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Abstract For the purpose of making a highly effective

model in relation to the selection of trees for thinning for

various forestry goals, the author examined the generaliz-

ability and accuracy of models using various ensemble

learning algorithms and the m-fold cross-validation method.

These techniques make it possible to improve discrimination

accuracy by combining or integrating multiple learning

results whose accuracies are not very high. WEKA, which is

a machine learning tool for data mining programmed in Java

machine language, was used to verify the results of the

simulation models. The number of samples was 503. Pattern-

recognition algorithms in this study used five classification-

type models and one function-type model. It was found that:

(1) without cross validation, two pattern-recognition algo-

rithms can be classified as having comparatively high

discrimination accuracy; (2) with cross validation, discrim-

ination accuracy decreased as a whole, but was not very

different from that without cross validation, and (3) from the

viewpoint of generalizability, we constructed a model at

around 70% discrimination accuracy. In order to construct

more effective models, we need to design the model to utilize

certain algorithms or to build in re-sampling methods such as

ensemble learning and cross validation. Additionally, in the

case of small sample datasets, ensemble learning is an

effective method for constructing efficient models.

Keywords Ensemble learning � m-fold cross validation �
Pattern-recognition algorithm � Thinning-trees selection �
WEKA

Introduction

In forestry the amount of information that can be acquired

from field studies is small in comparison with the size of

the tree population. Hence, we need to ask, ‘‘What degree

of interpretability does this information have?’’ Recently,

high-speed, high-accuracy data processing has rapidly

improved computer resources. As for forest information,

techniques such as remote sensing, geographic informa-

tion systems (GIS), and global positioning systems (GPS)

enable us to obtain vast amounts of new information in

both spatial and temporal domains. However, in the

context of these new techniques, it is still necessary to

obtain supervised data of higher accuracy based on field

studies for purposes of prediction and classification.

Although it is preferable to obtain as large a dataset as

possible, the number of data often falls short of that

required because the time or labor for a tree census in

field studies increases in proportion to the number of data

obtained from those investigations. To predict or classify

using few sample data it is possible to model from

hypotheses by statistical processes; however, the popula-

tion is assumed to be normal, the measured values are

assumed to be unbiased, etc. Moreover, because it is

thought that many natural phenomena can be described

with complicated systems expressed in nonlinear differ-

ential equations (Toraichi 1993), it is difficult to define

theoretical distribution patterns or functional types with

these phenomena. Thus, we need to pay sufficient atten-

tion to mechanical statistical processes or their statistical
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outcomes because they can lead to flawed results. For

example, we estimated the site indices for Japanese cedar

using a GIS (Minowa et al. 2005a, b). In these studies,

measured tree heights in the training area were related to

four topographical factors: effective relief, topographical

exposure, storage capacity, and flow accumulation, all

calculated by use of a GIS. Finally, using a neural net-

work (Minowa et al. 2005a) or machine learning (Minowa

et al. 2005b), we estimated the site indices of the total

study area. However, one of the problems we encountered

was that there was a large number of sites to be estimated

based on a relatively small amount of sample data. As for

the number of data, for example when using a classifi-

cation tree such as automatic interaction detection (AID)

or a classification and regression tree (CART), it is

desirable that sample data of at least 1,000 cases are used

in order to get significant results; sample data of over

2,000 cases can be used as verification (Ootaki et al.

1998). Although it is desirable to obtain as many data as

possible, we cannot always gather a sufficient number of

data in a tree census because of the above-mentioned

reasons. Comparing a number of sample data in prece-

dence studies related to the estimation of site indices, for

instance, the number of sample plots of Teraoka et al.

(1991) was 52; that of Mitsuda et al. (2001) was 40.

Although these sample numbers were not necessarily

large, these studies were constructed with relatively high

estimation accuracy models. However, it is not guaranteed

that the discrimination accuracy for unknown data is

always high. The important thing to consider here is the

need to evaluate not only error rates for the learning data

but also generalizability.

Generalizability refers to the validity of applying

learning results calculated from learning sample data to

unknown data (Aso et al. 2003). In general, the recognition

performance for unknown data is worse than that for

learning sample data. It is, however, said that the gener-

alizability is high when the discrimination accuracy for

unknown data is not much lower than that for the learning

sample data. For instance, in the k-NN method (k-nearest-

neighbors classification rule), one of the classical pattern-

recognition methods and a method for memorizing all

learning data, error rates for learning data decrease

although the discrimination boundary becomes compli-

cated. Besides, for example, the error rate for the learning

data in the 1-NN method (k = 1 in the k-NN method) is 0,

unless perfectly duplicated data are classified into different

classes. In the method for evaluating the performance of

the discriminating function, test sets (data for training, not

learning data) are prepared and evaluated by use of the

results from the learning data. As the devised method, a full

dataset is divided into parts for learning and training;

multiple evaluations are performed by varying the means

of division (Aso et al. 2003).

