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Abstract In recent years, the use of synthetic materials in

building and furnishing, the adoption of new lifestyles, the

extensive use of products for environmental cleaning and

personal hygiene have contributed to the deterioration of

indoor air quality and introduced new sources of risk to

humans. Indoor environments include home, workplaces

such as offices, public buildings such as hospitals, schools,

kindergartens, sports halls, libraries, restaurants and bars,

theaters and cinemas and finally cabins of vehicles. Indoor

environments in schools have been of particular public

concern. According to recent studies, children aged

between 3 and 14 spend 90 % of the day indoors both in

winter and summer. Moreover, children have greater sus-

ceptibility to some environmental pollutants than adults,

because they breathe higher volumes of air relative to their

body weights, and their tissues and organs are actively

growing. In this review, the authors explore the methodo-

logical approaches used for the assessment of air quality in

schools: monitoring strategies, sampling and analysis

techniques and summarizing an overview of main findings

from scientific literature concerning the most common

pollutants found in school environments.

Keywords Carbon dioxide (CO2) � Formaldehyde and

carbonyl compounds � Indoor air quality (IAQ) � Inorganic

gases � Monitoring strategies � Ozone (O3) � Particulate

matter (PM) � School environments sources � Volatile

organic compounds (VOCs)

Introduction

In recent years, numerous scientific studies highlighted that

citizens spend most of their time in indoor environments,

e.g., home, offices, schools, hospitals, kindergartens, sports

halls, libraries, restaurants, bars, theaters and vehicles.

Citizens are more exposed to indoor pollution than outdoor
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(Blondeau et al. 2005; Bruno et al. 2008; Pegas et al. 2010).

Indoor air quality has a considerable impact on public

health because indoor exposure may pose harmful health

effects such as respiratory and cardiopulmonary patholo-

gies and asthma, especially for children (Yang et al. 2009;

Sohn et al. 2012). There is a considerable interest in the

assessment of the association between air pollution expo-

sure and health effects in school environments, as shown

by more than 70 epidemiological publications currently

available (e.g., Guo et al. 1999; Venn et al. 2000). Indoor

air pollution is characterized by a large variability in pol-

lutants’ concentration among different indoor environ-

ments and may also vary within a specific environment as a

function of location and time. The extent of these varia-

tions depends on factors such as the emission characteris-

tics of the sources, the occupants’ behavior and the

microclimatic and ventilation conditions (Report EUR

16051 EN 1994; UNI EN ISO 16000-1: 2006). Thus,

indoor air pollution and human exposure are highly

dynamic processes rather than static phenomena.

In this review, the attention will be focused on air

quality in school buildings. Children spend large amount of

time in these environments and are more sensitive subjects

to indoor pollutants (Faustman et al. 2000; Mendell and

Health 2005; WHO 2006a, b; Chithra and Shiva Nagendra

2012). Several studies reported that indoor air pollution can

increase the chance of long- and short-term health prob-

lems for students and teachers in terms of comfort, pro-

ductivity and academic performance (Daisey et al. 2003;

Shendell et al. 2004; Dijken et al. 2005; Mendell and

Health 2005; Wargocki et al. 2005; Mi et al. 2006;

Shaughnessy et al. 2006; Croome et al. 2008). The indoor

pollution observed inside school buildings can be traced

back to a variety of causes, such as the use of high emitting

materials for building construction and furnishing, minimal

landscaping with poor drainage, heating, ventilation and air

conditioning units, the lack of preventative maintenance,

crowded conditions (Godwin and Batterman 2007) and

cleaning products that release chemicals into the air (UBA

2008). Each school environment is uniquely characterized,

and thus, each personal exposure is determined by a

combination of the outdoor and indoor pollutant levels

(Stranger et al. 2007, 2008). In fact, age and location of

school buildings, pollutants transport from outdoor,

chemical reactions in indoor air and heterogeneous pro-

cesses at the air–solid interfaces are the other factors that

influence the pollutant concentrations (Poupard et al.

2005). In developed countries, many studies were con-

ducted during the past decade in order to assess Air quality

in school environments (Seppanen et al. 1999; Daisey et al.

2003; Bartlett et al. 2004; Shendell et al. 2004; Rama-

chandran et al. 2005; Shaughnessy et al. 2006; Godwin and

Batterman 2007) and concentration of a large number of

indoor air pollutants were measured including Carbon

dioxide (CO2), Ozone (O3), Nitrogen oxides (NOx), Carbon

oxide (CO), Sulfur dioxide (SO2) (Lee and Chang1999;

Scheff et al. 2000a, b; Bartlett et al. 2004; Shendell et al.

2004; Blondeau et al. 2005; Ramachandran et al. 2005;

Godwin and Batterman 2007) and Volatile Organic Com-

pounds (VOCs) (Kotzias 2005; Godwin and Batterman

2007; Pegas et al. 2010, 2012) and Particulate Matter (PM)

(Koutrakis et al. 1992; Ozkaynak et al. 1996; Daisey et al.

2003). The aim of the present review was to describe the

methodological approaches used for the assessment of air

quality in schools, according to the main characteristics of

school environments. Chemical pollutants and their sources

and the monitoring strategies and an overview of the main

scientific findings are discussed. This article is an abridged

version of the chapter by Dambruoso et al. (2013) pub-

lished in the book series Environmental Chemistry for a

Sustainable Word (http://www.springer.com/series/11480).

Indoor environments and pollutants

The wide range of school building designs leads to large

variations in indoor pollutants levels and hence personal

exposure (Ashmore and Dimitroulopoulou 2009). Children

spend their school hours in different environments: class-

rooms, laboratories where available, playgrounds and other

locations within the school. As a result, individual expo-

sure changes related according to the variation in pollutants

levels inside the several school locations (Mejı́a et al.

2011).

Pollutants emission can occur in many school settings

where different activities take place. Surely the most

important ones with respect to the time spent by children

are the classrooms (Lee and Chang 2000; Hulin et al. 2011;

Bertoni et al. 2002; Blondeau et al. 2005; Mi et al. 2006;

Ekmekcioglu and Keskin 2007; Fromme et al. 2007;

Godwin and Batterman 2007; Diapouli et al. 2008; Wei-

chenthal et al. 2008; Yang et al. 2009; Sofuoglu et al. 2010;

Wu et al. 2010; Goyal and Khare 2011; Gul et al. 2011;

Mejı́a et al. 2011; Mullen et al. 2011; Park et al. 2011;

Smedje et al. 2011; Szoboszlai et al. 2011; Sohn et al.

