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Abstract We developed an empirical model to estimate

aboveground carbon density with variables derived from

airborne Light Detection and Ranging (LiDAR) in tropical

seasonal forests in Cambodia, and assessed the effects of

LiDAR pulse density on the accurate estimation of

aboveground carbon density. First, we tested the applica-

bility of variables used for estimating aboveground carbon

density with the original LiDAR pulse density data

(26 pulse m-2). Aboveground carbon density was regres-

sed against variables derived from airborne LiDAR. Three

individual height variable models were developed along

with a canopy density model, and three other models

combined canopy height and canopy density variables. The

influence of forest type on model accuracy was also

assessed. Next, the relationship between pulse density and

estimation accuracy was investigated using the best

regression model. The accuracy of the models were com-

pared based on seven LiDAR point densities consisting of

0.25, 1, 2, 3, 4, 5 and 10 pulse m-2. The best model was

obtained using the single mean canopy height (MCH)

model (R2 = 0.92) with the original pulse density data.

The relationship between MCH and aboveground carbon

density was found to be consistent under different forest

types. The differences between predicted and measured

residual mean of squares of deviations were less than

1.5 Mg C ha-1 between each pulse density. We concluded

that aboveground carbon density can be estimated using

MCH derived from airborne LiDAR in tropical seasonal

forests in Cambodia even with a low pulse density of

0.25 pulse m-2 without stratifying the study area based on

forest type.

Keywords Aboveground carbon density � Airborne
LiDAR � Pulse density � Tropical seasonal forest

Introduction

Tropical forests play an important role in carbon seques-

tration in the biosphere (Saatchi et al. 2011; Baccini et al.

2012). However, the expansion of agriculture, destructive

logging activities, and other anthropogenic activities con-

tinuously cause deforestation and degradation of tropical

forests (Geist and Lambin 2001, 2002). In particular,

Cambodia’s tropical seasonal forests, which are mainly

dominated by lowland evergreen forest, semi-evergreen

forest and deciduous forest, have been dramatically

deforested and degraded. For example, in 1965, 73.04 % of

the total land area of Cambodia had forest cover; however,

this declined to 59.09 % by 2006 (FAO 2010). Carbon
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emissions caused by tropical deforestation and forest

degradation comprise an important part of the global car-

bon budget (Canadell et al. 2007; Le Quéré et al. 2009;

Houghton 2012). One mitigation mechanism known as

Reducing Emissions from Deforestation and forest

Degradation? (REDD?) aims not only to reduce emis-

sions from deforestation and forest degradation, but also to

contribute to the conservation and enhancement of forest

carbon stocks, as well as to stimulate sustainable forest

management.

REDD? activities need to be scientifically based while

using a robust forest monitoring system (Böttcher et al.

2009). Remote sensing is expected to play an important

role in future monitoring for REDD?. Airborne Light

Detection and Ranging (LiDAR) is an active remote

sensing system suited to collect forest information (Drake

et al. 2002, 2003; Anderson et al. 2006; Chen et al. 2007;

Donoghue et al. 2007; Falkowski et al. 2009; Zhao and

Popescu 2009; Morsdorf et al. 2010). In the tropics, Asner

et al. (2010) demonstrated the effectiveness of REDD?

monitoring methods using airborne LiDAR in combination

with field data and other remote sensing data. They

assessed the capability of variables derived from airborne

LiDAR to estimate the aboveground carbon for tropical

rain forests in Columbia, Madagascar, Panama and Peru

(Asner et al. 2009, 2012a, b; Mascaro et al. 2011). How-

ever, tropical rain forests in areas mainly composed of

evergreen trees provided the main research sites in the

above studies. Few studies have focused on the tropical

seasonal forests in Southeast Asia that are composed of

forests dominated by mixed evergreen and deciduous trees.