The author has been studying modeling for thinning-tree

selection with a neural network (Minowa 1997) and

machine learning (Minowa 2005), which are used to sam-

ple data to be mixed with qualitative and quantitative

information. The selection of trees for thinning is highly

subjective compared to other aspects of forestry and goes

beyond simply measuring tree attributes such as DBH and

height. Thus, applications of artificial intelligence such as

neural networks can be effectively applied for processing

forest information of the sort where the subjective element

seems to be high: for instance, visual assessment of tree

height, classification of trees or forest types, decision

making in forest management and planning, etc. There are

some preceding studies of applications to forestry of fuzzy

theory (Bare and Mendoza 1992; Yamasaki et al. 1996;

Kivinen and Uusitalo 2002), neural networks (Guan and

Gertner 1991; Liu et al. 2003), genetic algorithms (Ichihara

et al. 1996; Fisher et al. 2000), decision trees (Tasaka et al.

2001), and self-organizing maps (Fujino and Yoshida

2006). In particular, prior research exists on thinning-tree

selection using artificial intelligence (Yamasaki et al.

1996). Many of these studies, including this author’s,

suggest that these methods are more effective applications

than conventional methods such as linear regression,

principle-component analysis, and quantification methods.

Nevertheless, the author’s studies are focused on whether

these methods are applicable to thinning-tree selection and

do not fully examine the generalizability of the model.

While increasing sample data would improve the accuracy

of the models, this is easier said than done. Furthermore,

the number of humans who are trained to select trees with

satisfactory accuracy is not sufficient.

The purpose of this paper is to examine the generaliz-

ability and accuracy of thinning-tree selection models in

order to make a highly effective model using only sample

data used in previous studies. First, adding to two pattern-

recognition algorithms adopted in previous studies (neural

networks and C4.5 machine learning), four pattern-recog-

nition algorithms were newly applied and the performance

of these models was compared. The models were then

constructed using various learning models incorporating

each pattern-recognition algorithm into a cross-validation

method to verify the generalizability. While the cross-

validation method is expected to be capable of constructing

a highly generalizable model, the estimation accuracy of

that model tends to be lower than that without cross vali-

dation (Ootaki et al. 1998). To overcome this disadvantage,

this study applied a statistical technique called ‘‘ensemble

learning’’ and performed many simulations to select

higher-generalizability models.
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Materials and methods

Ensemble learning and cross validation

In pattern-recognition algorithms, a decision-tree model

was used for classification-type models and a neural net-

work model for function-type models.

‘‘Tree’’-based models contribute to both nonlinear

regression analysis and discriminant analysis (Jin 2005);

typically, the model is called a ‘‘regression tree’’ in the case

of regression problems and a ‘‘classification tree’’ or

‘‘decision tree’’ in the case of classification problems. A

decision tree is one of the methods for expressing knowl-

edge in relation to the purpose of classification; this

algorithm is able to clarify the decision-making sequence

with a ‘‘tree-like’’ graph (Morimura et al. 1999). The

decision tree has the advantage that it offers users a model

by which it is clearly shown ‘‘how a decision should be

performed’’ or ‘‘how a decision was made’’ (Duda et al.

2001). There are many algorithms for decision trees; in this

study, J48, NBTree, RandomTree, and REPTree, all of

which are included in WEKA (Witten and Frank 2005;

http://www.cs.waikato.ac.nz/ml/weka/), were applied.

These algorithms are representative techniques for classi-

fication problems and are not wholly restricted to data sets

(Jin 2005). Additionally, J48, NBtree, RandomTree, etc.,

are module names in WEKA. WEKA, which was devel-

oped for researchers in machine learning by other

researchers, Witten and Frank of the University of Wai-

kato, consists of free software for data mining to be

programmed in Java machine language.

J48 is the WEKA version of the C4.5 algorithm. The

C4.5 algorithm is a descendant of an earlier program,

called iterative dichotomizer version 3 (ID3), developed by

Quinlan (1993), using an algorithm that added inductive

learning to an expert system. The C4.5 algorithm performs

inductive learning of production rules from examples and

enables researchers to form simple decision trees. The

information entropy, called the gain ratio, was used as the

criterion for evaluating the branching in the C4.5

algorithm.

NBTree, developed by Kohavi (1996), is a classifier for

inducing a decision tree based on naı̈ve Bayes rules. Naı̈ve

Bayes is a simple system based on Bayes’ probability

model, and is called ‘‘naı̈ve’’ because of the assumption

that each attribute is independent and latent attributes do

not exert an influence. Because naı̈ve Bayes is a simple

system, its fields of application are wide-ranging; for

instance, the Bayesian filter is typical of applications with

the naı̈ve Bayes (Duda et al. 2001).

RandomTree is an algorithm that randomly utilizes

explanatory variables for the branching. In order to use

duplicate variables for the branching, the RandomTree

algorithm induces more growing ‘‘trees’’ than the C4.5

algorithm (Jin 2005).

REPTree is an algorithm for constructing a decision or

regression tree using information gain/variance reduction

and prunes it using reduced-error pruning (Witten and

Frank 2005); it has the characteristic of calculation at

higher speeds than other algorithms.