2012; Zhang and Zhu 2012); the gyms (Godwin and Bat-

terman 2007; Branis et al. 2009; Branis and Safránek 2011;

Hochstetler et al. 2011; Szoboszlai et al. 2011); the science

labs (often without fume hoods) (Godwin and Batterman

2007; Yang et al. 2009; Jo and Kim 2010; Goyal and Khare

2011; Park et al. 2011; Szoboszlai et al. 2011); the com-

puter rooms (Yang et al. 2009; Wu et al. 2010; Szoboszlai

et al. 2011; Sohn et al. 2012); and the dining halls (Gul

et al. 2011). In addition, the exposure that may occur in

other school environments such as the arts and crafts labs

(Blondeau et al. 2005; Godwin and Batterman 2007); the
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office rooms (Godwin and Batterman 2007; Goyal and

Khare 2011; Zhang and Zhu 2012), the kitchen (MacIntosh

et al. 2012); the cafeterias (Godwin and Batterman 2007;

Hochstetler et al. 2011; Zhang and Zhu 2012); other mis-

cellaneous use rooms (e.g., music room, library); the

swimming pools or stairwells should be taken into account,

as demonstrated by numerous scientific papers (Godwin

and Batterman 2007; Goyal and Khare 2011; Gul et al.

2011; Zhang and Zhu 2012, Sohn et al. 2012).

In order to give an as complete as possible assessment of

air quality in schools, many authors have considered in

their experimental activities several aspects that may affect

the air quality and so the levels of people exposure

(Stranger et al. 2008; Pegas et al. 2012). Among these, the

most relevant ones appear on the school sites such as

industrial (Scheepers et al. 2010; Tran et al. 2012), rural

(Blondeau et al. 2005; Fromme et al. 2007; Hulin et al.

2011; Tran et al. 2012; Zhang and Zhu 2012), traffic

(Blondeau et al. 2005; Hochstetler et al. 2011; Raysoni

et al. 2011; Szoboszlai et al. 2011; Chithra and Shiva

Nagendra 2012), suburban (Branis and Safránek 2011),

urban (Fromme et al. 2007; Hulin et al. 2011; Mullen et al.

2011; Tran et al. 2012; Zhang and Zhu 2012) or back-

ground site because of the proximity of outdoor relevant

sources (Janssen et al. 1997, 2001; Green et al. 2004; Wu

and Batterman 2006; Van Roosbroeck et al. 2007; Appat-

ova et al. 2008; Branis and Safránek 2011; Hochstetler

et al. 2011; Mejı́a et al. 2011; De Giuli et al. 2012); the age

of the buildings (Godwin and Batterman 2007; Ashmore

and Dimitroulopoulou 2009; Yang et al. 2009; Hochstetler

et al. 2011; Mullen et al. 2011; Zhang and Zhu 2012) in

respect of the type of heating systems (MacIntosh et al.

2012; Park et al. 2011; De Giuli et al. 2012; Corgnati et al.

2007); the quality of the used materials, the capacity to

accumulate or disperse pollutants; the room design (floor

area and room volume) and the level of occupancy (Daisey

et al. 2003; Godwin and Batterman 2007; Theodosiou and

Ordoumpozanis 2008; Weichenthal et al. 2008; Mumovic

et al. 2009; Mejı́a et al. 2011; Goyal and Khare 2011;

Mullen et al. 2011; Chithra and Shiva Nagendra 2012),

measured by indoor CO2 levels used as a surrogate of the

rate of outside supply air per occupant (Daisey et al. 2003);

the type and quality of ventilation in terms of number of

doors and windows or the presence of natural or mechan-

ical ventilation systems (Ashmore and Dimitroulopoulou

2009; Goyal and Khare 2011; Mullen et al. 2011, Mejı́a

et al. 2011, Grimsrud et al. 2006; Lee and Chang 2000;

Mumovic et al. 2009; Wåhlinder et al. 1997; Theodosiou

and Ordoumpozanis 2008; Blondeau et al. 2005), very

important for the removal of pollutants (Sohn et al. 2012;

UBA 2008; Yang et al. 2009).

Many authors emphasized also the decisive role played

by the micrometeorological parameters such as mean

temperature and relative air humidity (Godwin and Bat-

terman 2007, Park et al. 2011; Smedje et al. 2011; Wei-

chenthal et al. 2008; Zhang and Zhu 2012; Fraga et al.

2008; Yang et al. 2009; De Giuli et al. 2012), fundamental

in the emissive process of indoor pollutants, by the choice

of materials of board, desks, chairs, floor, because of their

different emission capacity (Pegas et al. 2010; Yang et al.

2009; Goyal and Khare 2011; Chithra and Shiva Nagendra

2012) and by the activities carried out by the occupants like

the use of cleaning products or collage and painting

activities (Chithra and Shiva Nagendra 2012).

The most common pollutants found in schools and

childcare facilities are the following: PM, VOCs, Formal-

dehyde and Carbonyl compounds, other Inorganic Gases:

NOx, CO, SO2, CO2 and O3, deeply described in following

paragraphs. Their sources can be classified as: continuous

(with a uniform or irregular pattern) and intermittent

sources (with a periodic or variable pattern) respect to the

duration of their emission activity (UNI EN ISO

16000-1:2006).

Particulate matter

Among the indoor air pollutants, nowadays there is a

growing interest in PM. The aerosol exposure via the

inhalation route represents a major potential source of

hazard for human health, depending on the duration of

exposure and concentrations, size and chemical composi-

tion of airborne particles (Abdel-Salam 2006). In several

papers, in fact, the exposure to high PM10 concentrations

has been associated to increased risk of death for cardio-

vascular or respiratory causes (Englert 2004; Zanobetti and

Schwartz 2005; Forbes et al. 2009; Pope et al. 2009). These

effects may be largely caused also by finer particles that, as

a consequence of their greater surface area, could be an

effective media to transport different kinds of pollutants

(PAHs, heavy metals, asbestos, etc.) deeply into the lung

(Nadadur et al. 2007; Sager and Castranova 2009; Reich

et al. 2009). In particular, the exposure to these finer par-

ticles can cause short- and long-term effects such as

increased respiratory symptoms, decreased lung function,

alterations in tissue and structure lung, in respiratory tract

and premature death (Prieditis and Adamson 2002; Damek-

Poprawa and Sawicka-Kapusta 2003; Wahab and Basma

2004; Huang and Ghio 2006; Hong et al. 2007; Wild et al.

