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Abstract Two heuristic techniques, the genetic algorithm
(GA) and Tabu search (TS), both with an embedded linear
programming routine for earthwork allocation, were com-
pared to a manually designed forest road profile. The manu-
ally designed road length was 345.7m and its average
gradient was 14.1%. The best costs of the profiles designed
by GA and TS, without changing the placement of control
points, were less than that designed manually. The best cost
found by GA was almost the same as the global optimum
solution. While TS could not find a better solution than GA,
it usually found a good solution in less time. It was not
possible to search all alternatives by changing the place-
ment of control points and find the global optimum solution
within a reasonable time. However, it can be concluded
from the results that both GA and TS found good solutions
within a reasonable time. Since it is not possible to manually
evaluate many alternatives, road designers should find heu-
ristic techniques helpful for design of the road profile.
Moreover, the effect of the number of control points on
construction costs was examined. The results indicated that
increasing the number of control points reduces the con-
struction costs. However, driving safety and comfort might
be decreased.
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Introduction

Forest roads have an important role in managing forest
resources. They need to be constructed such a way that
forestry workers and machines can gain access to opera-
tional sites and carry out operations safely and efficiently.
On the other hand, forest roads are at risk of road surface
erosion and are subject to cut-and-fill slope failures. There-
fore, it is important to design forest roads by considering
not only cost efficiency but also the appropriate manage-
ment of water and soil.

Akay (2003) developed a 3-D forest road alignment
optimization model, TRACER, to help the forest road
designer with a quick evaluation of alternatives in order to
design a path with the lowest total cost taking into account
construction, future maintenance, and transportation costs
while conforming to design specifications and environmen-
tal requirements. The model relies on a high-resolution
digital elevation model (DEM), for example one obtained
from LIDAR (light detection and ranging), to provide ter-
rain data for supporting the analysis of road design features
(Reutebuch et al. 2000). After a designer has decided on
control points on a 3-D graphic interface, the model auto-
matically generates horizontal and vertical curves, cross-
sections, and calculates construction, maintenance, and
transportation costs. This ensures road feasibility consider-
ing terrain conditions, geometric specifications, and driver
safety. It employs optimization techniques using linear pro-
gramming to minimize earthwork allocation costs and a
heuristic technique (simulated annealing, see Dowsland
1993) to optimize vertical alignment. Finally, it estimates
the average annual volume of sediment delivered to a
stream from the road section with SEDMODL (Boise
Cascade, ID, USA, 1999). However, this model relies on a
fixed horizontal alignment determined by the designer, who
locates a series of control points between two end-points,
considering design specifications and environmental
requirements.

Ichihara et al. (1996) discussed the methods for design-
ing the optimum vertical alignment considering the place-
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ment of control points. They used genetic algorithms to
optimize the placement of control points while using
dynamic programming to decide the longitudinal grade for
the lowest earthwork cost. Dynamic programming has been
widely used in the literature and practice to optimize the
vertical alignment (Antoniotti 1969; Nicholson 1976;
O’Brien and Bennett 1969; Trietsch 1987). In Japan,
Kanzaki introduced dynamic programming to decide the
longitudinal grade (Kanzaki 1973). The Japan Forest De-
velopment Corporation has used this method to plan forest
roads. The basic feature of dynamic programming is that the
optimum decision is reached stepwise, proceeding from one
stage to the next. However, this method is not suitable for
problems having complex relationships between the stages
which include earthwork allocation or water and soil flow
on forest roads.

In this study, we first developed the model to optimize a
forest road profile while changing heights at control points
without changing the placement of control points. We used
two heuristic techniques, genetic algorithm (GA) and Tabu
search (TS), in the model to design a forest road profile with
minimum construction and maintenance costs, both with
an embedded linear programming routine to allocate
earthwork. We discussed the accuracy and computation
time of these methods compared with the global optimum.
We then extended the model to optimize a forest road
profile while changing heights at control points as well as
the placement of control points. Finally, we discussed the
effect of the placement of control points and the number of
control points. This study was conducted as part of the
development of an automated forest road design program
to minimize construction cost, maintenance cost, and to
evaluate soil sediment from soil erosion on forest roads.
Future work would extend this methodology to optimize
horizontal alignment as well as vertical alignment simulta-
neously, and would evaluate soil sediment from forest
roads.