For function-type models, MultilayerPerceptron, which

is the name of the module included in WEKA, was used as

a neural network model in a multilayer perceptron. The

neural network is a computer model applied to an artifi-

cially simulated process of neurons. This enables treatment

of both quantitative and qualitative data at the same time.

MultilayerPerceptron is a three-layer back-propagation

model, which is one of the multilayered feed-forward

neural networks; this is a supervised learning method

proposed by Rumelhart et al. (1986), and a steepest-descent

method for minimizing multivariate nonlinear problems

(Rumelhart et al. 1986).

Large-scale and complicated learning models have the

advantage of being able to represent complex input–output

relationships; in fact, their expressive power is generally

superior to that of other models. On the other hand, these

models have two definite disadvantages: the amount of

calculation increases with an increase of parameters, and

the generalizability lowers as it overadjusts for the noise

components in the data. To resolve these disadvantages, a

statistical technique called ‘‘ensemble learning’’ is pro-

posed (Aso et al. 2003). Ensemble learning is a method for

improving learning accuracy by combining or integrating

multiple learning results whose accuracies are not very

high (Jin 2005). For the methods of combining or inte-

grating for multiple learning results, a majority decision is

applied in the case of classification problems, while an

average is applied in the case of regression problems.

Ensemble learning can acquire the same ability as large

and complicated models by virtue of applying compara-

tively simple learning models and learning rules of

appropriate calculation amounts (Aso et al. 2003). Com-

paring a complicated model which consists of 100

parameters with a model combining 10 sets of a simple

model each consisting of 10 parameters, the combined

model is expected to achieve higher generalizability than

the complicated model. Thus, ensemble learning can

achieve a practical learning time and higher generaliz-

ability by combining a relatively simple learning model

with a learning rule having an appropriate calculation

burden.

In this study, bagging, boosting and random forests,

which are representative algorithms in ensemble learning,

were adopted.

‘‘Bagging’’ is a coined word combining character strings

of the phrase, ‘‘bootstrap aggregating’’. This algorithm
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creates multiple learning data by repeating a bootstrap

method (called a re-sampling method) using the sample

data given; these learned data can then be independently

and parallelly learned by multiple classifiers, and the

classification is performed to a majority decision (Breiman

1996). The algorithm of bagging is roughly described in the

following sequence (Jin 2006; Aso et al. 2003):

Consider the training sets (x1, y1),…,(xN, yN) composed

of N samples (i = 1,…,N).

Step (1) First, this algorithm calculates m times from

supervised data by sampling with a replacement method,

and makes a new sub-dataset for training, then constructs

an ht learner of regression/classification models.

Step (2) By repeating Step (1) B times, regression/

classification models are constructed in B number of

pieces (ht(x); t = 1,…,B).

Step (3) For regression problems, the result of bagging

outputs Hm(x), which is an average of B number of

pieces, as follows:

Hm xð Þ ¼ 1

B

XB

t¼1

ht xð Þ

For classification problems, the result of bagging outputs

Hd(x), which is a decision by majority, as follows:

Hd xð Þ ¼ arg max
y2Y

tjht xð Þ ¼ yf gj j

¼ arg max
y2Y

XB

t¼1

I ht xð Þ ¼ yð Þ

If the event shown by the argument in parentheses is true,

I(�) equals 1. If the event is not true, I(�) equals 0.

Boosting is a method for constructing a higher-accuracy

classifier from a combination of multiple learned classifi-

ers, while the weight of the sample data sequentially

changes. In this study, AdaBoost was used as a represen-

tative method (Freund and Schapier 1997; Aso et al. 2003).

The algorithm of boosting to be included in AdaBoost is

simply described in the following.

Consider the training sets (x1, y1),…,(xN, yN) composed

of N samples (i = 1,…,N). Note that xi 2 X; yi 2 Y ¼
�1;þ1f g: Let Dt(i) be the weight of the i sample after t

times learning.

Step (1) The initial value of weight is set.

D1 ið Þ ¼ 1

N

Step (2) For t = 1, …,T, the classifier ht : X ? Y, which

minimizes the error ratio (et), is based on distribution Dt.

et ¼ PrDt ht xið Þ 6¼ yif g ¼
XN

i�¼1

Dt i�ð Þ

(Note that i* is the number of i’s which ht mistook.)

Step (3) The reliability of results (at) is calculated using

the error ratio of ht.

at ¼
1

2
ln

1� et
et

� �

Step (4) The distribution Dt is renewed.

Dtþ1 ið Þ ¼ DtðiÞ expf�atyihtðxiÞg
Zt

(Note that Zt is a standardization factor for ensuringPN
i¼1 Dt þ 1ðiÞ ¼ 1; Zt ¼

PN
i¼1 DtðiÞ expf�atyihtðxiÞg)

Step (5) The results are output to a majority decision

Hd(x) with the weight by reliability (at).

Hd xð Þ ¼ sign
XT

t¼1

athtðxÞ
 !