In general, an empirical equation is used for estimating

aboveground carbon density. Therefore, the calibration of

parameters of the equation between aboveground carbon

density and the variables derived from airborne LiDAR is

necessary. Parameters of the equation sometimes differ

depending on forest type (Kronseder et al. 2012). This

process may be difficult in the case of tropical seasonal

forests, where several forest types are intricately distributed

and mixed, because the calibration process needs to be

done for each forest type. Consequently, few studies have

evaluated the importance of forest type for estimating

forest carbon density in seasonal tropical forests.

Data acquisition costs create a major area of concern

during the implementation of REDD? monitoring. LiDAR

pulse density is directly related to acquisition cost, being

inextricably linked to the time the aircraft/sensor spends

flying. A few studies have examined the relationship

between the accurate estimation of forest measurement

variables (e.g., stand volume and tree height at the stand

level) and pulse density (e.g., Magnusson et al. 2007;

Gobakken and Næsset 2008; Tesfamichael et al. 2010;

Jakubowski et al. 2013). However, these studies mainly

focused on boreal or temperate forests and this type of

research has not yet been conducted in unmanaged forest in

a tropical region.

The objective of this research was to conduct a detailed

investigation into the nature of the accuracy of carbon

density estimates that can be produced with airborne

LiDAR, when applied to both evergreen and deciduous

forests in Cambodia. The specific goals of this study were

to: (1) develop an empirical model that can be used to

estimate aboveground carbon density with variables

derived from airborne LiDAR, and to assess whether the

accuracy of estimates produced with the empirical model

are comparable to those obtained from previous research in

these types of rainforests, (2) evaluate the importance of

forest type for estimating forest carbon density in seasonal

tropical forests, and (3) assess the effect of pulse density of

airborne LiDAR on the accurate estimation of aboveground

carbon density.

Materials and methods

Study area

The study area, located in Kampong Thom Province in

central Cambodia, lies within a province having a total land

area of 12,447 km2 , covering about 7 % of Cambodia

(Fig. 1; DFW 1999); it features relatively uniform

Fig. 1 Vicinity map of the study area in Kampong Thom Province,

Cambodia
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ecological and geographical conditions. The humidity

ranges between 72 and 87 % throughout the year, with an

annual mean of 80 % (MRD/GTZ 1985).

Four forest types cover the study area; namely, ever-

green, deciduous, and degraded evergreen forest as well as

an area of forest re-growth. While dense evergreen forest

has a dominant tree height of 30–40 m, the same height is

only 10–15 m in sparsely forested deciduous forest. An

area of forest re-growth typically forms after clearcutting,

with few residual trees left standing. Selective logging

causes the degraded evergreen forest in this region to

support fewer large trees than evergreen forest, but the

landscape still retains its forested nature.

Field sample plots

The permanent plots in each forest type of this study were

established as a part of a different series of ongoing field

studies. The number of plots in evergreen, deciduous,

regrowth and degraded forest were ten, eight, eight and

four, respectively. Within each plot, field data were col-

lected under leaf-on canopy conditions between November

2011 and March 2012, including diameter at breast height

(DBH), height, and tree position (Table 1), and all trees

with DBH[ 5 cm were measured. The plot corner coor-

dinates (x, y) were determined using a Global Positioning

System (GPS; GPSmap 62 s, Garmin, Olathe, KS, USA).

Data collected by this GPS instrument were not differen-

tially corrected; therefore, the accuracy of GPS data was

open to question. As a result, these coordinates were field

verified in May 2013. In addition, the revised data were

used to create tree position maps and ortho-rectified aerial

photographs acquired simultaneously with airborne

LiDAR. This second method of location verification

allowed us to select the most reliable GPS corner coordi-

nates for each plot by comparing them with the tree posi-

tion maps, aerial photographs, and forest structure in the

field. From the selected corner with carefully defined

accuracy, we determined the other corners mathematically

from the size and the azimuth direction data collected from

each plot in the field.

