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Abstract For estimation of tree parameters at the single-

tree level using light detection and ranging (LiDAR),

detection and delineation of individual trees is an important

starting point. This paper presents an approach for delin-

eating individual trees and estimating tree heights using

LiDAR in coniferous (Pinus koraiensis, Larix leptolepis)

and deciduous (Quercus spp.) forests in South Korea. To

detect tree tops, the extended maxima transformation of

morphological image-analysis methods was applied to the

digital canopy model (DCM). In order to monitor spurious

local maxima in the DCM, which cause false tree tops,

different h values in the extended maxima transformation

were explored. For delineation of individual trees, water-

shed segmentation was applied to the distance-transformed

image from the detected tree tops. The tree heights were

extracted using the maximum value within the segmented

crown boundary. Thereafter, individual tree data estimated

by LiDAR were compared to the field measurement data

under five categories (correct delineation, satisfied delin-

eation, merged tree, split tree, and not found). In our study,

P. koraiensis, L. leptolepis, and Quercus spp. had the best

detection accuracies of 68.1% at h = 0.18, 86.7% at

h = 0.12, and 67.4% at h = 0.02, respectively. The coeffi-

cients of determination for tree height estimation were

0.77, 0.80, and 0.74 for P. koraiensis, L. leptolepis, and

Quercus spp., respectively.

Keywords Individual trees � LiDAR �
Morphological image analysis � Tree height � Tree top

Introduction

Forest inventory information has been important with

respect to forest management. In addition, for sustainable

forest management, more information is needed, not only

for planning future forest management, but also for

recording the previous status of the forested area (Koch

et al. 2006). Furthermore, single-tree-level forest infor-

mation has been essential for various forest applications,

such as monitoring forest regeneration, forest inventory,

and evaluating forest damage (Chen et al. 2006). Therefore,

detailed forest information, such as tree counts, tree

heights, crown base heights, diameter at breast height

(DBH), and forest biomass, are critical for the effective

management and quantitative analysis of forests. However,

the traditional methods of investigating such parameters

involve labor-intensive forest inventories, the incorporation

of complex sampling designs, and supplementary work

(Avery and Burkhart 1994; Shivers and Borders 1996).

Moreover, the existing methods are time-consuming, sub-

jective, and more applicable to small areas (Avery and

Burkhart 1994). Therefore, over the last few years, new

technologies, like remote sensing, have supplemented and

supplanted some of these field measurements. Although

different types of sensor have been used to extract forest

information, light detection and ranging (LiDAR), espe-

cially, has recently been used to extract surface

information, as it can acquire highly accurate object shape

characteristics using geo-registered 3D points (Kwak et al.

2006). Therefore, the LiDAR system can measure both

vertical and horizontal forest structures in forested areas,
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such as tree heights, sub-canopy topographies, and distri-

butions, with high precision (Holmgren et al. 2003). Such

characteristics measured using LiDAR can also be applied

for modeling of the above-ground biomass, stem counts

and crown widths (Dubayah and Drake 2000; Lefsky et al.

2002) as they can typically be used to automatically gen-

erate the digital canopy model (DCM), which can describe

the outer contour of the tree crowns (Holmgren and Pers-

son 2004). Even though several papers have shown that

large-footprint LiDAR is a good means for estimating tree

parameters, with an averaging and stand-wise approach

(Næsset 1997; Lefsky et al. 1999; Maltamo et al. 2006),

stand-wise forest information is insufficient for detailed

forest management planning, such as thinning, harvesting,

and planting trees, or for quantifying forest volume, bio-

mass, and carbon absorption ability. Therefore, extracting

single-tree-level information using small footprint LiDAR

is necessary in many cases where such detailed field work

is required (Koch et al. 2006).