Materials and methods
Study site

The example terrain profile is shown in Fig. 1. The length of
manually designed road profile is 345.7m with an average
gradient of 14.1%. It has four control points and 17 sections
which were located 20m apart. Longitudinal slopes are
changed at control points.

Vertical alignment

The road gradient is limited to less than 18% in this study to
accommodate heavy vehicles on aggregate-surfaced roads.
Vertical curves are used to connect roadway sections be-
tween two grades if the absolute value of the difference
between two grades is more than 5%. The minimum curve
length is 20m. In determining a feasible curve length, crest
and sag vertical curves are considered separately based on

1049 /d
1039 /

E 1029

5

‘© 1019

e

o
1009 14.1%: 17.5%| 14|7%: 17.4% 7.5%
999 14.2% [12.4% 16.1% 12.‘ % 17.9% ‘ 7.7%
0 100 200 300

distance (m)

Fig. 1. The example terrain profile (upper numbers indicate grades of
manual design while lower numbers indicate grades of best solution)
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Fig. 2. An example cross-section showing cut-and-fill slope angles,
typical running surface width, and depth to rock (not to scale)

whether the curve length is greater or less than the safe sight
distance (Mannering 1990).

Cross-sections

Cross-sections are located perpendicular to the road profile.
Cross-sections can be derived from either survey or LIDAR
data. They are used to compute earthwork volume and
major cost elements for each road stage. An example cross-
section is shown in Fig. 2. The road width is 2.5m, the cut
slope is 1:0.8, and the fill slope is 1:1. This program can
analyze different types of materials, for example rocks, as
subsurface materials. Excavation in rock is at 1:0.3. If a cut
slope or a fill slope exceeds Sm in height, it is assumed that
blocks are used to fix a slope at 1:0.3.



Cost calculation

The total cost of each road section is determined using the
method of Akay (2003), considering construction and main-
tenance activities. The road construction cost is computed
for the following activities: construction staking, clearing/
grubbing, earthwork allocation, drainage and riprap, surfac-
ing, water supply/watering and seeding/mulching. The
maintenance activities consist of rock replacement, grading,
culvert/ditch maintenance, and brush clearing. The dis-
counted cost of future road maintenance is estimated to
compare the total construction and discounted maintenance
cost for alternative profiles. The objective function that
minimizes the total cost, T, takes the following form:

MinT.=C + M, (1)

where C is the construction cost and M, is the discounted
maintenance cost. The USDA Forest Service Region 6 Cost
Estimating Guide (1999) is used to estimate the costs.

Construction staking cost

Construction staking cost is estimated by multiplying the
unit costs per kilometer ($778/km) by specified adjustment
factors and total road length in kilometers. These factors
include ground cover, terrain, section, and travel factors.
When the ground cover is denser, the basic unit cost is
increased by 15%. The model computes the side slope at
each road section to estimate the terrain factor. If the side
slope is greater than 30%, the basic unit cost is increased by
25%. When there are more than 60 sections per kilometer,
the model increases the basic unit cost by 30%.

Clearing and grubbing costs

The area to be cleared between two consecutive sections is
estimated by the model. The clearing and grubbing costs are
estimated by multiplying the given unit costs per unit area
($3700/ha) by adjustment factors and total clearing area.
The factors include clearing classifications, slash factor,
side slope factor, and clearing width factor. Clearing
classifications varies based on the density of the ground
cover (medium: 1.74). The slash factor depends on the slash
treatment method (windrowing: 1.07). The model computes
average side slope of two consecutive cross-sections to de-
fine the side slope factor. Average clearing width is com-
puted based on the clearing widths.