Three sizes of permanent plots were used. Eight

regrowth plots and four deciduous forest plots employed

2500 m2 (50 m 9 50 m) plots. Five evergreen and two

deciduous forests plots employed 1200 m2 (30 m 9 40 m)

plots. Four degraded forest and two deciduous forest plots

employed 900 m2 (30 m 9 30 m) plots. Aboveground

biomass for each measured tree was calculated using

general allometric equations (Brown 1997). Aboveground

carbon density was obtained from multiplying the above-

ground biomass by 0.50. Plot level aboveground carbon

was then calculated by summing aboveground carbon of

each tree and divided by the plot size.

LiDAR data

In January 2012, LiDAR data were acquired under leaf-on

canopy conditions from a helicopter using ALTM 3100

from Optech, Inc. (Kiln, MS, USA; Table 2). The average

density of the first pulse of LiDAR data was 26 pulse m-2.

Methods

LiDAR data thinning

Previous studies have recommended different methods for

LiDAR data thinning. The simplest and most commonly

used method is random sampling (e.g., Tesfamichael et al.

2010). However, a zigzag LiDAR scan pattern does not

result in a random distribution of points, but in semi-reg-

ular point distribution (Lovell et al. 2005). The present

study followed Gobakken and Næsset (2008) and Mag-

nusson et al. (2007) in selecting one random point within

each cell in a grid of regular cells; specifically, we selected

Table 1 Summary of field measurements

Forest type n Aboveground carbon density (Mg C ha-1) Tree height (m) Stem density (stem ha-1)

Min Mean Max Min Mean Max Min Mean Max

Evergreen 10 88 147 199 1.5 13.2 48.4 1217 1441 1717

Deciduous 8 19 49 75 1.9 7.7 22.9 344 820 1333

Degraded 4 48 66 88 3.8 10.5 26.0 1956 2031 2156

Regrowth 8 11 21 45 1.5 8.0 24.9 476 982 1744

Table 2 Light Detection and Ranging (LiDAR) parameters

Parameter Optech ALTM 3100

Flight altitude 500 m

Flying speed 25 m s-1

Pulse repetition frequency 100 kHz

Scan frequency 53 Hz

Foot print 0.125 m

Wave length 1064 nm
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points of 0.10, 0.20, 0.25, 0.33, 0.50, 1.00 and 4.00 m2

(0.25, 1, 2, 3, 4, 5 and 10 pulse m-2). Finally, this study

compared eight LiDAR point densities consisting of seven

thinned point densities and the original pulse density.

Creation of digital elevation models (DEMs)

The last return-to-sensor data from each thinned data set

and original density data set were used to model the ground

surface by filtering earlier returns. In the filtering process,

the local minima, assumed to represent the ground, were

collected. A suite of DEMs were then generated using

natural neighbour interpolation with a spatial resolution of

5 m. Consequently, eight different DEMs were created for

eight LiDAR pulse densities.

LiDAR-derived variable calculation

All thinned first and original pulse points were spatially

registered to DEMs based on their coordinates. The relative

height of each point was computed as the difference between

the height of the first return andDEMs. For thinned first pulse

points, two different DEMs for each thinning level were

used, i.e., the DEMs created from the original and from the

corresponding pulse density data. Therefore, the effects of

different DEMs on the accurate estimation of aboveground

carbon density could be examined.

The first pulse points were classified as either canopy or

non-canopy return pulses based on their relative height,

while using 1 m as the threshold. The first pulse points

were classified as canopy returns if the relative height

was C the thresholds. Four variables, namely, mean

canopy height (the average value of the relative height of

canopy returns in each plot, MCH), median canopy height

(H50), maximum height (Hmax) and canopy density (CD),

were derived based on the relative height of the first pulse.

The canopy density was calculated as the ratio between the

number of pulses returned from the canopy and the total

number of pulses (Magnusson et al. 2007).

