-naphthoquinone, and

finally, condensation with another mole of formaldehyde gives final

product IV with loss of water

Environ Chem Lett (2016) 14:559–564 563
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environmentally benign reaction media is the advantage of

this protocol.
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