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Abstract Rapid and cost-effective methods of evaluating

the properties of wood are required for forest-tree breeding

programs. In this work, we first attempted to develop a

calibration model for predicting the stiffness of wood using

near-infrared (NIR) spectroscopy. Wood samples were

collected from three stands of sugi (Cryptomeria japonica)

plus-tree clones aged from 34 to 36 years old. Two to three

sample trees were harvested from each clone, yielding a

total of 129 sample trees. Partial least-squares analysis was

performed to predict the dynamic modulus of elasticity

(Efr). A reasonable calibration model that allowed Efr to be

predicted with a correlation coefficient of 0.69 and a root

mean square error of prediction of 0.82 GPa was obtained.

Second, in a novel approach, we tried to select the NIR

spectral bands that were the most strongly related to wood

stiffness, and we examined the degree to which these bands

were genetically controlled. The heritability estimates (h2)

for the NIR absorbance values at 7,320 and 6,281 cm-1,

which were found to be the most important bands for

predicting Efr, were 0.48 and 0.57, respectively. Although

the genetic control of the NIR spectral bands was weaker

than the genetic control associated with the actual measure-

ment of Efr (h2 = 0.74), the results imply that the NIR spectral

bands are under moderate genetic control. Assuming that the

NIR spectral bands are the dissected components of the target

trait (Efr), the results should provide useful information when

attempting to perform genomics-based breeding.

Keywords Cryptomeria japonica � Dynamic modulus of

elasticity � Genetic control � Rapid screening � Variable

selection

Introduction

Sugi (Cryptomeria japonica) is endemic to Japan, where its

range covers much of the Japanese archipelago. Sugi has

been planted intensively in Japan since the middle of the

last century, and sugi afforestation accounts for about 50 %

of the total area devoted to plantations in Japan (Forestry

Agency 2013). Since sugi presents a fine grain and good

processing performance, it has been used for a number of

end uses. In particular, demands for its use in construction

members, such as beams and columns, have increased

recently. Thus, reliable values for the mechanical proper-

ties of sugi are urgently required.

It is well known that the properties of sugi wood show

wide variations. Fujisawa et al. (1994) pointed out that

genetic variation is a major influence on these variations in

sugi wood properties. The dynamic modulus of elasticity

shows high broad-sense heritability, ranging from 0.597 to

0.867 in plus-tree clones of sugi (Fujisawa et al. 1992).

Variations in wood density and moisture contents are also

under strong genetic control (Fujisawa et al. 1993, 1995).

In order to obtain reliable estimates for genetic param-

eters, it is necessary to measure a large number of samples.
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Rapid and cost-effective methods of evaluating the prop-

erties of wood are required for forest tree breeding pro-

grams. A number of studies have demonstrated that near-

infrared (NIR) spectroscopy has high potential for the rapid

assessment of various characteristics of wood, including

wood stiffness (Tsuchikawa 2007; Tsuchikawa and Schw-

anninger 2011). A notable advantage of NIR spectroscopy

is that it can be used to assess multiple traits simulta-

neously. When selection is applied to improve the eco-

nomic value of tree growth and wood properties, it is

generally applied to several traits simultaneously and not

just to one, because economic value depends on more than

one trait (Falconer and Mackay 1996). Near-infrared

spectroscopy is a useful tool for collecting large amounts

and multiple types of phenotypic information.

Forest geneticists and tree breeders have traditionally

focused on polygenic (i.e., quantitative or complex) traits.

In the application of genomics-based breeding, complex

traits need to be dissected into their individual gene com-

ponents (Neale 2007). Recent studies affirm that associa-

tion genetics is a very powerful approach for dissecting

complex traits in trees (Thumma et al. 2005; Gonzalez-

Martinez et al. 2007). Similarly, most wood properties are

associated with many other characters and can be consid-

ered complex traits. For instance, the stiffness of wood is

affected by its density, the crystallinity of cellulose, the

microfibril angle, and so on. However, traditional methods

of measuring these properties are generally time-consum-

ing and require high levels of skill. During the process of

building a calibration model, we can detect the NIR

spectral bands that are strongly related to the target trait.

Thus, the NIR spectral bands can be considered the dis-

sected components of the target trait. Moreover, if the NIR

spectral bands—i.e., the dissected components—are under

genetic control, NIR spectroscopy could provide useful

information for association genetics.

The first objective of the study reported in the present

paper was to develop a calibration model that could be used

to predict the stiffness of wood using NIR spectroscopy

coupled with multivariate statistical analysis. The second

objective was to select the NIR bands that are highly

related to wood stiffness and examine the genetic control of

these bands.