‘‘Random forests’’ is a comparatively new ensemble

learning algorithm proposed in 2001 by Breiman (2001),

formerly a proponent of bagging. Fundamentally, the

algorithm of random forests is a method for repeating

the bootstrap and the bagging. In stark contrast to

bagging, random forests has the advantage that the

calculation burden of higher-dimension data is lightened

by using a randomly sampled sub-dataset, while bagging

uses all the variables (Jin 2005).

m-fold cross validation

In methods for estimation of prediction accuracy for

unknown data, there are many methods such as

the resubstitution method, the test-sample method, and

the m-fold cross-validation method (Ootaki et al. 1998).

The m-fold cross-validation method is a descendant of

the test-sample method and was devised in order to

estimate unbiased prediction errors from a few sample

data. Figure 1 illustrates the conceptual scheme of m-fold

cross validation. In m-fold cross validation, the learning

data set N is divided into m parts (sub dataset

Ni = N1,…,Nm, i = 1,…,m), in which the classes are

represented in approximately the same proportions as in

the full data set. Then, each in turn is used as testing

data for a prediction-error estimate and the (m - 1)

remainder is used as data for training. Cross validation

performs a calculating-error estimate and constructs

models with the first sub-dataset for estimating the pre-

diction error and the remainder for training. Next, this

method performs a similar procedure with a second sub-

dataset for estimating and the remainder for training.

After repeating the computation m times, the value

which is an average of the error estimates of each turn is

used as the estimation accuracy of the model for

unknown data (Ootaki et al. 1998; Duda et al. 2001).
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With cross validation, all learning data are used once as

data for estimating the prediction error, and this method

would construct a model with (m - 1) times training

data from learning data N on appearance. In other words,

the m-fold cross validation would obtain a number of

samples equal to (m - 1) 9 N for learning a dataset

(Ootaki et al. 1998). Then, the estimate of the error Ri(d)

(i = 1,…,m) is obtained from a sub-dataset. The mean

value R(d) and variance SE2(R(d)) of the estimated error

are shown in the following equations.

R dð Þ ¼ 1

m

Xm

i¼1

Ri dð Þ

SE2 R dð Þf g ¼ 1

m

Xm

i¼1

Ri dð Þ � R dð Þf g2

Additionally, cross validation multiples m = 2, 3, 4, 5, 10

are mainly used (Jin 2004). The m sub-dataset is auto-

matically initialized by designating the m number in

WEKA (Witten and Frank 2005).

Input and output data

Similar to Minowa (1997), this study used data from a

thinning trial from the Tokyo University Forests in Chiba.

This plot was composed of a sugi (Cryptomeria japonica

D.DON) stand (99 years old in 1993) thinned five times

(Suzuki et al. 1995). The study area was 1.10 ha, the

number of trees, 503, the average tree height, 31.8 m, and

the average DBH, 46.8 cm.

Input variables to the classifiers were made up of five

factors: DBH, tree height, crown volume, stem quality, and

defects. Output variables to the classifiers consisted of one

factor (one of four thinning results). Tables 1 and 2 show

details of input and output variables.

Simulation

With the first simulation, the author attempted to classify

only pattern-recognition algorithms. Although ‘‘random

forests’’ is one of the ensemble learning algorithms, it is

possible that RandomForest, which is the name of a module

included in WEKA, also constructs decision trees itself.

Thus, RandomForest was also adopted as a pattern-recog-

nition algorithm. As a result, the number of pattern-

recognition algorithms in the classification-type models

was five: J48, NBTree, RandomForest, RandomTree, and

REPTree.

With the second simulation, the author performed clas-

sification by combining ensemble learning and the cross-

validation method. By combining either bagging (WEKA

module name, Bagging) or boosting (WEKA module name,

AdaBoostM1) with five classification types, simulation was

carried out. The number of cross-validation times was two

(m = 2), three (m = 3), five (m = 5), and ten (m = 10). For

cross validation in WEKA, training data were divided into

m parts for input to the computer. When the list order of the

training data differs, the output results are also different.

Thus, the author made ten training datasets rearranged

using random numbers and respectively simulated ten

training datasets, one at a time.

training datadata for prediction-error estimate 

1 time 2 times m times

n1

n2

Divided into 
m parts

N

N1

N2

Nm

To make a sub dataset To calculate estimate of error
Fig. 1 Conceptual scheme of

the m-fold cross-validation

method
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With the third simulation, for comparison with classifi-

cation-type models, a neural network (WEKA module

name, MultilayerPerceptron) was executed for function-

type models. The numbers of hidden units were 10 and 29,

and the numbers of learning iterations were 1,000, 5,000,

and 10,000.

Additionally, options for each algorithm were adapted to

the default parameters.