To obtain single-tree information from remotely sensed

data, regardless of aerial photographs, satellite imagery, or

LiDAR, it is essential to detect and delineate individual

trees. Early attempts at the detection and delineation of

individual trees using remotely sensed data were carried

out with multispectral imagery (Koch et al. 2006). To

delineate individual trees using such imagery, several

methods have been applied, including the valley-following

method (Gougeon 1995), multiple scale edge segmentation

(Brandtberg and Walter 1998), template matching (Pollock

1996), watershed segmentation (Schardt et al. 2002), and

local maxima filtering (Dralle and Rudemo 1996). How-

ever, when delineating individual trees using previously

established methods with imagery, the crowns at least need

to be visually recognizable as discrete objects. Therefore,

recognition of crowns requires the spatial resolution of the

imagery to be higher than the size of the crowns. Imagery

with relatively low spatial resolution is not applicable for

identification and delineation of individual trees. In addi-

tion, it was assumed the delineation of tree crowns could be

accomplished using imagery, since the center of a crown

(peak) in the image is brighter than the edge (valley)

(Wulder et al. 2003). However, the difference in the

reflectance value between the center and edge of the crown

is not always distinct, due to influencing factors such as the

crown spectral property, complicated crown texture,

diverse forest structure, and time of imagery acquisition

(Wulder et al. 2003).

For resolving such difficulty, LiDAR remote sensing

technology has recently been applied to the delineation of

individual trees and for the extraction of canopy informa-

tion (Hyyppä et al. 2001; Persson et al. 2002; Chen et al.

2006), because LiDAR data can actively acquire tree crown

and canopy information using geo-registered 3D-points,

which are difficult to obtain by direct use of passive sensors.

Once the DCM has been created from the LiDAR data, the

individual trees can be delineated and their heights esti-

mated, because the DCM contains a geometrical elevation

according to the peaks and valleys of a canopy. Some

papers have applied similar methods to LiDAR, but used

aerial photographs or satellite imagery. Leckie et al. (2003)

applied the valley-following method whereas Brandtberg

et al. (2003) carried out crown segmentation by using

multiple scale edge segmentation. Persson et al. (2002)

attempted tree delineation using local maxima detection,

and Mei and Durrieu (2004) segmented tree crowns using

watershed segmentation with LiDAR data. However, in

these cases, the accuracy of delineating individual trees was

relatively low, due to the broad variation of height in the

DCM as a result of detailed LiDAR information. Although

such simple smoothing methods could reduce the depth of

pits and small peaks through smoothing, it could not remove

commission or omission errors, so over-segment problems

still can occur (Chen et al. 2006). Thus, to decrease these

errors, Popescu and Wynne (2004) accomplished tree seg-

mentation using the local maxima detecting method by

adopting flexible window sizes according to the relationship

between the tree height and crown size. As another method

for improving the accuracy of delineated individual trees,

Chen et al. (2006) presented marker-controlled watershed

segmentation, which performs watershed segmentation

around user-specified markers in the input image, rather

than the local maxima, to remove false tree tops.

The objectives of this paper were to:

1. optimally detect tree tops and delineate individual

trees according to species (Pinus koraiensis, Larix

leptolepis, and Quercus spp.), using the extended

maxima transformation and the distance transforma-

tion of the morphological image-analysis methods; and

2. estimate individual tree heights from the delineated

single trees.

If both objectives are successful, the LiDAR data can be

considered for modeling various tree parameters, such as

crown base heights, diameter at the breast height, basal

areas, tree volumes, and the aboveground biomass, in the

forested areas of South Korea.

Methods

Study area

The study area was located on Mt Yumyeong (upper left

127�2900.19380@E, 37�36016.43433@N and lower right

127�3001.10@E, 37�35042.94@N), central South Korea

(Fig. 1).
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Approximately 80 ha of private forests were selected for

this study. Situated from 321 to 573 m above sea level, the

study area was dominated by steep hills, with the main tree

species being P. koraiensis (Korean Pine), L. leptolepis

(Japanese Larch), and Quercus spp. (Oaks). These stands

were selected in such a way that the composition of tree

species was homogeneous, but the edges of the individual

tree crowns were very closely overlapped with each other

due to the high tree density.