Earthwork allocation cost

The economic allocation of the earthwork is determined
using the linear programming formulation suggested by
Mayer and Stark (1981). This formulation considers pos-
sible borrow and landfill locations and various soil charac-
teristics along the roadway. It is assumed that the unit cost
of hauling is linearly proportional to the hauling distance.
The unit costs of earthwork activities do not vary with the

85

amount of material moved, but the soil type at each road
stage. In this method, swell factor of the material moved
from cut section i, and shrinkage factor of the material
compacted into fill section j, are also considered. The objec-
tive function Z can be stated as follows:

MinZ = Z;C(i, J)X(.j)+ Z;CD(i,k)XD(i,k)

+ X Calp. ) Xs (. ) )

Subject to the following constraints:

1. The amount of cut moved from cut section i to fill section
j (X(iy)) plus the amount of cut moved from cut section
i to landfill area k (Xp(i,k)) are equal to the available
amount of cut at cut section i.

2. The adjusted amount of cut moved from cut section i to
fill section j (s} X(i,j)) plus the adjusted amount of mate-
rial moved from borrow area p to fill section j (S;/;f
Xi(pyj)) are equal to the amount of fill required at fill
section j. s;jf- and s-!fj are the shrinkage (or swell) factors for
material moved from cut section i and borrow area p,
respectively.

3. The adjusted amount of cut moved from cut section i to
landfill area k (s} X, (i,k)) is equal to or less than the
capacity of the landfill k. The shrinkage (or swell) factor
for material moved from cut section i and wasted in
landfill area k is defined as s.

4. The amount of material moved from borrow area p to fill
section j (Xgz(p,j)) is equal to or less than the material
available in borrow area p.

C(i,j), the unit cost of moving and compacting soil from
cut section i to fill section j, is estimated based on the unit
cost of excavation (u,: $1.61/m’), hauling (u,: $1.3/m’-km),
and compacting (u: $0.58/m’), assuming that the costs are
linearly proportional to the quantities. The formulation
for adjusted quantities based on the distance between the
centers of the cut section i and the fill section j, d;, is:

C(ij)=u, + s,-h(uhd,-j + uc) 3)
where s” = swell factor at cut section i. The unit cost of
borrow, Cg(p,j), and disposal, Cp(i,k), are determined simi-
larly. Cy(p,j) is estimated based on unit cost of excavation
(.: $1.81/m?), hauling (,: $1.3/m>-km), and compacting (u,:
$0.58/m”). Cp(i,k) is estimated based on unit cost of excava-
tion (u.: $1.61/m*), hauling (u,: $1.3/m’-km), and disposal
(14: $0.1/m>). Tt is assumed that excavated rock at cut section
i is disposed of at the landfill area. The unit cost of rock is
estimated based on unit cost of excavation (u.: $3.0/m’),
hauling (i, $1.3/m’-km), and disposal (u: $0.1/m’). The
estimated swell factors in haul and shrinkage factor in
embankment for the soil along the roadway are 1.4 and 0.75,
respectively. For borrow material, these factors are 1.2
and 0.9, respectively. For rock, these factors are 1.6 and 1.3,
respectively. It is assumed that the block unit cost is
$161.0/m’.

It is assumed that a borrow and a landfill area with
sufficient capacities are located at the beginning of the road
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section. It is also assumed that it is physically possible to
move earthwork between points i and j.

Surfacing cost

The surfacing cost is computed based on the type and re-
quired quantity of the surfacing material and haul distance.
In forest roads, 7.5-15cm size rock is used for the base
course with 25cm depth. The rock size and depth of the
traction surface is assumed to be determined by the road
grade. In the model, on grades less than 16%, 4-cm rocks
are used in the traction surface with 8cm depth. If the grade
is greater than or equal to 16%, 2.5-cm rocks are used in a
traction surface with 10cm depth (Kramer 2001). The quan-
tity of the surfacing material depends on the length and
width of the road section, and surfacing depth. The unit
costs (including rock purchasing or production, hauling,
processing, and testing) for rock types are estimated as
follows: pit run is $3.92/m’, good quality base course rock
(7.5cm) is $7.85/m’, traction surface rock (4cm) is $11.77/
m’, and finer traction surface rock (2.5cm) is $15.69/m’.