2009; Daresta et al. 2010; Liuzzi et al. 2011).

Although the school environment normally lacks typical

indoor PM sources such as smoking and cooking, many

children are present in a limited space over a period of

several hours. The use of cleaning products and floor polish

can also temporarily affect the air quality determining an

increase in chemical pollutants in school environments. On

Environ Chem Lett (2014) 12:467–482 469
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the other hand, the floor surface type and level of cleaning

are important factors in maintaining low dust levels. The

presence of PM can be related to: (1) insufficient ventila-

tion in schools (especially in winter), (2) infrequently and

unthoroughly cleaned indoor surfaces, (3) a large number

of pupils in relation to room area and volume, (4) low class

level related to floor numbers of school buildings and (5)

resuspension of particles from room surfaces (Sexton and

Ryan 1988), which is related to physical activity of the

pupils. Moreover, numerous studies showed that gas-phase

reactions between O3 and terpenes (for example used in

cleaning products) can contribute significantly to the

growth of indoor secondary organic aerosols (Weschler and

Shields 1999; Long et al. 2000; Wainman et al. 2000; Li

et al. 2002; Fan et al. 2003; Sarwar et al. 2003).

Recent studies report levels, behaviors and chemical

composition of PM in different indoor environment (e.g.,

Chao and Wong 2002; Gemenetzis et al. 2006; Martuz-

evicius et al. 2008; Olson et al. 2008; Smolı́k et al. 2008

Lai et al. 2010; Saraga et al. 2010; Zhu et al. 2010; Huang

et al. 2012) and, in particular, in elementary schools

(Fromme et al. 2008; Almeida et al. 2011; Oeder et al.

2012; Pegas et al. 2012; Smolı́k et al. 2008).

Chithra and Shiva Nagendra (2012) monitored the

PM10, PM2.5 and PM1 concentrations by means of an

environmental dust monitor in order to study the relation-

ship between outdoor and indoor air quality in eight French

schools. The indoor–outdoor (I/O) ratios of PM were higher

than two for coarse fraction and minor than one for finer

fraction. The high I/O value of PM10 concentration and its

behavior indicated significant contribution from the activi-

ties of occupants inside classroom and thus from dust

resuspension. On the contrary, the lower I/O values for PM1

and CO suggested that no indoor source of finer particles

were in classrooms and confirmed their intrusion from the

nearby road and due to vehicular emissions (Fig. 1). This

evidence was confirmed by a strong seasonal variability of

finer PM fraction. Moreover, investigating the influence of

classroom occupancy, the authors found that higher par-

ticulate matter concentrations were detected for classroom

during the periods when the classroom was occupied.

In same way Yang et al. (2009), evaluating indoor air

quality inside three different school environments in Korea

found that the mean I/O PM10 ratios (gravimetric mea-

surements) were higher in the classrooms than in labora-

tories and computers rooms, respectively. In addition,

Diapouli et al. (2008) showed higher I/O ratio for PM10

and PM2.5 inside gymnasium, where intense activity took

place, smoking office and classrooms and the I/O ratio

smaller than one for ultrafine particles (UFP) in all inves-

tigated indoor environments (Fig. 2). These evidences

confirmed that the most important contribution to PM

concentrations in school classroom is the resuspension of

particles due to pupil’s activity.

Fig. 1 Weekly variations in

indoor–outdoor a PM10,

b PM2.5, c PM1 and d CO

concentrations inside classroom

(Chithra and Shiva Nagendra

2012)
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The presence of carpets in schools building also con-

tributed to poor indoor air quality. Stranger et al. (2007), in

a study regarding Belgium schools, found a significant

difference between I/O ratios calculated for the classrooms

with and without the presence of carpets, and in particular,

the authors reported a mean I/O ratio equal to 2.63 in the

classrooms where carpets were present and mean I/O ratio

equal to 1.03 in the classroom where tiles or linoleum floor

coverage were present.

The more recent study conducted by the same authors in

2008 (Stranger et al. 2008) focused the attention on the

chemical composition of PM collected in 27 primary

schools in the urban and suburban areas of Antwerp

(Belgium). The authors showed the elemental composition

of indoor particulate matter (PM2.5) collected in classroom

and analyzed by the energy dispersive X-ray fluorescence

(ED-XRF) was different than that evaluated in outdoor air.

In particular, they found that the elements such traffic

markers (V, Pb, Cr), S and Fe were the highest contribu-

tions to local outdoor PM, while high contributions to

indoor PM in schools were determined by markers of

crustal resuspension (Si, Ti, Al), Ca and Cl. The higher I/O

ratios were determined for Cl, Ca and crustal species.

Chloride could derive by detergents used for cleaning

activities inside the classroom, while Ca concentrations

could probably be determined by the chalk (mainly CaSO4)

used on the blackboards and/or the gypsum walls and

plasters used as construction materials. Finally, crustal

species were probably due to resuspension of dust because

of room occupation. Fromme et al. (2008) also reported the

elemental composition of PM collected by gravimetric

sampling system at two classrooms in Munich. The scan-

ning electron microscopy and the energy dispersive

microanalysis (EDX) on PM filters showed that the indoor

PM consisted mainly of earth crustal materials, detritions

of the building materials and chalk (CaSO4). These find-

ings suggested that increase of PM10 concentrations in

classrooms were due to a physical activity of the pupils and

to resuspension of mainly indoor coarse particles, and thus,

indoor-generated PM was less toxic than PM in outdoor air.