Statistical analysis

A multiple regression model [Eq. (1)] was developed to

relate the LiDAR-derived variables to the measured

aboveground carbon, based on Næsset (1997, 2002) and

Magnusson et al. (2007):

C ¼ b0h
b1db2 ; ð1Þ

where C is the aboveground carbon density in Mg C ha-1,

and where b0, b1 and b2 are the regression coefficients, h is

the height variable and d is the canopy density obtained

from both LiDAR data sets. Additionally, we assessed the

influence of forest type on the regression by expanding

Eq. (1) with variables representing forest type as a dummy

variable. The expanded Eq. (2) follows:

C ¼ b0h
b1db2

Yn�1

i¼1

ebizi ; ð2Þ

where bi is the regression coefficient of ith class, zi is the

dummy variable of ith class and n is the class number.

Forest type was expressed using four different groups (i.e.,

evergreen, deciduous, regrowth and degraded forest); in

addition, z1, z2 and z3 were coded 1 for deciduous forest,

regrowth, and degraded evergreen forest, respectively, and

0 was coded for other types of forest in each respective

group (z1, z2 and z3). We used log transformation to sim-

plify Eq. (2) as a linear regression (Eq. (3)):

logC ¼ log b0 þ b1 log hþ b2 log d þ
X3

i¼1

bizi ð3Þ

Throughout the analysis, the accuracy of estimates of

aboveground carbon density was expressed by the coeffi-

cient of determination (R2) using the observed and esti-

mated values of C and the root mean square error (RMSE)

expressed in Mg C ha-1. Because of the limited number of

field plots, R2 and RMSE were calculated using leave one-

out cross-validation.

First, we checked the applicability of variables to esti-

mate carbon density with the original pulse density data.

Aboveground carbon density was regressed against height

variables and/or canopy density. Additionally, the perti-

nence of considering forest type in the analysis was

assessed. Then, we selected the best model in terms of R2,

adjusted R2, RMSE and significance of the regression

coefficients. Finally, using the best regression model, the

relationship between pulse density and estimation accuracy

was investigated using thinned pulse density data. For each

thinning level, we tested the DEMs created from both the

original and from thinned pulse density data based on

Magnusson et al. (2007).

Results

Table 3 summarizes the regression model fit depicting the

relationship between carbon density and LiDAR variables

with the original pulse density (26 pulse m-2). The accu-

rate estimation, expressed in terms of the RMSE of esti-

mates from the single height, single canopy density and

combined models of height variables and canopy density

were 17.25–32.40, 56.08, and 16.96–30.52 Mg C ha-1,

respectively. The RMSE of the combined model was close

to the corresponding single height model. The single MCH

model and the combination model of MCH and canopy

density were superior to the canopy density model in terms

J For Res (2015) 20:484–492 487
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of RMSE. Both the single MCH model and the combina-

tion model of MCH and canopy density explained 92 % of

the variation within aboveground carbon density. Canopy

density explained less variation of the aboveground carbon

density than the MCH model alone. The regression coef-

ficients of canopy density were not significant in the

combination model. The predicted values from the single

MCH model were very close to the predicted values from

the combination of two variables (Fig. 2).

Adding the forest type information improved the accu-

rate estimation of aboveground carbon density in terms of

RMSE (Table 3). In particular, the RMSE of the single

Hmax the single canopy density, and Hmax ? canopy den-

sity models were dramatically improved by adding the

forest type information (Table 3). However, in terms of the

adjusted R2, forest type was not informative except in the

case of the single Hmax, the single canopy density and the

Hmax ? canopy density models. In other cases, the
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Table 3 Summary of regression analysis between carbon density and Light Detection and Ranging (LiDAR) variables with original pulse

density

Variables b0 b1 b2 Deciduous Degraded Regrowth R2 adj R2 RMSE

(Mg

C ha-1)