Table 1 Attributes of data and their scales

Attribute name Scale Number of treesa Measurement methodb

DBH (cm) min.: 22.7, avg.: 46.8, max.: 87.0 – O

Height (m) min.: 18.0, avg.: 31.8, max.: 47.0 – O

Crown volume {Very small, small, medium, large}m {37, 104, 173, 189} J

Stem quality {Bad, normal, good}n {145, 168, 190} J

Defect-decayc {Yes, no} {20, 483} J

Defect-cutd {Yes, no} {89, 414} J

Defect-curvee {Yes, no} {18, 422} J

Defect-forkf {Yes, no} {18, 485} J

Defect-small crowng {Yes, no} {37, 466} J

Defect-small DBHh {Yes, no} {8, 495} J

Defect-low crown heighti {Yes, no} {17, 486} J

Defect-adjacent treesj {Yes, no} {199, 304} J

Defect-biask {Yes, no} {10, 493} J

Defect-broken topl {Yes, no} {4, 499} J

a The number of each item shown in the scale
b O observation; J judgement of measurer
c Rotted stems
d Injured stems
e Curved stems
f Forked trees
g Crown volume is extremely small compared with other parts
h DBH is extremely small compared with other parts
i Crown height is lower than those of other trees
j This tree was cut to widen the distance of stems, even if the quality of wood is superior to that of others
k Abnormal crown shape
l Top of tree is broken
m Each tree is divided into four scales by eye
n Each tree is divided into three scales by eye

Table 2 Output data

Thinned/unthinned Thinning method Abbreviation Number of trees Thinning rate (%)

Number of trees Volume

Plan After thinning Plan After thinning

Unthinned – Unthinned 152 – – – –

Thinned Protection of environmenta Type-a 200 40 39.8 25 25.5

Thinned Forest management with long rotationsb Type-b 93 60 58.3 40 42.8

Thinned Multistoried forest managementc Type-c 58 70 69.8 55 55.0

a The aim was to control the forest density in overcrowded old-aged forests
b The aim was to maximize production of high-quality timber with utilization thinning and long rotations
c The aim was to maintain an appropriate forest stand density for growing underplanted trees and to widen the distance among stems as

compared with thinning for management with long rotations
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In the scale of discrimination accuracy, the correctness

ratio (CR) expressed by the following equation was used.

CR %ð Þ ¼ 1� Nerror

Nlearning

� �
� 100

(note that Nerror is the number of errors which could not be

correctly classified and Nlearning is the number of all

learning data). The minimum–average–maximum values

for ten iterations are shown as simulation results. As a

measure of the efficiency of ensemble learning, the

improvement ratio (IR) expressed by the following

equation was used.

IR ¼ CR with ensemble learning

CR without ensemble learning

IR shows the efficiency of ensemble learning; for example,

ensemble learning is significant when IR is over 1.00.

As a scale of generalizability, the author defined the

generalizability ratio (GR) by the following equation.

GR %ð Þ ¼ CR with cross validation

CR without cross validation
� 100

It is shown that the estimation accuracy of the model for

unknown data becomes higher as GR becomes higher.

Results and discussion

Classification by classification-type models

Figure 2 illustrates the efficiency of ensemble learning and

m-fold cross validation in classification-type models.

Without cross validation, the discrimination accuracy dif-

fered greatly for different pattern-recognition algorithms.

The CR for an average of ten simulations (CRm) was

between 76.9 and 100.0%. RandomTree resulted in the best

classification (CRm = 100.0%) while REPTree resulted in

the worst classification (CRm = 76.9%). RandomForest and

RandomTree could achieve almost correct classification

without ensemble learning. By adding ensemble learning to

these, the discrimination accuracy tended to improve. In

five pattern-recognition algorithms, REPTree generally

resulted in low CR. J48, NBTree, and REPTree tended to

improve discrimination accuracy when ensemble learning

was applied; furthermore, J48 led to a remarkable

improvement in discrimination accuracy when combined

with AdaBoostM1. Across the board, the discrimination

accuracy of AdaBoostM1 was more effective than that of

Bagging.

With cross validation, discrimination accuracy decreased

as a whole. By comparison to performance without cross

validation, all algorithms gave similar results—the differ-

ence in discrimination accuracy between each model

became small compared with that without cross validation.

Specifically, the difference between maximum and mini-

mum CRm values with cross validation was smaller than

that without cross validation; for example, the difference

with cross validation ranged from 5.1% (m = 10, 73.6J48 -

68.5RandomTree) to 7.4% (m = 2, 73.1NBTree, RandomForest -

65.7RandomTree), while that without cross validation was

23.1% (100RandomForest, RandomTree - 76.9REPTree). The CR

of RandomTree was lower than that of other pattern-

recognition algorithms; CRm ranged from 65.7% (m = 2) to

68.5% (m = 10). CRm of other models ranged from 69.8%

(m = 2, REPTree) to 73.6% (m = 10, J48).

In terms of the frequency of cross validation, each

algorithm showed the tendency that CR was only slightly

improved with an increasing number of cross validations.

The degree of improvement for J48 and RandomTree was

superior to that for other methods.

Comparison with function-type models

Figure 3 illustrates the efficiency of ensemble learning and

cross validation in function-type models. Without cross

validation, discrimination accuracy was generally high.

The CRm was between 89.0 and 96.7%. The case in which

the hidden units number was 29 and the number of learning

iterations was 10,000 resulted in the best classification

(CRm = 96.7%), and the case in which the hidden units

number was 10 and the number of learning iterations was

1,000 resulted in the worst classification (CRm = 89.0%).