The measurements of the microclimatic parameters

(ventilation, temperature and air humidity), which can

influence directly or indirectly the indoor pollutant levels,

result very important in the assessment of air quality in the

school. Fromme et al. (2007) found that PM2.5 indoor

concentrations, gravimetrically measured in several

schools in Munich, increased by 1.7 lg/m3 per 10 %

increase in humidity and by 0.5 lg/m3 per increase in CO2

indoor concentration by 100 ppm. The higher PM con-

centrations in winter and their correlation with CO2 con-

centrations suggested that inadequate ventilation plays a

major role in the establishment of poor indoor air quality.

In addition, high PM10 concentration measured in low-

level classes and in rooms with high number of pupils

suggested that the physical activity of pupils contribute to a

constant process of resuspension of sedimented particles

(Lee and Chang 1999, 2000; Blondeau et al. 2005). Fur-

thermore, Sohn et al. (2012) evaluated the influence of

mechanical ventilation systems on indoor air quality in

school buildings in Korea. The results showed remarkable

difference in indoor air pollutants’ level according to the

operation of mechanical ventilation system and in partic-

ular showed that the ventilation systems decreased the

levels of indoor pollutants in the all selected classrooms.

Therefore, use of mechanical ventilation system can play

key roles in improving the air quality within schools.

Volatile organic compounds

Volatile organic compounds are widely present in school

environments as they are emitted from multiple both internal

and outdoor sources. Among the VOC, the high priority

pollutants that are regulated in indoor environments and that

significantly affect children health are Benzene, Naphtha-

lene, Formaldehyde, Toluene, Xylenes, Styrene, Limonene,

Alpha-pinene and Dichloromethane. Benzene, Toluene,

Xylenes and Styrene can be emitted from solvent-based

paints and consumer products, such as collage and painting

materials, used in the art and craft rooms, from Poly Vinyl

Chloride flooring and adhesive used for gyms covering and

from printed materials (Kotzias 2005). Dichloromethane is

found in adhesives, spray paints, while the presence of

Limonene and Alpha-pinene is more related to the emission

from cleaning products (aerosol and liquid) (Priscilla et al.

2010). Polymeric materials that are used for construction,

Fig. 2 Mean indoor/outdoor ratio of PM10, PM2.5 and UFPs in a

rural area (RU), two blocks away from a major highway (HI), a

residential area (RE), a heavy-trafficked neighborhood in the center of

Athens (UR), a residential area close to a major motorway (MO), a

densely populated area close to a major motorway (HP) and at the

harbor of Athens (HA) (Diapouli et al. 2008)

Environ Chem Lett (2014) 12:467–482 471
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decoration and furnishing of schools are high VOC emitters

due to their composition and large surface areas. Moreover,

wood-based products used for construction of writing desks

and cabinets are important sources of these pollutants in

these environments. Some VOC are associated with a variety

of serious health effects (Shendell et al. 2004) and symptoms

such as asthma and allergic reactions (Sofuoglu et al. 2011).

Moreover, several studies reported a strong association

between mucous membrane irritation, central nervous sys-

tem symptoms and total exposure to VOC; these symptoms

are similar to those that are frequently attributed as a cause of

sick building syndrome (Mølhave et al. 1986; Hodgson et al.

1991). In case of extreme concentrations, some VOC may

result in impaired neurobehavioral function (Burton 1997).

Exposure to high concentrations of several VOC commonly

found in indoor air is associated with cancers in laboratory

animals (Jones 1999). A preliminary screening monitoring

of the sum of the VOC in a school environment can be

conducted by direct measurements with automatic instru-

ments as flame ionization detector (FID) or photo ionization

detector (Hodgson 1995; Pegas et al. 2010). Short-term or

long-term measurement methods allow obtaining informa-

tion about the single pollutants present in the investigated

indoor environment (UNI EN ISO 16000-5: 2007). Short-

term measurements were conducted by active sampling on

stainless steel tube packed with specific adsorbent beds using

low-flow sample pumps (UNI EN ISO 16017-1: 2007; Fraga

et al. 2008; Jo and Kim 2010; Pegas et al. 2010; Scheepers

et al. 2010; ISO 16000-6: 2000). Diffusive sampling is the

recommended method to perform long-term measurements

(usually from few days to several days or weeks) (UNI EN

ISO 16017-2: 2007; Bruno et al. 2005; Angiuli et al. 2003;

Pennequin-Cardinal et al. 2005). VOCs collected onto

adsorbent cartridges were thermally or chemically desorbed

and analyzed by gas chromatography coupled to a flame

ionization detector or to a mass spectrometer (Bruno et al.

2005; Angiuli et al. 2003; Pennequin-Cardinal et al. 2005).

Stainless steel canisters were also used to collect VOC in

indoor environments (Meininghaus et al. 2003; Guo et al.

2004).

Volatile organic compounds monitoring campaigns

conducted in different school environments of several cit-

ies (Michigan, Catania, Athens, Arnhem and Nijmegen,

Brussels, Milan, Thessaloniki, Nicosia) highlighted that

indoor sources, micrometeorological parameters and

building conditions might have negative effects on indoor

air quality (Kotzias 2005; Godwin and Batterman 2007;

Pegas et al. 2010, 2012). Moreover, it was found that

increasing ventilation rates and using low-emission mate-

rials improve indoor air quality (Pegas et al. 2010). Godwin

and Batterman 2007, monitoring VOC concentrations over

one workweek in 64 elementary and middle school class-

rooms in Michigan, found that most VOC had low

concentrations (mean of individual species \4.5 lg/m3)

also if they were higher than outdoor air concentrations

(mean of individual species \0.51 lg/m3). For example,

benzene and toluene concentrations in indoor air were 0.09

and 2.81 lg/m3, respectively, while their outdoor concen-

trations were 0.06 and 0.52 lg/m3, respectively; the total

concentration of chlorinated compounds was 0.24 lg/m3 in

indoor air and \0.07 lg/m3 in outdoor air. These findings

suggested that none of the sampled rooms were contami-

nated and that no building-wide relevant contamination

sources were present. Otherwise, higher indoor levels of

many VOC were registered in two studies involving 14

elementary schools in Lisbon, Portugal (Pegas et al. 2010,

2012). Almost all identified VOC (up to 40 compounds)

showed I/O ratios higher than one. The same results were

found by Kotzias (2005) in schools and kindergartens of

several cities in Southern and Central Europe: the sum of

indoor concentrations ranged from a few micrograms (ca.