MCH 0.90 1.77* 0.92 0.92 17.25

H50 1.23 1.65* 0.91 0.90 18.80

Hmax 0.02 2.60* 0.74 0.73 32.40

Canopy density 82.51 1.66* 0.23 0.20 56.08

MCH ? canopy density 1.10 1.70* 0.20 n.s. 0.92 0.92 16.96

H50 ? canopy density 1.44 1.60* 0.16 n.s. 0.91 0.90 18.51

Hmax ? canopy density 0.04 2.36* 0.50 n.s. 0.76 0.75 30.52

MCH ? forest type 1.57 1.58* -0.13 n.s. -0.05 n.s. -0.26 n.s. 0.92 0.91 17.38

H50 ? forest type 4.04 1.25* -0.34* -0.21 n.s. -0.57* 0.92 0.91 17.38

Hmax ? forest type 1.62 1.31* -0.58* -0.34 n.s. -1.18* 0.82 0.79 25.88

Canopy density ? forest type 153.57 0.69* -0.88* -0.86* -1.86* 0.83 0.80 25.31

MCH ? canopy density ? forest type 2.26 1.46* 0.31 n.s. -0.06 n.s. -0.12 n.s. -0.30 n.s. 0.92 0.91 16.79

H50 ? canopy density ? forest type 5.42 1.15* 0.26 n.s. -0.28 n.s. -0.27 n.s. -0.61* 0.92 0.91 16.77

Hmax ? canopy density ? forest type 2.34 1.21* 0.61* -0.34 n.s. -0.39 n.s. -1.06* 0.84 0.81 24.37

n.s. not significant (p[ 0.05)

* p\ 0.05

y = 0.90x1.77

R² = 0.92
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adjusted R2 increased by 0.01 at a maximum even if forest

type information was added. The adjusted R2 of single

MCH was the highest after considering forest type.

For all these reasons, we concluded that MCH could

explain the aboveground carbon density independent of

forest type. In addition, the selected single MCH model

with a 1-m threshold was the best model in terms of the

resulting RMSE, significance of regression coefficients,

and the comparison of the predicted carbon density. Fig-

ure 3 shows the relationship between MCH and carbon

density in the case of the original pulse density. MCH was

found to be highly correlated with aboveground carbon

density consistently from low to high MCH, independent of

forest type.

Figure 4 shows the relationship between pulse density

and the estimation error in terms of the RMSE. A hori-

zontal dotted line indicates the RMSE of the model based

on the original pulse density data. RMSE was almost per-

fectly in line with the pulse density (Fig. 4). The difference

between the RMSE of the model from the original pulse

density model and from each thinned pulse density model

was less than 1.5 Mg C ha-1. Additionally, the variation of

DEMs did not have a considerable impact on RMSE. Both

the DEMs created from the original pulse density data and

from the thinned pulse density data had almost the same

RMSE at each pulse density.

Discussion

In this study, we investigated methods used to accurately

estimate aboveground carbon density using different pulse

densities of airborne LiDAR in tropical seasonal forests in

Cambodia. MCH derived from airborne LiDAR was highly

correlated with carbon density (Fig. 2). In the case of

tropical forests, several studies have shown how MCH can

be used to estimate aboveground carbon in tropical rain

forests of Peru, Madagascar and Colombia (Asner et al.

2009, 2010, 2012b, c). The coefficient of determination

was between 0.78 and 0.91, and uncertainty was between

17.8 and 23 Mg C ha-1 in these studies. Because the

coefficient of determination for the best model in our study

was 0.92, we can conclude that our estimation of above-

ground carbon density in tropical seasonal forest is com-

parable to that of other biomes.

Canopy density is a useful parameter that can be used to

estimate forest variables in tropical rainforest (Ioki et al.

2014). However, our results showed that canopy density

explained less variation of the aboveground carbon density

than the MCH model alone (Table 3). Also, when the

canopy density model was used, the predicted carbon

density became saturated (Fig. 2). These results indicate

that canopy density has limited usefulness in estimating

aboveground carbon density in tropical seasonal forest.

One possible reason for this may be that almost every plot

in our study area had a closed canopy. Therefore, we

conclude that the single MCH model is the best model that

can be used to estimate aboveground carbon in tropical

seasonal forest.