When modules were added to ensemble learning, the dis-

crimination accuracy tended to improve, and AdaBoostM1

was shown to give good results compared with Bagging.

With cross validation, discrimination accuracy decreased

more in function-type than in classification-type models. As

with the classification-type models, even though CR itself

was reduced, the difference between each model became

small; CRm ranged from 70.9% (m = 2, h = 29, learning

iterations = 5,000) to 73.2% (m = 10, h = 10, learning

iterations = 1,000).

Depending on the frequency of cross validation, the

results of classification-type models were slightly superior

to those of function-type models. However, the differences

between the maximum and minimum values for function-

type models were smaller than those for classification-type

models.

Effect of ensemble learning

Table 3 shows the effect of ensemble learning, the values

show differences between CRm of estimation with ensem-

ble learning and that without ensemble learning for each

cross-validation multiple. With addition of ensemble

learning, discrimination accuracy slightly improved as a
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whole. The results of Bagging were superior to those of

AdaBoostM1 in both classification-type and function-type

methods. The mean value of Bagging for both classification

methods was 2.2 whereas that of AdaBoostM1 was 1.0.

Moreover, results from classification-type methods were

superior to those of function-type methods in both Ada-

BoostM1 and Bagging. The mean value of all

classification-type methods was 1.4 (AdaBoostM1) and 2.8

(Bagging), while that of all function types was 0.6 (Ada-

BoostM1) and 1.7 (Bagging).

Confusion patterns

Table 4 (see Electronic Supplementary Material) shows the

confusion patterns for each thinning type. In order to dis-

cuss the general tendency, CRm and IR were used. Without

cross validation of the classification-type models, dis-

crimination accuracy was shown to have good results

through all simulations, except for the case of type-b and

type-c using REPTree. In particular, RandomForest and

RandomTree were able to classify each factor with

m=5

60 100Correctness ratio (%)
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60 100Correctness ratio (%)

nothing

60 100Correctness ratio (%)
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Fig. 2 Correctness ratios of the classification-type methods for the effect of cross validation and ensemble learning: a minimum, b average, and

c maximum values for ten iterations
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Fig. 3 Correctness ratios of the function-type methods for the effect of cross validation and ensemble learning: a minimum, b average, and

c maximum values for ten iterations. dNumber of hidden units eNumber of learning iterations
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approximately 100% accuracy. Furthermore, the discrimi-

nation accuracy was improved by addition of ensemble

learning, and the effect of combining J48 and AdaBoostM1

was remarkable.

With cross validation, the CRm of ‘‘unthinned’’ was

considerably high compared to that of other factors. In

contrast, the discrimination accuracy of other factors for

‘‘thinning’’ resulted in extremely bad classification. As for

the number of cross validations, CRm resulted in approxi-

mately the same values regardless of the number of cross

validations. In comparison with the learning models that

used all sample data as a training data, it is considered that

the type of supervised patterns that must be originally

included in the training data is decreased by dividing the

sample data using cross validation.

As for IR values through classification-type models,

the minimum, average and maximum IR values were

0.94, 1.05, and 1.62, respectively. In terms of the effect of

ensemble learning, the cases of type-b and type-c were

able to obtain higher efficiency for ensemble learning.

Moreover, the case of few validation times tended to

improve results compared with the case of many valida-

tion times.

Without cross validation of function-type models, these

models resulted in higher CRm than classification-type

models through all simulations. In addition, discrimination

accuracy hardly decreased, even if the numbers of hidden

units and learning times were low.

With cross validation, the CRm of type-b and type-c

were substantially reduced; about half the learning data

were incorrectly classified. Even if the number of hidden

units and learning iterations increased, CRm was not always

improved. Furthermore, there were many cases in which

the CRm was reduced in type-c.

As for IR values through function-type models, the

minimum, average, and maximum IR values were 0.70,

1.01 and 1.12, respectively. The IR values of function-type

models were smaller than that of classification-type models

as a whole. Regarding the effect of ensemble learning

through all simulations, the IR was lower in function-type

models than in classification-type models; there were many

cases to this effect.

Generalizability

Figure 4 illustrates the generalizability according to the

different classification algorithms. In classification-type

methods, the GR of each model was significantly different.

The GR for classification-type methods ranged from 65.7%

(m = 2, RandomTree) to 93.3% (m = 5, REPTree). The CR

of REPtree was not very high; however, REPtree could

construct a model whose generalizability was higher than

that of other models. As for function-type methods, the GR

for function-type methods ranged from 73.4% (m = 2,

h = 29, learning iterations = 10,000) to 82.2% (m = 10,

h = 10, learning iterations = 1,000).

Generally, neural networks can improve the estimation

accuracy of models with increasing numbers of learning

iterations or hidden units. However, the problem called

‘‘overlearning’’ or ‘‘overfitting’’ occurs, when the learning

is carried out excessively: i.e., the prediction accuracy for

unknown data decreases. Taking into account the facts that

each model obtained comparatively high estimation accu-

racies and that the GR for models with many numbers of

hidden units and learning iterations resulted in low values,

the author considered that a model with few hidden units

and learning iterations would be useful for constructing a

high-generalizability model.