8) to 281 lg/m3, while outdoor levels ranged from 7 to

153 lg/m3. VOC concentrations two to four times higher

than the outdoor concentrations were detected in kinder-

gartens and schools of Arnhem and Nijmegen and in Izmir

(Turkey) (Shendell et al. 2004; Sofuoglu et al. 2011;

Stranger et al. 2008). Among monitored VOC, benzene,

toluene, ethylbenzene and xylenes were most abundant

compounds with I/O ratios exceeding unity.

A huge increase in indoor VOC concentrations was also

observed when art works or science activities were

undertaken concurrently or just prior to the measurements

(Shendell et al. 2004; Godwin and Batterman 2007; Pegas

et al. 2010). In particular, Pegas et al. (2010) found that

there was an increase in VOC concentrations reaching

13 ppm, when glue and paints were used in pupil’s art

class.

Formaldehyde and carbonyl compounds

The most relevant carbonyl compounds detected in indoor

environments are Formaldehyde, Acetaldehyde, Acetone,

Benzaldehyde, Butyraldehyde, Capronaldehyde, 2,5-

Dimethylbenzaldehyde, Isovaleraldehyde, Propionalde-

hyde, m-Tolualdehyde, o-Tolualdehyde, p-Tolualdehyde

and Valeraldehyde. As a result of the several industrial uses

in the manufacture of sheet and insulation materials, paints,

cleaning agents and cosmetics, the carbonyl compounds can

usually be detected in school environments. Wood-based

materials made for indoor use are the following ones: (1)

Particleboard (PB) used as sub-flooring and shelving and in

cabinetry and furniture; (2) hardwood plywood paneling

used for decorative wall covering and used in cabinets and

furniture; (3) medium density fiberboard (MDF) used for

drawer fronts, cabinets and furniture tops. Therefore, articles
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produced from wood-based materials such as furniture,

doors and paneling are still the most important sources of

these compounds in schools. Formaldehyde (HCHO) is the

most abundant airborne indoor carbonyl and represents an

important constituent of adhesives in the sheet material

industry (Urea–Formaldehyde resins, Phenol–Formalde-

hyde resins, Melamine–Formaldehyde resins and Mela-

mine–Urea–Formaldehyde resins). MDF material contains a

high resin-to-wood ratio and is generally recognized as being

the highest formaldehyde-emitting pressed wood product.

Several studies showed that indoor HCHO concentrations in

schools constructed within 1 year were significantly higher,

indicating that school buildings are characterized by several

indoor HCHO sources such as furnishings made of PB and

MDF. Several carbonyls, such as Formaldehyde, Acetalde-

hyde and Propionaldehyde, are included in the list of air

toxics in the Clean Air Act Amendments of 1990 (USEPA

1991). More specifically, HCHO is defined as a human

carcinogen on the basis of a sufficient evidence of carcino-

genicity from studies in animals and humans and of sup-

porting data on mechanisms of carcinogenesis. In recent

years, scientific findings led an increasing interest in HCHO

detection inside school buildings due to the high risk of

children exposure (WHO 2010; NIOSH/IPCS 2004; IARC

2012). California Office of Environmental Health Hazard

Assessment (OEHHA) set an 8-h chronic and acute inhala-

tion reference exposure level (REL) for HCHO equal to 9, 9

and 55 lg/m3, respectively (OEHHA 2008). Acetaldehyde,

an abundant carbonyl in indoor air, has been classified as

probable human carcinogen by USEPA (2003). Acrolein is a

severe lung irritant that, in condition of high acute exposure,

can induce oxidative stress and delayed-onset lung injury,

including asthma, congestion and decreased pulmonary

function. Because of concerns about adverse human health

effects posed by Acrolein, OEHHA set an 8-h chronic and

acute inhalation REL equal to 0.70, 0.35 and 2.5 lg/m3,

respectively (OEHHA 2008).

Scientific papers published during the last 10 years

reported experimental results obtained from investigation of

HCHO and other carbonyl compounds in school buildings

(Lee and Chang 2000; Righi et al. 2002; Kotzias 2005;

Mentese and Gullu 2006; Vaizoglu et al. 2003; Hanoune

et al. 2006; Yang et al. 2009; Sofuoglu et al. 2011; Yamashita

et al. 2012; Pegas et al. 2011a, b; Barro et al. 2009). The

measurement of HCHO and other carbonyl compounds was

performed according to the requirements of existing inter-

national standard (ISO 16000-3: 2011). The method is

suitable for determination of these compounds in the

approximate concentration range from 1 lg/m3 to 1 mg/m3

and involves drawing air through a cartridge containing

silica gel coated with 2,4-dinitrophenylhydrazine (DNPH)

reagent. The principle of the method is based on the specific

reaction of the carbonyl group with DNPH in the presence of

an acid, to form stable 2,4-dinitrophenylhydrazones. The

DNPH derivatives are analyzed with High performance

liquid chromatography and Ultraviolet (UV) absorption

detector operating at 360 nm (Lee and Chang 2000; Daisey

et al. 2003; Meininghaus et al. 2003; Yang et al. 2009; Pegas

et al. 2010; Park et al. 2011; Sohn et al. 2012).

Pegas et al. (2011a) measured indoor and outdoor con-

centrations of HCHO and other carbonyls in 14 elementary

schools in Lisbon, Portugal. In all the investigated envi-

ronments, indoor aldehydes’ levels were higher than those

observed outdoors, especially for HCHO. Pegas et al.

(2011b) carried out a further measuring campaign in school

buildings in order to evaluate seasonal variation in indoor

and outdoor levels. Most of the assessed carbonyls occur-

red at I/O ratios above unity in all the seasons, and this

evidence showed the influence of indoor sources and

building conditions on indoor air quality. However, it was

observed that carbonyls’ levels were higher during the

warm months.