Materials and methods

Plant materials and measurement of log stiffness

Wood samples were collected from three stands of sugi

plus-tree clones located at Okayama Prefecture (35�030N,

134�060E), Tottori Prefecture (35�140N, 134�140E), and

Kochi Prefecture (33�360N, 133�410E). The stands were

established from 1967 to 1972 with the aim of conserving

genetic resources. From 2000 to 2002, 2–3 sample trees

were harvested from each clone, yielding a total number of

sample trees of 129. A 2-m butt log was obtained from

each tree.

The dynamic modulus of elasticity of each green log

(Efr) was measured using the longitudinal vibration method

(Sobue 1986; Arima et al. 1993). The frequency of the

fundamental vibration was obtained with an FFT analyzer

(CF-1200, Ono Sokki Co., Ltd., Yokohama, Japan). The

weight, log length, and the diameters of both log ends were

measured in order to facilitate the calculation of wood

density. After measuring Efr, a disk was cut from the top

end of each log and then used to measure its near-infrared

spectrum. Each disk was cut by chainsaw and the surface

used for measurements was processed with a sander.

Measurements of NIR spectra and chemometric

analysis

Diffuse reflectance spectra were acquired on a MATRIX-F

spectrophotometer (Bruker Optics Co., Tokyo, Japan)

equipped with a fiber optic probe (spot diameter &3.5 mm).

The NIR spectra were obtained at intervals of 8 cm-1 over

the wavenumber range 9,000–4,200 cm-1. Thirty-two scans

were collected and averaged into a single average spectrum.

Spectra were acquired for every fifth annual ring encoun-

tered upon moving from the pith to the bark in two arbitrary

radial directions, and the mean value of these measurements

was used for the regression analysis.

The spectral data were split randomly into calibration

and test sets consisting of 65 and 64 samples, respectively.

In order to consider the effect of spectral processing, raw

(mean-centered), standard normal variate (SNV), and sec-

ond-derivative spectra were used for the analysis. Second-

derivative spectra were obtained using the Savitzky–Golay

algorithm with a 21-point window and second-order

polynomial. Partial least squares (PLS) regression was used

to develop the model to predict Efr (Kramer 1998). The

final number of factors selected for incorporation into the

model was chosen to minimize the residual variance when

using leave-one-out cross-validation. Data analysis was

performed using the pls package (Mevik et al. 2013) in R

version 3.0.0.

Variable selection

There are numerous suggested methods for variable

selection (Mehmood et al. 2012). We utilized the following

three methods (Wehrens 2011) to select the spectral

regions that are important when attempting to predict Efr.

First, we simply tested the significance of the regression

coefficients. Variables with regression coefficients that are
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not significantly different from zero do not contribute to the

predictive abilities of the model. The bias-corrected and

accelerated (BCa) interval (Efron and Tibshirani 1993)

derived from the bootstrap samples was calculated.

One technique that is often used to control the phe-

nomenon of overfitting is regularization, which involves

adding a penalty term to the loss function in order to dis-

courage the coefficients from reaching large values (Bishop

2006). A common choice of loss function used in regres-

sion problems is the squared loss, such that regularization

introduces the following explicit penalization coefficient:

arg min
b
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where yi are the dependent variables, xi are the independent

variables, bj are the regression coefficients, N is the number

of observations, and M is the number of parameters. k is the

regularization coefficient, which controls the relative

importance of the data-dependent error and regularization

terms. The cases with q = 1 and q = 2 are known as the

Lasso and the ridge regressions, respectively (Tibshirani

1996). This relation has the property that if k is sufficiently

large, some of the b coefficients are driven to zero, leading

to a sparse model in which the corresponding variables

play no role. A mixture of Lasso and ridge regressions is

known as the elastic net (Zou and Hastie 2005), and it

involves the following penalty term:
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This means that large coefficients are penalized heavily

(because of the quadratic term) and that many of the

coefficients are exactly zero, leading to a sparse solution.

We fitted the Lasso and elastic net models and assessed

which of the coefficients are nonzero using the ‘‘lars’’

package (Hastie and Efron 2013) and the ‘‘elasticnet’’

package (Zou and Hastie 2013) in R version 3.0.0.

Estimation of broad-sense heritability

In order to examine the genetic control of wood stiffness as

well as NIR spectra, we constructed the following random-

effects model:

yij ¼ lþ bi þ eij;

bi�Nð0; r2
bÞ; eij�Nð0; r2Þ;

ð3Þ

where yij is the observed value of the jth tree of the ith

clone, l is the population mean of the target trait, bi is the

random effect of clone i with variance r2
b, and eij is the

random effect of the within-clone variability with variance

r2. The variances r2
b and r2 were assumed to be

independent and normally distributed with a mean of zero.