LiDAR and ground data

In this study, Optech ALTM 3070 (a small footprint LiDAR

system) was used for acquisition of the LiDAR data, with the

flight performed on 28 April 2004. The study area was

measured from an altitude of 1,500 m, with a sampling

density of 1.8 points per square meter, and the radiometric

resolution, scan frequency, and scan width were 12 bits,

70 Hz, and ±25�, respectively. The information of all objects

was derived from the first and last returns. The sample sites

were composed of 15 plots, each with an area of 100 m2

(10 m · 10 m), with five plots per tree species. For all plots,

135 trees, P. koraiensis (47), L. leptolepis (45), and Quercus

spp. (43), were measured for their individual tree heights and

positions. The positions of the individual trees were acquired

at the breast height of the individual trees, using GPS Path-

finder Pro XR manufactured by Trimble. Ground data were

obtained on 16 October 2004, although the LiDAR data were

acquired on 28 April 2004. However, the difference in the

tree height growth relevant to the period between the

acquisition of the ground data and LiDAR-derived values

was not considered, as tree height growth during 6 months is

relatively small, on the basis of the tree height growth rate

calculation (Table 1).

Classification of LiDAR data and derivation of DCM

In order to derive the DCM from the LiDAR data, pre-

classified points were used with the TerraScan software

(Terrasolid Corporation, Jyväkylä, Finland); therefore, raw

LiDAR points were classified into one of four groups:

ground return (GR), low vegetation return (LVR), medium

vegetation return (MVR), and high vegetation return

(HVR) (Lim et al. 2001). The DCM was computed by

subtracting the digital terrain model (DTM), as a repre-

sentation of the ground area, from the digital surface model

(DSM), as a representation of the surface of the crowns.

The DSM and DTM were generated with the TIN (trian-

gulated irregular networks)HVR and TINGR from the HVR

and GR points, respectively. All the work for generating

the DCM, DTM, and DSM was carried out using ESRI’s

ArcGIS 9.0. As not all the HVR points represented the

outermost surface, the use of all the HVR points for gen-

erating TIN produces an incorrect spurious surface model.

Especially, the across-track distances between points were

relatively further than the along-track distance; therefore,

the surface model could have false strips in the flying

direction (Fig. 2a). In order to cope with this problem, the

HVR and GR were filtered with a 1 m · 1 m window to

select only the highest and lowest points within the win-

dow, with these filtered points used to generate the DSM

and DTM (Fig. 2b).

Segmentation of individual trees

Extended maxima process for detecting tree tops

The watershed transformation is a powerful partitioning

tool for a gray-scale image. Due to the similarity between

the DSM and gray-scale images, the watershed transfor-

mation is also useful for delineating single trees from the

DSM (Chen et al. 2006). The watershed segmentation

method can find the edges (valleys) of each crown in the

DCM, and the top (peak) of individual trees can be

extracted within each crown boundary. However, general

watershed segmentation methods have problems in that the

number of individual trees may be overestimated or

underestimated due to the large height variation within

Fig. 1 The study area
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their topography or smaller tree tops under the crowns of

the higher trees. For successful delineation, selecting a

suitable marker and input function are important (Dough-

erty and Lotufo 2003). In our study, tree tops were detected

for marker and transformation functions, which changed

the original DSM into another image, to delineate the

crown boundaries. Consequently, individual trees were

segmented after finding the tree tops using the extended

maxima transformation and distance transformation of the

morphological image-analysis methods, which removed

the problem of over-segmentation found with normal

watershed segmentation. If these methods are applied to the

DCM, smaller pseudo tree tops on the crown topography

are removed using the user-specified value (h value) of the

extended maxima transformation.

The extended maxima transformation is the regional

maxima transformation of the H-maxima transformation,

as shown in Eq. (1) (Soille 2003).

EMAXhðf Þ ¼ RMAX½HMAXhðf Þ�: ð1Þ

As the first step in the extended maxima transformation, a

set of all H-maxima transformations is denoted by HMAX.