Yang et al. (2009) characterized HCHO concentrations

within 55 school buildings in Korea, selected on the basis

of the year of construction, in order to relate indoor levels

to the age of school buildings. HCHO levels were mea-

sured inside three different school building environments:

classrooms, laboratories and computer rooms. Experimen-

tal results showed that mean HCHO concentrations inside

classrooms and computer rooms exceeded the acute REL

established by OEHHA. Moreover, HCHO concentrations

inside schools constructed within 1 year were significantly

higher than the Korean Indoor Air Standard, suggesting

that renovated schools have important indoor HCHO

sources, such as furnishings principally made of PB and

MDF. Therefore, in order to improve air quality within

schools, especially within renovated schools, the authors

suggest the implementation of increased ventilation rates

by means of mechanical systems and the use of low-

emitting materials.

Kotzias (2005) reported the experimental results deriv-

ing from measuring campaigns performed in several cities

in Southern and Central Europe in the frame of the AIR-

MEX project (Indoor Air Monitoring and Exposure

Assessment Study). This study highlighted that HCHO and

carbonyls’ concentrations (Acetaldehyde, Propanal and

Hexanal) inside the buildings/kindergartens were up to 7–8

times higher than outdoor, confirming that strong HCHO

indoor sources exist.

Lee and Chang (2000) showed the results of a study

carried out to characterize HCHO levels inside selected

classrooms in Hong Kong in order to compare the mea-

sured concentrations with the established standards and to

suggest policy interventions to improve air quality. HCHO

concentrations (ranging from undetectable to 27 lg/m3)

were substantially lower than Honk Kong Indoor Air
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Quality standard, indicating that there were no apparent

HCHO indoor sources and that classroom furnishing did

not add a remarkable contribution.

Sofuoglu et al. (2011) reported HCHO levels measured

in primary school classrooms and kindergartens in Turkey.

Experimental data revealed that HCHO was one of the

most abundant indoor pollutants and that concentrations

were related to both spatial and seasonal variability. Sim-

ilar HCHO levels between urban and suburban schools, but

different HCHO levels between two urban schools can be

explained by the relative strength of the indoor HCHO

sources compared with the outdoor ones. The HCHO

concentrations measured in classrooms were in the litera-

ture range (10–400 lg/m3) although they resulted high if

compared with data related to schools in Sweden (Smedje

et al. 1997a, 1997b) China (Lee et al. 2004) and Australia

(Zhang et al. 2006). Furthermore, HCHO levels in class-

rooms were lower than the concentrations measured in

homes and offices (Mentese and Gullu 2006; Vaizoglu

et al. 2003) but similar to those in libraries (Righi et al.

2002; Hanoune et al. 2006). Regarding kindergartens,

HCHO levels were higher than those measured in class-

rooms and difference in urban and suburban concentrations

was not significant. It can be asserted that there were

consistent sources of HCHO inside kindergartens because

neither seasonal nor spatial differences were significant.

The overall average of the concentrations measured in this

study (85 lg/m3) was clearly higher than the Dutch kin-

dergartens (from ca. 6 to 11 lg/m3) (Kotzias 2005) and in

the range of the Danish and Korean kindergartens (Yang

et al. 2009).

N Gases, carbon oxide and sulfur dioxide

Inorganic gases commonly found in school indoor air are

CO, SO2 and NO2. Sometimes, high H2S and NH3 con-

centrations are determined inside school buildings near

industrial plants such as water treatment plants, waste

treatment, desulfurization plants.

Nitrogen oxides (NOx sum both nitrogen monoxide

(NO) and dioxide (NO2)) enter in indoor air mainly from

outside, arising from the vehicular traffic, but several

studies showed that the most important factors in increased

exposures to NOx, over that the position of school build-

ings in the city center, where the use of gas appliances for

heating is more (Oie et al. 1993; Alm 1999; Coward et al.

2001; Dimitroulopoulou et al. 2005; WHO 2006a, b). In

particular, long-term exposure to high NO2 concentrations

promotes the onset of diseases of the respiratory tracts:

epidemiological studies suggested that NO2 represents a

modest risk factor for respiratory illnesses compared with

the use of electric stoves (Basu and Samet 1999).

Suitable methods for measuring NOx in indoor envi-

ronments can be divided into short-term measurement

methods and long-term measurement methods UNI EN

ISO 16000-15: 2008. Short-term measurements can be

performed by continuous analytical monitoring instrument

and by manual methods. The continuous monitoring

instruments are based on principle of Chemiluminescence

and are characterized by high time resolution (10–20 s). By

the manual methods, instead, NO2 is enriched actively onto

a sorbent medium by means of suction pumps, and the

concentrations obtained by these methods are average

concentrations for the duration of sampling. Long-term

measurements are generally carried out using diffusive

sampler (manual methods) since the noise produced by

continuous analytical monitoring instrument could dis-

courage their use inside confined environments (Lee and

Chang 1999, 2000; Blondeau et al. 2005; Poupard et al.

2005; Pegas et al. 2010, 2012; Gul et al. 2011; Raysoni

et al. 2011; Sohn et al. 2012; Stranger et al. 2008).

Nitrogen oxides determination in French schools

(Blondeau et al. 2005; Poupard et al. 2005) showed that

vehicular exhaust emission from nearby traffic was the

most important contribute to indoor concentrations. In fact,

I/O ratios of calculated NO2 varied in a narrow range from

0.88 to 1 as shown by the positive correlation between

indoor and outdoor NO2 concentrations, since indoor

concentrations reflected the outdoor ones despite varying

of building air-tightness. On the contrary, I/O of NO lied in

a wider range (0.5 \ I/O \ 1), and there was no apparent

correlation with the airtightness of the buildings. The

authors suggested that this evidence was probably related

to differences in the contribution of indoor homogeneous

and heterogeneous reactions that NO undergoes. Similar

considerations were elaborated by Stranger et al. (2008) in

Belgium, by Pegas et al. (2012) in Lisbon and by Lee and

Chang (2000) in Hong Kong.

Gul et al. (2011), confirming the results reported in

previous study, showed that I/O ratios for NO2 at high

schools located in Eskisehir (Turkey) were [1 in dining

hall or teacher’s room where cooking and smoking activ-

ities took place (1.8 \ I/O \ 3). Moreover, Sohn et al.

(2012) studied the relationship between NO2 concentra-

tions with indoor ventilation rate and showed that a direct

correlation existed.