The model was fitted using the ‘‘nlme’’ package (Pinheiro

et al. 2013) in R version 3.0.0. The broad-sense heritability

(h2) was calculated as r2
b

�
r2

b þ r2
� �

:

Results and discussion

Prediction of wood stiffness

The dynamic modulus of elasticity (Efr) measured using the

longitudinal vibration method ranged from 3.44 to 8.64

GPa in the calibration set (mean = 5.60 GPa, SD = 1.19

GPa) and from 3.49 to 7.93 GPa in the test set

(mean = 5.59 GPa, SD = 1.14 GPa). Partial least squares

analysis was performed to predict Efr using mean-centered

raw spectra. The calibration showed a moderate relation-

ship between the measured and NIR-predicted values with

a correlation coefficient of 0.66. The calibration model was

successfully applied to the test set, leading to a correlation

coefficient of 0.69 and a root mean square error of pre-

diction (RMSEP) of 0.82 GPa. Figure 1 shows the rela-

tionship between the measured and NIR-predicted values

for Efr. Cross-validation revealed that the model needs five

PLS factors. The ratio of performance to deviation (RPD,

calculated as the ratio of the standard deviation of the

reference data to the RMSEP) was good enough, as the

initial screening tool showed a ratio of 1.45 (Schimleck

et al. 2003).

There were no significant differences among the spectral

pre-processing methods. The correlation coefficients of the

prediction model obtained using SNV and second-

Fig. 1 Plot of measured versus NIR-predicted values of the dynamic

modulus of elasticity. Factor, R, and RMSEP indicate the optimum

number of PLS factors, the correlation coefficient, and the root mean

square error of prediction, respectively. The results were obtained

using the test set
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derivative spectra were 0.65 and 0.67, respectively. Both

processing methods yielded RMSEP = 0.84 GPa. The

prediction accuracy obtained from this study was slightly

superior to those reported previously for Pinus taeda

(RMSEP = 1.49 GPa; Kelley et al. 2004), for Pinus syl-

vestris (RMSEP = 1.46 GPa; Lestander et al. 2008), and

for Larix spp. (RMSEP = 1.32 GPa; Fujimoto et al. 2008).

Important variables for wood stiffness

This study confirmed that the calibration model can meet

the demand for a technique that can be used to rapidly

inspect wood stiffness. As mentioned above, it would be

useful for genomic discovery if the NIR spectral bands

could be considered the dissected components of the

target trait. In this case, we would like to be able to select

the spectral regions which make sense physically or

chemically. In other words, we need the spectral regions

that are closely related to wood stiffness. We examined

three methods of detecting the NIR spectral bands that are

highly related to wood stiffness: the bootstrap confidence

interval, the Lasso model, and the elastic net model. In

Fig. 2a, coefficients with a 95 % confidence interval that

does not contain zero are shown in black; others are

shown in gray. Significant coefficients were not found for

the smaller wavenumbers (except for around 4,000 cm-1),

indicating that this region contains very little relevant

information. Nonzero coefficients obtained from the Lasso

and elastic net models are shown in Fig. 2b and c. The

locations of the important variables, *7,320 and

*6,281 cm-1, were similar in both models. The absorp-

tion band at 7,320 cm-1 can be assigned to the first

overtone of the fundamental CH stretching and defor-

mation vibrational modes due to cellulose, as shown in

Table 1 (Schwanninger et al. 2011). The absorption band

at 6,281 cm-1 can be assigned to the first stretching

overtone of intramolecular hydrogen-bonded OH groups

in crystalline regions in cellulose.

Fig. 2 Selection of important variables based on a the bootstrap

confidence interval, b the Lasso model, and c the elastic net model. In

panel a, coefficients for which the 95 % confidence interval

(calculated with the BCa bootstrap) does not contain zero are shown

in black; others are shown in gray. Panels b and c show the nonzero

coefficients in the Lasso and elastic net models (color figure online)

Table 1 Assignment of selected NIR bands and the estimated broad-

sense heritabilities for these bands and the wood stiffness

Variable Wavenumber

(cm-1)

Bond vibration Remarks h2

W1 7,320 1st overtone of

C–H str.

? C–H def.

Cellulose 0.48

W2 6,281 1st overtone of

O–H str.