The HMAX transformation suppresses all maxima whose

depth is lower than or equal to a given threshold level, h,

which is achieved by performing a reconstruction by

dilation of f from f – h:

HMAXhðf Þ ¼ Rd
f ðf � hÞ; ð2Þ

where f is an input image, h a nonnegative scalar, R a

reconstruction function, and d a dilation operator. In this

study, f is the DCM and Rd
f ðf � hÞ is defined as the geo-

desic dilation of f with respect to f – h, and iterated until

stability is reached (Soille 2003). The geodesic dilation of f

with respect to f – h performs the morphological dilation

for f – h, but the value of f is applied only in the case where

the value after the dilation for f – h is greater than f

(Fig. 3). In the DCM, the h value of the HMAX transfor-

mation can play a key role as a factor for controlling the

segmentation level, such as over or under estimation of the

number of individual trees, by removing unnecessary

maxima according to tree species. Because the shapes

according to tree species will be different, the DCM has

different height variations and tree species shapes. There-

fore, a reasonable result for delineating individual trees by

controlling the h value according to the tree species can be

obtained. In this paper, the optimal h value was estimated

in 0.02 steps, from 0.00 to 0.30, for tree delineation

according to tree species.

In the second step, a regional maxima transformation is

required to find the tree tops of fhmax treated by the H-

maxima transformation. The set of all regional maxima

transformations is denoted by RMAX, and defined by the

threshold superposition, as shown in Eq. (3) (Soille 2003).

RMAXðfhmaxÞ ¼ fhmax � Rd
fhmax
ðfhmax � 1Þ; ð3Þ

where fhmax is the image after H-minima transformation

with the DCM, and Rd
fhmin
ðfhmax � 1Þ is defined as the geo-

desic dilation of fhmax with respect to fhmax – 1, iterated

until stability is accomplished, as in the HMAX process.

However, the detection of maxima using reconstruction in

RMAX subtracts Rd
fhmin
ðfhmax � 1Þ from fhmax. Therefore, a

binary image, which has a value of 1 can be obtained,

corresponding to a tree top of the fhmax belonging to the

regional maxima, otherwise 0 is used if the RMAX

Table 1 Descriptive statistics of the field measurements

Species Number

of trees

Height (m)

Minimum Maximum Mean SD

Pinus koraiensis 47 10.8 20.2 15.6 2.3

Larix leptolepis 45 11.0 23.5 16.4 2.7

Quercus spp. 43 8.5 18.8 14.2 2.5

Fig. 2 DCM generated with all

points (a) and DCM generated

with filtered points (b)
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transformation is carried out with the fhmax after the HMAX

transformation (Fig. 3).

Segmentation of individual trees

For segmenting individual trees, the fDT(Emax) was

generated after treatment of the Euclidean distance trans-

formation with the fEmax generated using the extended

maxima transformation. The Euclidean distance transfor-

mation is defined by assigning a number that is the distance

between that value and the nearest nonzero value of the

black and white image (Soille 2003). The Euclidean dis-

tance between (x1, y1) and (x2, y2) in the black and white

image (fEmax) created using the extended maxima trans-

formation is expressed, as shown in Eq. (4).

dEuclidean½ðx1; y1Þ; ðx2; y2Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ2 þ ðy2 � y1Þ2
q

;

ð4Þ

where (xi, yi) are the coordinates of a pixel on fEmax. In the

process of Euclidean distance transformation, a value of

1 s, tree tops in a binary image, is transformed into 0 s,

otherwise values of 0 s in a black and white image are

converted into the distance from the neighboring value of

1 s (Fig. 3). Therefore, values of 0 s in fDT(Emax) are real

tree tops, with the relatively highest values among the

neighbors being valleys of a real canopy between tree tops.

Thus, the tree crown boundaries can be directly obtained

using a distance transformation with fEmax.

Estimation of tree heights

After the segmentation, the individual tree heights are

estimated using fDT(Emax) and the DCM. When estimating

tree heights, individual trees delineated with a one-to-one

relationship were used. Individual tree heights were

determined from the highest elevation value of the DCM

within the segmented boundaries. The tree height (h) is the

maximum value within the segmented polygon

h ¼ max ðhiÞ; ð5Þ

where hi is the individual tree height of the corresponding

segment polygons (Hyyppä et al. 2001).