CO is a vehicular pollutant; therefore, vehicle exhaust

from roads and parking areas nearby school buildings

represents the most important contributor to CO indoor

exposure. CO levels are generally very low inside schools

since the emissive indoor sources influencing long-term

CO levels can be gas cooking, unflued heaters and smoking

(Alm et al. 1994; Coward et al. 2001). Exposure to high CO

concentrations can cause acute intoxication since this

compound combined with the hemoglobin of human blood
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produces carboxy-hemoglobin and therefore disrupts the

transfer of oxygen to human tissues. Various symptoms of

neuropsychological impairment were associated with acute

low-level exposure of CO concentration (Raub et al. 2000).

Epidemiological studies reported increased relative risks of

daily mortality and morbidity of the population by

0.9–4.7 % in prevailing urban air (Touloumi et al. 1994;

Burnett et al. 1997, 1998).

Both indoor and outdoor measurements of carbon oxides

(CO and CO2) were conducted using a non-dispersive

infrared analyzers (NDIR) (Lee and Chang 1999; Chal-

oulakoua and Mavroidisb 2002; Yang et al. 2009; Pegas

et al. 2010, 2012; Park et al. 2011; Smedje et al. 2011;

Sohn et al. 2012). Continuous measurements of CO2 and

CO can be performed with specific automatic portable

sensors (Pegas et al. 2012). Diffusive portable probes

reveal CO2 concentrations based on its ability to absorb

infrared radiation at a certain wavelength (2.3–4.6 lm)

such as CO2 above cited devices, whereas CO concentra-

tions on the basis of electrochemical reactions. Moreover,

CO is a purely outdoor pollutant; therefore, few studies

have been conducted to evaluate the incidence of carbon

monoxide on indoor environments. Chaloulakoua and

Mavroidisb (2002) measured indoor and outdoor CO con-

centrations at a school near the center city of Athens.

Authors found that the indoor and outdoor diurnal con-

centration cycles followed similar patterns and indoor

concentrations showed a mild and slightly delayed

response respect to outdoor concentration changes. In

addition, they observed that CO concentrations measured

during winter were higher than the respective concentra-

tions measured during summer (3.96 and 1.92 ppm,

respectively). These results were linked to the higher traffic

volume and to winter meteorological conditions that favor

the accumulation of pollutants. Similar results and con-

siderations were obtained by Chithra and Shiva Nagendra

(2012) in a study conducted in a school building located

close to an urban roadway in India. Finally Yang et al.

(2009) showed that renovation works had negative effects

on the air quality, as significantly higher concentrations of

CO were registered at schools constructed within 1 year

(1.03 ppm) with respect to those built in previous years

(0.59 ppm). These results might be caused by the new

electric heating systems.

Sulfur dioxide is the main oxide of sulfur found in

indoor air; however, the indoor concentrations determined

inside school buildings are generally lower than those

outdoors (Weschler 2009). The most important sources of

SO2 are located outdoors, and they can impact the indoor

air of buildings near open coal fires, but the key problem is

that SO2 is readily absorbed onto indoor material surfaces,

such as emulsion paints, the most important sink for SO2

(Ashmore and Dimitroulopoulou 2009). Epidemiological

studies on health effects by exposure to SO2 are compli-

cated by a paucity of representative exposure data and by

confounding factors such as exposure to other indoor pol-

lutants. Ho1wever, several studies provided some useful

data concerning exposure-effect relationships showing that

mortality was observed in populations exposed to 24-h

pollution episodes in which SO2 concentrations exceeded

300–400 lg/m3 (0.12–0.15 ppm) (Health Canada 1995).

Sulfur dioxide in indoor environments is continuously

measured by Electron Pulsed Fluorescence SO2 Analyser.

The operating principle of this instrument is based on

measuring the fluorescence emitted consequently the

absorption of ultraviolet light having wavelength in the

range of 190–230 nm. The wavelength emitted in the range

from 300 to 390 nm is directly proportional to the SO2

concentration (Lee and Chang 1999; Meininghaus et al.

2003). Moreover, SO2 concentration can also be deter-

mined using radial passive samplers (Stranger et al. 2008).

Indoor O3 concentrations can be monitored using an UV

Absorption Ozone Analyzer (Blondeau et al. 2005; Poup-

ard et al. 2005; Sohn et al. 2012) in order to give a real-

time synoptic flow diagram. To perform long-term mea-

surements, instead, it can be used specific diffusive

adsorbing cartridges and the extract analyzed by UV–VIS

spectrophotometry after chemical desorption (Stranger

et al. 2007, 2008).

Sulfur dioxide is the less investigated pollutant for the

evaluation of the indoor air quality in schools. Ashmore

and Dimitroulopoulou (2009) found higher concentrations

inside school buildings near open coal fires. Finally,

Spedding (1974) suggested that lower SO2 indoor con-

centrations could be linked with the capacity of indoor

materials to absorb it. Among the wide variety of materials,

the emulsion paints were identified as the most important

sink for SO2.

Carbon dioxide

Outdoor pollutant properties of CO2 at a global scale are well

documented, but in indoor school environments, it cannot be

considered a pollutant, but represents an important proxy

indicator of air quality. Indoor/outdoor ratio is greater than

one in most of the classrooms, indicating the internal source

prominent, with low level of outdoor intrusions; levels of

600–800 ppm are normally registered in the literature,

indicative of inadequate ventilation rates (Seppanen et al.

1999; Apte et al. 2000), with peaks of 4,000 ppm (Daisey

et al. 2003; Clements-Croome 2006). Exposure to this pol-

lutant is associated with asthma (Mi et al. 2006) and values of

1,000 ppm are associated with a 10–20 % increase in student

absences (Shendell et al. 2004), thus indicating CO2
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concentrations a primary variable in the health risk assess-

ment of people in school (Rudnick and Milton 2003).

ASHRAE Standard 62-1989 (1989) suggested indoor

CO2 levels not exceeding 1,000 ppm s in choosing the right

ventilation for acceptable air quality. With respect to worker

safety, Occupational Safety and Health Administration

(OSHA) has set a permissible exposure limit for CO2 of

5,000 ppm over an 8-h work day, as also stated by the

American Conference of Governmental Industrial Hygien-

ists threshold limit value (TLV) set to 5,000 ppm for an 8-h

workday, with a ceiling exposure limit of 30,000 ppm for a

10-min period based on acute inhalation data (OSHA 2014).