Accurately estimating aboveground carbon density

could be possible using a single allometric equation for the

four forest types analysed here (Fig. 3). Similar results

were obtained in previous studies of boreal coniferous

forest (Næsset 2004) and temperate coniferous forest

(Lefsky et al. 2002). Our study demonstrated the ability to

estimate aboveground carbon density independently of

forest type in tropical seasonal forests. This provides a
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distinct advantage in the case of Cambodia, where several

forest types are intricately distributed and mixed, because

the calibration of parameters of the equation between

aboveground carbon and MCH is not necessary for each

individual forest type.

The regression model parameters of the selected model,

specifically b0 and b1, were 0.90 and 1.77, respectively.

Previous studies conducted in tropical forest mainly used

this equation: C = b0 MCHb1. The range of b0 and b1 in

Peru and Madagascar were 0.35–2.97 and 1.31–1.92,

respectively (Asner et al. 2010, 2012c). Although our

results for b0 and b1, 0.90 and 1.77, respectively, are

comparable to these previous studies in tropical forests,

these values are highly dependent on specific characteris-

tics of the region (e.g., allometric relationship between tree

height and DBH). Hence, a calibration process is always

required to accurately estimate aboveground carbon den-

sity with LiDAR, including laborious and time-consuming

forest inventory plots within the LiDAR footprint (Asner

2009). To simplify the calibration process, Asner et al.

(2012a) proposed a single airborne LiDAR approach,

consisting of a universal model for rainforest, supported by

limited input of basal area and wood density data for a

given region. This model is based on the empirical rela-

tionship between variables derived from LiDAR and forest

variables, such as height and basal area from field mea-

surements in Panama, Peru, Madagascar and Hawaii. In

this study, we showed that the estimation accuracy and the

parameters of the model in Cambodia were comparable to

the study in Peru and Madagascar. The universal model for

rainforest could be applicable to seasonal tropical forests in

Cambodia with the addition of field measurement data to

the universal model.

Root mean square error was almost perfectly in line with

pulse density. The difference between RMSE of the model

from the original pulse density and the models from each

thinned pulse density was less than 1.5 Mg C ha-1. Pre-

vious studies have shown that pulse density has little or no

effect on accuracy for estimating forest variables in boreal

forest (Holmgren 2004; Maltamo et al. 2006; Treitz et al.

2012, and temperate forest González-Ferreiro et al. 2012).

Because of the limited effect of pulse density in the present

study, in agreement with previous studies, we conclude that

the effects of pulse density on the accurate estimation of

aboveground carbon is also limited in a tropical seasonal

forest when the pulse density is changed from 0.25 to

10 pulses m-2, and that low-pulse density LiDAR data are

applicable and preferred because of their cost effectiveness

and lesser processing time.

Magnusson et al. (2007) assessed the effects on esti-

mation accuracy using different pulse densities derived

DEMs and compared the estimation error in terms of

RMSE. They showed that the difference in DEM strongly

affected the accuracy of forest structure estimation, and

that DEMs created from thinned pulse density data had

higher RMSE than DEMs created from the original pulse

density data. However, in this study, the variation in DEMs

had limited effects on aboveground carbon estimation

(Fig. 4). In addition, DEMs created from the thinned pulse

density data had lower RMSE than DEMs created from the

original pulse density data when the pulse density was from

0.25 to 3 pulses m-2. Although the exact reasons are

unclear, one possible reason why the difference in DEM

had limited effects is that our study area was conducted in a

lowland forest on flat land (Fig. 5). More attention needs to

be paid to pulse density if the study is conducted in an area

of rugged terrain.

The main conclusion of this research is that above-

ground carbon density can be accurately estimated from

MCH derived from airborne LiDAR in tropical seasonal

forests in Cambodia, even using low-pulse density data.

Because the relationship between MCH and aboveground

carbon density was consistent under the different forest

types, aboveground carbon density could be estimated with

airborne LiDAR without considering forest type. In the

future, the development of a more precise prediction

method using a universal model such as that developed by

Asner et al. (2012a) is expected.
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