Accuracy analysis

Using the fDT(Emax) generated from different h values,

according to tree species, the accuracy of individual tree

detection can be evaluated. To evaluate the accuracy of

individual tree detection, field measurements were carried

out according to tree species in each 10 m · 10 m area. In

comparison with the field data, each segmented tree was

visually classified into one of the five categories suggested

by Leckie et al. (2003), as shown in Table 2. However in

this study, satisfactory delineation refers to a segmented

boundary that was visually slightly larger or smaller than

the reference tree crown, whereas in the work of Leckie

et al. (2003) this meant the areas of both trees overlapped

by less than 60%.

Fig. 3 Process of segmenting

individual trees
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Additionally, the estimated tree heights were compared

with the field measurement data, as an accuracy assess-

ment, using the coefficient of determination (R2) and root

mean square error (RMSE).

Results

Segmentation of individual trees

The accuracy of detected individual trees was estimated

using the five categories in Table 2, according to the h

values from the extended maxima transformation for the

three tree species. To evaluate the accuracy of detection,

the individual trees, classified into the correct and

satisfactory categories in Table 2, were assumed to have a

one-to-one relationship with field-measured trees. The

segmentation accuracies according to the different h val-

ues, at 0.02 intervals, were estimated and are depicted in

Fig. 4. With increasing h values, the segmentation accu-

racies also increased and reached their highest value, after

which the accuracies started to decrease.

The best detection accuracies for P. koraiensis, L. lepto-

lepis, and Quercus spp. were 68.1% at h = 0.18, 86.7% at

h = 0.12, and 67.4% at h = 0.02, respectively. In similar

studies, the accuracy of tree detection had a broad range

values. Leckie et al. (2003), who used the same accuracy

assessment method as in this study, detected individual trees

with a 59% match for a coniferous forest. Koch et al. (2006),

with the same assessment method, found trees with an 87.3%

match for Douglas firs (Pseudotsuga menziesii) and 50% for

deciduous trees (Carpinus betulus, Acer pseudoplatanus and

Fraxinus excelsior). In the study of Chen et al. (2006), 64.1%

of trees were detected with the method, with one-to-one

corresponding trees at the ground truth crown boundary for

Blue oaks (Quercus douglasii). The accuracies in this study

appear to be similar to those of other research. However, it is

difficult to conclude which research should be recommended

for detecting trees in forest areas, as each of these studies

used specific algorithms for segmentation, and different

accuracy assessment methods and study areas.

It was noticeable that Quercus spp. had a narrow fit

range, with an accuracy of over 60%, which abruptly

decreased with increasing h value, while other coniferous

trees had relatively wide fit ranges (Fig. 4). The h values

with accuracies of over 60% ranged from 0.06 to 0.20, 0.06

to 0.28, and 0.00 to 0.02 for L. leptolepis, P. koraiensis and

Quercus spp., respectively. This can be attributed to the

tree form differences between coniferous and deciduous

tree species. When h is very large for deciduous trees, the

tree crowns can have under-segmentation (merged), as the

tree tops required for segmentation are removed. For

Quercus spp., the merged rates reached 77 and 86% at

h = 0.12 and 0.18, respectively, whereas L. leptolepis and

P. koraiensis had the best segmentations. The merged rate

for Quercus spp. decreased to 23% at h = 0.02 (Table 3).

In contrast, if h is very small for coniferous trees, the

tree crowns can be over-segmented (split) due to several

spurious local maxima, which are counted as initial points

for segmentation. At h = 0.02, where Quercus spp.

reached the best accuracy, 64% of P. koraiensis and 51%

of L. leptolepis were over-segmented or split. This over-

Table 2 Categories for accuracy analysis in tree crown segmentation

Categories Definition

Correct delineation Exactly 1:1 correspondence between reference tree and detected tree

Satisfactory delineation One automatically detected tree corresponds to one reference tree, but the boundaries are larger

or smaller than the reference tree crown

Merged tree More than one reference tree lies within the automatically delineated tree

Split tree More than one automatically-delineated tree lies within one reference tree

Not found There exists a reference tree, but no corresponding automatically delineated tree
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Fig. 4 Accuracies for correct and satisfactory segmentation accord-

ing to h values and tree species
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segmented (split) rate decreased to 17% at h = 0.18 for

P. koraiensis and 13% at h = 0.12 for L. leptolepis.

Pinus koraiensis had the best detection at h = 0.18

(shown bold in Table 3), and the rates of split and merged

trees occupied 17.02 and 14.89%, respectively. In the case

of L. leptolepis, the best detection was accomplished at

h = 0.12, with 13.33% split trees, and without merged

trees. The best detection for Quercus spp. was reached at

h = 0.02, and the rates of split and merged trees were 23.26

and 4.65%, respectively. The most appropriate h values for

different tree species can be found by applying various h

values, and then analyzing the segmentation result.