Occupants in school are the major sources of CO2 with

level that can vary according to occupancy levels, venti-

lation rate, room structure, air exchange rate (Lee and

Chang 1999, 2000; Van Dijken et al. 2006; Fromme et al.

2007; Wåhlinder et al. 1997; Grimsrud et al. 2006; The-

odosiou and Ordoumpozanis 2008; Mumovic et al. 2009).

Real-time monitoring (Ajiboye et al. 2006) showed wide

variations during the day in CO2 levels registered, with

increases in the beginning of the lessons, during physical

activities (Almeida et al. 2011), peaking until time breaks

started when windows are opened and adequate ventilation

assured (Fromme et al. 2007; Yang et al. 2009; De Giuli

et al. 2012; Pegas et al. 2012) as shown in Fig. 3.

Moreover, Park et al. (2011) showed higher CO2 con-

centrations in winter because the classrooms were not well

ventilated in this season with respect to summer. Since the

1950s, atmospheric CO2 level measurements have been

made on air samples by NDIR for real-time monitoring of

CO and CO2 levels with specific automatic and auto-cali-

brating portable instruments (Lee and Chang 1999; Chal-

oulakoua and Mavroidisb 2002; Yang et al. 2009; Pegas

et al.2010; Park et al. 2011; Smedje et al. 2011; Pegas et al.

2012; Sohn et al. 2012). However, the precision of such

real-time measurements decreases rapidly for small air

samples, as in the case for air extracted from ice cores that

are better analyzed with HRGC/MS.

Ozone

Also outdoor pollutant properties of O3 at a global scale are

well documented as its concentration depend on the

exchange between upper and lower layers of atmosphere

and on photochemical reactions involving nitrogen oxides

and VOCs. Indoor/outdoor ratio is much lower than one in

school (in the range 0.13–0.8) (Gold et al. 1996; Weschler

2000; Blondeau et al. 2005; Mendell and Health 2005;

Poupard et al. 2005; Stranger et al. 2007, 2008; Mejı́a et al.

2011), for almost two reasons: O3 reacts rapidly with

indoor surfaces as well as by gas-phase reactions with

some VOCs (Weschler 2006), the internal sources are

insignificant, with high level of outdoor intrusions

(Weschler 2000) but, generally, O3 indoor concentrations

are often below the detection limit (Grøntoft and Ray-

chaudhuri 2004). Indoor sources of O3 are nowadays some

office equipment, primarily laser printers and copiers and

electrostatic air cleaners (Leovic et al. 1996; Destaillats

et al. 2008). Moreover, higher indoor O3 concentrations

were found in schools located in areas affected by indus-

trial or urban pollution (Mi et al. 2006; Mejı́a et al. 2011)

and an high correlation between outdoor and indoor con-

centration there exist as indoor concentrations increased

more rapidly when windows/doors were open and outdoor

O3 concentrations increased (Gold et al. 1996). These

results confirm that O3 in indoor environments mostly

comes from outdoor sources and the air exchange rate

plays an important role.

Indoor O3 levels are dependent on the generation rate,

leakage, ventilation, degree of mixing and air filtration

(Gold et al. 1996) and its decomposition rate is dependent

on the quantity and type of materials in a building and the

presence of organic chemicals characterized by highly

reactive unsaturated carbon–carbon bonds VOCs coming

from soft woods, carpets, linoleum, paints, polishes,

cleaning products and air fresheners, soiled fabrics, soiled

ventilation filters and the occupants themselves (Brown

et al. 1994; Wolkoff 1995; Hodgson and Levin 2003;

Weschler 2006).

Many toxicological and field studies of both adults and

children (Tager 1999; Lee et al. 2004) established the short-

term reversible effects of O3 on lung function decrements,

respiratory-related hospital admissions, school absence,

restricted activity days, asthma-related emergency depart-

ment visits and premature mortality (Gold et al. 1996;

Hubbell et al. 2005; Weschler 2006). Moreover, ozone/

terpene reactions (as used in cleaning agents) produce
Fig. 3 Classroom CO2 concentrations during a typical occupation

period (Pegas et al. 2012)
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strong airway irritants, like formaldehyde, acrolein, perox-

yactyl nitrate, hydroperoxides with known adverse health

effects (Wolkoff et al. 1999; Clausen et al. 2001; Wilkins

et al. 2001; Rohr et al. 2002, 2003; Weschler 2006).

Real-time O3 monitoring can be performed by an UV

absorption Ozone Analyzer (Blondeau et al. 2005; Poupard

et al. 2005; Sohn et al. 2012), but for long-term measure-

ments, specific diffusive adsorbing cartridges can be used,

using chemical desorption and formation of an absorbing

molecule quantified by UV–VIS spectrophotometry

(Stranger et al. 2007, 2008). This latter technique can

achieve lower limit of detection, due to its pre-concentra-

tion capacity.

Conclusion

The main goal of this review was to summarize remarkable

findings about air quality inside school buildings. More

specifically, chemical pollutants, related sources and

monitoring methodologies were reported. The outcomes

provide suggestive evidence that certain conditions, com-

monly found in schools, can have adverse effects on the air

quality and therefore on occupant’s health. In particular, it

was highlighted that the location, the age and air-tightness

of school buildings, the room design, the ventilation rate,

the building and furnishing materials, the occupant’s

activities and outdoor pollution play an important role on

the indoor pollutants concentrations. Therefore, in order to

safeguard the health of the occupants and in particular of

children that are more sensitive to environmental pollutants

some good practices should be followed. These actions

include the construction of school buildings equipped with

adequate ventilation systems to improve air exchange as

well as the use of low-emitting building and furniture

materials. Moreover, indoor concentrations of many pol-

lutants are strongly influenced by outdoor sources so it is

important that schools are not located in areas affected by

high traffic or industrial pollution in order to improve air

quality and reduce the impact on students’ health. At this

regard, several States are nowadays working to define

guidelines for suggesting best practices in order to improve

air quality inside school buildings, for defining reference

values and for regulating the control methodologies. This

need arises from the lack of available reference values for

most of the pollutants monitored in indoor environments

(WHO 2010).
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