Strongly

H-bonded O–H

group in

cellulose

0.57

Efr (1) 0.74

Efr (2) 0.57

Efr (1) and Efr (2) are the wood stiffnesses measured by the longitu-

dinal vibration method and predicted from the NIR spectrum,

respectively
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Tsuchikawa et al. (2005) attempted to predict the den-

sity and tensile strength of wood from Pinus densiflora and

Zelkova serrata, and suggested that the absorption band at

6,281 cm-1 due to intramolecular hydrogen-bonded OH

groups in the crystalline regions of cellulose may be

strongly linked to the tensile stiffness and strength of the

wood. Similar results were found for Larix kaempferi

(Fujimoto et al. 2010). Since these results are consistent

from physical and chemical perspectives, the NIR bands at

7,320 and 6,281 cm-1 (denoted W1 and W2, respectively,

below) were used in the subsequent genetic analysis

(Table 1).

Before performing the genetic analysis, we examined

the relationships between the stiffness of the wood and the

selected NIR bands. Both W1 and W2 were moderately

correlated with the measured Efr, with Pearson product-

moment correlation coefficients of 0.47 and 0.46, respec-

tively. The relationships between the NIR-predicted Efr and

the selected bands were slightly stronger, with correlation

coefficients of 0.61 for W1 and 0.58 for W2.

Genetic control of NIR spectral bands

Based on the random-effects model (3), the broad-sense

heritability (h2) for wood stiffness and the NIR spectral

bands were calculated. The h2 of Efr measured by the

longitudinal vibration method was 0.74, as opposed to 0.57

when this parameter was predicted from the NIR spectrum

(Table 1); these values were consistent with that reported

previously for plus-tree clones of sugi (Fujisawa et al.

1992). The heritability estimates for the the NIR absor-

bance values at W1 and W2 were 0.48 and 0.57, respec-

tively. The heritability estimates for all other spectral bands

were also calculated and the results are shown in Fig. 3.

The calculations were carried out for three spectral treat-

ments (i.e., raw, SNV, and second derivative). The gray

bars indicate the bands selected using the elastic net model.

The heritability estimate varied with wavenumber in all

spectral treatments. Although the heritability estimate and

the bands related to wood stiffness varied with the spectral

treatment applied, the highest heritability estimate was

found in the vicinity of 6,281 cm-1 in all of the spectral

treatments. This band was also selected using the elastic

net model in each spectral treatment. These results imply

that the NIR spectral bands as well as the stiffness of the

wood are under moderate genetic control.

The relative efficiency of indirect selection (RE)

obtained using the NIR spectral bands (i.e., W1 and W2)

was calculated using the following formula:

RE ¼ rg

h2

h1

; ð4Þ

where rg is the genetic correlation between trait 1 (Efr) and

trait 2 (W1 or W2), and h1 and h2 are the square root of the

heritability for traits 1 and 2, respectively. The genetic

correlations between Efr and W1 and between Efr and W2

were 0.493 and 0.491, so the REs of these combinations

Fig. 3 Variations in the heritability estimates for all spectral bands,

as calculated from a raw, b SNV, and c second-derivative spectra.

The gray bars indicate the bands selected using the elastic net model.

The NIR band at 6,281 cm-1 is indicated by an arrow (color figure

online)
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were 0.397 and 0.431, respectively. These results indicate

that indirect selection based on the NIR spectral bands has

40 % of the accuracy of direct selection of wood stiffness.

In summary, the current study demonstrated that NIR

spectroscopy can be used to evaluate the stiffness of wood

with reasonable accuracy. Since NIR spectroscopy can

evaluate multiple traits simultaneously, it could prove a

powerful tool in a diversified breeding program. We

selected the spectral regions that were most closely related

to wood stiffness using several computational statistical

techniques. In a novel approach, we examined the genetic

control of each selected spectral band on the assumption

that the spectral bands can be considered the dissected

components of the target trait (Efr). The spectral bands

showed moderate heritability estimates, indicating that

these bands are under genetic control, which could prove

useful when attempting to perform genomics-based

breeding. For instance, the association genetics approach to

complex trait dissection requires large population sizes

(Neale 2007). NIR spectroscopy can readily supply not

only large amounts of sampling data but also abundant

variables (i.e., spectral data). In other words, NIR spec-

troscopy can rapidly yield a number of traits based on our

assumption. In this case, the spectral data can be used

directly as some traits; alternatively, the data can be

decomposed into several latent variables in a statistical

analysis such as principal component analysis (PCA).

Gonzalez-Martinez et al. (2007) tested the genetic associ-

ations among single nucleotide polymorphisms from wood-

and drought-related candidate genes and an array of wood

property traits—earlywood and latewood specific gravity,

percentage of latewood, earlywood microfibril angle, and

wood chemistry (lignin and cellulose content)—using both

the original data and these synthetic principal components.

The selected spectral regions that make sense physically or

chemically varied according to the spectral treatment

applied. The second-derivative treatment selected more

spectral bands than the raw and SNV spectral treatments.

Further studies are therefore required to determine the most

suitable procedure for selecting the most important spectral

bands.
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