Table 3 Difference between CRms with and without ensemble learning

Cross

validation

Ensemble

learning

J48 NBTree RandomForest RandomTree REPTree MultilayerPerceptron

10a–

1,000b
10a–

5,000b
10a–

10,000b
29a–

1,000b
29a–

5,000b
29a–

10,000b

Nothing AdaBoostM1 13.3 7.4 0.4 0.0 4.7 3.2 3.2 4.6 1.1 0.4 0.3

Bagging 3.8 5.9 -0.3 -0.3 5.1 2.1 1.7 2.3 0.9 0.4 0.3

m = 2 AdaBoostM1 0.3 0.3 0.1 0.0 1.7 -0.5 0.5 0.7 0.1 0.1 0.5

Bagging 1.7 1.2 1.4 7.1 2.2 0.8 2 1.4 1.3 1.9 1.9

m = 3 AdaBoostM1 0.2 0.5 -0.1 0.0 1.4 0.4 0.5 0.4 -0.2 0.7 0.4

Bagging 2.1 2.4 1.8 6.3 2.7 1.7 2.1 1.8 1.7 2.2 2.5

m = 5 AdaBoostM1 0.7 1.3 -0.1 0.0 0.6 -0.6 0.6 0.2 0.6 0.4 0.4

Bagging 2.0 2.3 1.3 6.6 1.3 2.1 2.1 2 1.9 1.9 1.6

m = 10 AdaBoostM1 0.7 1.1 0.2 0.0 1.0 -0.6 0.5 0.5 0.4 0.3 -0.1

Bagging 1.6 1.8 1.6 5.7 1.8 1.3 1.9 2 1.2 1.8 1.6

a Number of hidden units
b Number of learning iterations
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Relationship between pattern algorithms and simulation

time

Figure 5 shows the relationship between pattern-recogni-

tion algorithms and simulation time. Ten trial results were

summed for simulation time. The neural network model

spent an enormous amount of simulation time with

increases in the number of hidden units or learning itera-

tions, even if the number of simulations was varied by

computer specification. Especially, when the number of

hidden units was 29 and the number of learning iterations

was 10,000, the neural network in this study required about

two weeks to perform ten simulations. Clearly, this situa-

tion becomes a problem when many simulations are

expected to be carried out. As for classification-type

models, each model except for NBTree could be executed

in a comparatively short simulation time; moreover, even

when the number of cross validations increases, the simu-

lation time hardly increases at all. Thus, classification-type

models are superior to function-type models from the

viewpoint of simulation time, while function-type models

have the advantage that their constraints such as input–

output formats are less strict than those of classification-

type models. For instance, when the output variables are

continuous values, the classification models have to encode

these to discrete values.

Conclusions

In the case without cross validation, when all samples were

used as training data, RandomForest and RandomTree

performed the best classification. Conversely, for con-

structing higher-generalizability models, J48, NBTree, and

REPTree resulted in better estimates than the former

algorithms, which resulted in low CR values.

Because neural network learning requires an enormous

amount of calculation time for simulation, especially in

combination with ensemble learning or cross validation or

when dealing with numerous hidden units or performing

many iterations, it is impossible to simulate some patterns

given realistic restrictions on time and labor, although the

specifications of the computer system certainly have an

influence.

As for ensemble learning in this study, this technique

was effectively verified, and Bagging was superior to

AdaBoostM1 through all simulation results. In general, it is

known that boosting is able to obtain a higher accuracy

than bagging. However, bagging has advantageous char-

acteristics such as higher robustness for noise compared

with boosting (Quinlan 1996; Bauer and Kohavi 1999;

Yasumura and Uehara 2005).

Without cross validation, the CR was shown to differ

considerably for different pattern-recognition algorithms.

However, these differences are diminished after cross

validation. The CRm through all simulation results for cases

with cross validation and without ensemble learning ranged

from 65.7 (m = 2, RandomTree) to 73.6 (m = 10, J48).

From the viewpoint of generalizability, it is considered that
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we were able to construct models achieving a CR of around

70%.

In order to construct more effective models, we need to

design some algorithms to apply to the model or to build in

re-sampling methods such as ensemble learning and cross

validation. Ensemble learning is one of the effective

methods for constructing efficient models, particularly in

the case of small sample datasets.

References

Aso H, Tsuda K, Murata N (2003) Statistics of pattern recognition and

learning, new concepts and methods. Iwanami Shoten, Tokyo

Bare BB, Mendoza GA (1992) Timber harvest scheduling in a fuzzy

decision environment. Can J For Res 22:423–428

Bauer E, Kohavi R (1999) An empirical comparison of voting

classification algorithms: bagging, boosting, and variants. Mach

Learn 36:105–139

Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

Breiman L (2001) Random forests. Mach Learn 45:5–32

Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn.