Figure 5 depicts the segmented image according to the h

value with the highest accuracy. Circles refer to the posi-

tions of individual trees obtained through the field survey,

and the ‘‘x’’ marks are the tree tops detected through the

extended maxima transformation with LiDAR data. The

positions and tree tops of individual trees fell within

the segmented crown polygon, but some spatial differences

were found between the field and LiDAR positions.

Estimation of tree height

The tree heights estimated from 100 crowns (32 P. korai-

ensis, 39 L. leptolepis, and 29 Quercus spp.), delineated

with the correct and satisfactory categories in Table 2,

were compared to field measurements. The coefficients of

determination for tree height estimations were 0.77, 0.80,

and 0.74 for P. koraiensis, L. leptolepis and Quercus spp.,

respectively (Fig. 6), while Clark et al. (2004) estimated

the height in a tropical rain forest with a coefficient of

determination of 0.51. The RMSEs were 1.13, 1.35, and

1.32 m for P. koraiensis, L. leptolepis, and Quercus spp.,

respectively. In this study, the accuracy of the heights of

the coniferous trees was usually higher than for the

deciduous trees, which was similar to that found by Heu-

rich et al. (2004), but they estimated the accuracy at 0.96

for coniferous trees and 0.98 for deciduous trees. However,

this cannot be directly compared due to the different forest

types, densities, compositions of tree species, and quality

of the LiDAR data.

Discussion

Our research showed that coniferous trees were better

segmented, with relatively higher h values than deciduous

trees. A coniferous crown has a cone shape, with a steep

slope, so there are definite differences in the elevation

values among pixels on the DCM from the tree top to the

crown edge. It can allow the top and bottom of the

crown to be easily found. However, small conical

swellings can exist on the crown surface of a coniferous

tree, causing an individual tree to be segmented into

several trees. This can generate spurious tree tops, which

are the initial point of segmentation. Therefore, when

coniferous trees are delineated using the extended

maxima transformation and distance transformation, as in

this paper, a higher h value must be selected to remove

unnecessary swellings. On the other hand, deciduous

trees have an ellipsoidal crown shape, which has a gentle

slope, so there are slight differences in the elevation

values among pixels in the DCM. In comparison to

coniferous trees, difficulty can be encountered in finding

the top and bottom of the crown with deciduous trees.

The swellings on a deciduous crown are rarely recog-

nized compared to those on a coniferous crown. There-

fore, a lower h value can be employed for removing

relatively rounded swellings when segmenting deciduous

trees. These different h values for coniferous and decid-

uous trees can imply that different h values should apply

to different forest types for detecting individual trees. To

find optimal h values for different forest types and tree

species, further research is needed with various types of

forests and trees.

Table 3 Segmentation results with optimal h values according to tree species

h value Tree species Total Correct Satisfactory Merged Split Not detected

Number % Number % Number % Number % Number %

0.18 Pinus koraiensis 47 25 53.19 7 14.89 7 14.89 8 17.02 0 0.00

Larix leptolepis 45 28 62.22 5 11.11 4 8.89 5 11.11 3 6.67

Quercus spp. 43 1 2.33 2 4.65 37 86.05 1 2.33 2 4.65

0.12 Pinus koraiensis 47 22 44.90 10 20.41 4 8.16 11 26.53 0 0.00

Larix leptolepis 45 34 75.56 5 11.11 0 0.00 6 13.33 0 0.00

Quercus spp. 43 4 9.30 2 4.65 33 76.74 1 2.33 3 6.98

0.02 Pinus koraiensis 47 7 14.89 7 14.89 0 0.00 30 63.83 3 6.38

Larix leptolepis 45 8 17.78 11 24.44 0 0.00 23 51.11 3 6.67

Quercus spp. 43 18 41.86 11 25.58 10 23.26 2 4.65 2 4.65
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An average 74.1% of trees in our study were correctly