Wiley, New York

Fisher DS, Steiner JL, Endale DM, Stuedemann JA, Schomberg HH,

Franzluebbers AJ, Wilkinson SR (2000) The relationship of land

use practices to surface water quality in the Upper Oconee

watershed of Georgia. For Ecol Manage 128:39–48

Freund Y, Schapier RE (1997) A decision theoretic generalization of

on-line learning and an application to boosting. J Comput Syst

Sci 55:119–139

Fujino M, Yoshida M (2006) Development and validation of a

method of forestry region classification using PCA and cluster

analysis together with the SOM algorithm. J Jpn For Soc

88:221–230

Guan BT, Gertner G (1991) Modeling red pine tree survival with an

artificial neural network. For Sci 37:1429–1440

Ichihara K, Toyokawa K, Sawaguchi I (1996) Runoff analysis in a

basin where a forest road was constructed by a complex tank

model whose optimum arrangement of tanks and parameters

were identified by a genetic algorithm. J Jpn For Soc 78:134–142

Jin M (2004) R and discriminant analysis. In: ESTRELA, no 129.

Statistical Information Institute for Consulting and Analysis,

Tokyo, pp 61–67

Jin M (2005) Decision trees and ensemble learning. In: ESTRELA, no

133. Statistical Information Institute for Consulting and Anal-

ysis, Tokyo, pp 62–67

Jin M (2006) R and ensemble learning. In: ESTRELA, no 144.

Statistical Information Institute for Consulting and Analysis,

Tokyo, pp 64–69

Kivinen VP, Uusitalo J (2002) Applying fuzzy logic tree bucking

control. For Sci 48:673–684

Kohavi R (1996) Scaling up the accuracy of Naive-Bayes classifiers:

a decision-tree hybrid. In: Proceedings of the 2nd international

conference on knowledge discovery and data mining, Portland,

pp 202–207

Liu C, Zhang L, Davis CJ, Solomon DS, Brann TB, Caldwell LE

(2003) Comparison of neural networks and statistical methods in

classification of ecological habitats using FIA data. For Sci

49:619–631

Minowa Y (1997) An analysis of subjective forest information with

nonlinear engineering methods: selection of trees to be thinned

using artificial neural network. J Jpn For Soc 79:143–149

Minowa Y (2005) Classification rules discovery from selected trees

for thinning with the C4.5 machine learning system. J For Res

10:221–231

Minowa Y, Suzuki N, Tanaka K (2005a) Estimation of site indices

with an artificial neural network. Jpn J For Plann 39:23–38

Minowa Y, Suzuki N, Tanaka K (2005b) Estimation of site indices

with a machine learning system C4.5. Jpn J For Plann 39:143–

156

Mitsuda Y, Yoshida S, Imada M (2001) Use of GIS-derived

environmental factors in predicting site indices in Japanese

larch plantations in Hokkaido. J For Res 6:87–93

Morimura H, Tone K, Iri M (eds) (1999) Encyclopedia of operations

research and management science. Asakura Shoten, Tokyo

Ootaki A, Horie Y, Steinberg D (1998) Applied tree-based method by

CART. Union of Japanese Scientists and Engineers (JUSE)

Press, Tokyo

Quinlan JR (1993) C4.5: programs for machine learning. Morgan

Kaufmann, San Francisco

Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proceedings of

the 13th national conference on artificial intelligence, Portland,

pp 725–730

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning represen-

tations by back-propagating errors. Nature 323:533–536

Suzuki M, Tatsuhara S, Ishihara T, Nagumo H (1995) Considerations

of the thinning method for old sugi stands in the Tokyo

University Forest in Chiba Prefecture. J Jpn For Soc 77:314–320

Tasaka T, Kumasakura Y, Uchiage S, Yano Y, Saito K, Shinoda T,

Ueki S, Saito N (2001) Evaluation of method for the estimation

of logging productivity using data-mining program C4.5. Bull

Utsunomiya Univ For 37:177–186

Teraoka Y, Masutani T, Imada M (1991) Estimating site index of sugi

and hinoki from topographical factors on maps for forest

management. Sci Bull Fac Agr Kyushu Univ 45:125–133

Toraichi K (1993) Wavelets, fractals, and chaos with fluency analysis.

In: Mathematical sciences, no 363. Saiensu-sha, Tokyo, pp 8–12

Witten IH, Frank E (2005) Data mining, practical machine learning

tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco

Yamasaki H, Yoshimura T, Kanzaki K (1996) The selection of trees

for thinning with the fuzzy reasoning model. J Jpn For Soc

78:143–149

Yasumura Y, Uehara K (2005) An ensemble learning method

integrating bagging and boosting. In: Proceedings of the 19th

annual meeting of the Japanese society for artificial intelligence,

Kitakyushu

J For Res (2008) 13:275–285 285

123


	Verification for generalizability and accuracy of a thinning-trees selection model with the ensemble learning algorithm �and the cross-validation method
	Abstract
	Introduction
	Materials and methods
	Ensemble learning and cross validation
	m-fold cross validation
	Input and output data
	Simulation


	Results and discussion
	Classification by classification-type models
	Comparison with function-type models
	Effect of ensemble learning
	Confusion patterns
	Generalizability
	Relationship between pattern algorithms and simulation time

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