detected although the number of laser points used was

relatively small (1.8 points m–2). This detection accuracy

was comparable with that in previous research with higher

LiDAR point densities. Heurich et al. (2004) detected

67.9% of trees with 10 points m–2, and Chen et al. (2006)

identified 64.1% of trees using 9.5 points m–2. In the study

of Koch et al. (2006), the accuracy of the detection was

87.3%, with 5–10 points m–2, and Solberg et al. (2006)

detected 93% of dominant trees with 5.0 points m–2.

However, the main limitation of this study was the low

point density of the LiDAR data. Even though the accuracy

of this research was comparable with that of previous

studies, the DCM cannot accurately describe the shape of

an individual tree crown due to the lack of representative

LiDAR points with a low point density. Moreover, the laser

points used in this work had an across-track average dis-

tance of 2.0 m between each line, although the along-track

distance was within an average of 1.0 m. The across-track

affects the resolution of the DCM, as this depends on the

interval between the laser points (Wehr and Lohr 1999). If

the point density is higher and the interval of the across-

track made sufficiently narrow, a better result can be

expected, even if it is not the entire reason for the low

accuracy in the detection of trees or estimation of the tree

heights.

The problem with the low point density of LiDAR data,

as well as low performance, can also affect the accuracy of

tree height estimations. The tree height estimations of this

study showed relatively low performance compared to the

research of Heurich et al. (2004) with 10 points m–2, in

which the coefficients of determination of the tree height

estimation were 0.96 and 0.98 for deciduous and coniferous

trees, respectively. This can also be attributed to ‘‘satis-

factory delineation’’ which could have caused the

occurrence of false tree tops in our analysis. With correct

delineation, the R2 for estimating tree heights reached 0.83,

0.86, and 0.78 for P. koraiensis, L. leptolepis, and Quercus

spp., respectively. However, the R2 in satisfactory delin-

eation fell to between 0.25 and 0.58, which causes

relatively low statistical performance in tree height esti-

mations (Table 4).

In addition, when LiDAR data are applied for measuring

trees and stands in a forest, the DBH–height relationship

should be functionalized. Afterward, the DBH can be

estimated from the height using LiDAR (Kwak et al. 2005).

Trees or stands must also be classified using LiDAR itself

(Holmgren and Persson 2004; Koukoulas and Blackburn

2004) or by fusing the digital aerial photograph or satellite

imagery with the LiDAR data (Persson et al. 2004; Leckie

et al. 2005).

Conclusion

LiDAR data can be effectively used for forest inventory,

especially for detecting individual trees and estimating tree

heights. This study was performed to delineate individual

trees, using the extended maxima transformation of

the morphological image-analysis method, and estimate

(a) Pinus koraiensis (h=1.8) (b) Larix leptolepis (h=1.2) (c) Quercus spp. (h=0.2)

Fig. 5 Segmented images

according to the h value with

the highest accuracy
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individual tree heights. For detecting trees and delineating

tree crowns, different h values, which play a key role as a

factor for controlling the segmentation level, could be

applied for different tree species. P. koraiensis, L. leptol-

epis, and Quercus spp. had best detection accuracies of

68.1% at h = 0.18, 86.7% at h = 0.12, and 67.4% at

h = 0.02, respectively. This can be explained by the shape

of a deciduous tree crown being rounder than that of a

coniferous tree. In other words, a deciduous tree has

slightly different elevation values among pixels on the

DCM, as it has a gently sloping crown. The coefficients of

determination for tree height estimation were 0.77, 0.80,

and 0.74 for P. koraiensis, L. leptolepis and Quercus spp.,

respectively.

The main limitation of this study was the relatively low

point density of the LiDAR data. The DCM cannot accu-

rately describe the shape of a crown with a low point

density. A low point density can affect the accuracy of

detection of individual trees and tree height estimation.

Therefore, the point density of LiDAR data needs to be

sufficiently improved for better delineation and height

estimation of individual trees.
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