Water supply and watering cost

Watering is required to control dust and to retain fine sur-
face rock when surface materials are too dry. Watering cost
depends on the estimated unit cost of water ($3/kiloliter),
the amount of water required for excavation (26 liter/m’),
surfacing operations (114 liter/m’), and haul distance
(30 km). It is assumed that the required amount of water is
purchased and the truck is equipped with a water pump.

Seeding and mulching cost

The minimum amounts of material used for seeding, fertil-
izing, and mulching are 30, 150, and 3000kg/ha, respec-
tively. The total cost is estimated by multiplying the
estimated unit costs of seeding ($0.33/kg), fertilizing ($0.08/
kg), and mulching ($0.08/kg) by the amount of materials
used per unit area, the total project area and the application
cost (includes overhead, equipment, transportation, and
labor costs, $550/ha).

Drainage and riprap costs

Drainage cost is computed based on the unit costs (material,
installation, elongation, treatment, and special item costs)
per lineal meter of the culvert ($25/m) by the culvert length
in meters. In forest roads, 15-20-cm size rocks are com-
monly used as riprap material to reduce ground disturbance
due to surface runoff and falling water on the downspout.
The riprap cost is estimated by multiplying the basic unit
cost of riprap per cubic meter ($10/m’) by the required
volume of rock used, in cubic meters.

Maintenance costs

Road maintenance generally includes replacing the aggre-
gate, performing blading, and maintaining culverts and
ditches. Rock replacement cost, Cf, is assumed to vary with
the timber volume transported over the road (i.e., 2.5cm
rock displacement for every 4500m’ timber haul), road
width, and length of the road stage. The blading cost, Cf, is
computed based on the assumptions that for each 9000 m’
transported, at least one blade maintenance operation is
required, the unit cost of blading ($0.3/m), and the road
length. The cost of maintaining culverts, Cf, is computed
depending on the basic unit cost of maintaining a culvert
($15 per culvert) and the number of culverts installed along
the roadway. The cost of maintaining ditches, Cf; and brush,
Cf,, is calculated based on the estimated unit costs, $0.2/m
and $0.25/m, respectively, and length of the road stage to be
maintained.

Finally, the discounted maintenance cost, M,, is com-
puted using a terminating periodic series approach
(Klemperer 1996). The basic formula of this series is:

1 + _1 vt —1
(1 +r)1 (1 +r)2t (1 +r)kt )

where M,,, = the discounted cost for rock replacement and
blading, r = annual interest rate (e.g., 1%), t = harvesting
periods in years (e.g., 5 years), k = number of harvesting
periods (e.g., 6). Reformulating Eq. 4:

M, = (Cfr + Cfb)[

M,y = (Cf. +CF,) L=(t+r)
b0 v b (1+r)z_1 (5)
where n = kt, estimated total service time (e.g., 30 years) of
the road in years or the time when last harvesting occurs.
The discounted cost for the culvert and ditch maintenance,
and brush cleaning is calculated in a similar way. Then, the
discounted maintenance cost is:

M,=(C +CF, ){%} HCh+ G + ){%}

(6)

where t,, = time intervals (e.g., 5 years) for the culvert and
ditch maintenance, and brush cleaning.

Vertical alignment optimization

The model generates new road alignment alternatives by
systematically searching for the vertical alignment with the
lowest total cost. Heuristic combinatorial optimization tech-
niques (genetic algorithm and Tabu search) are used to
guide the search for the best vertical alignment that mini-
mizes the sum of construction and maintenance costs while
changing heights at control points as well as the placement
of control points. Technically feasible grades are considered



in this search. The model calculates cross-sections, earth-
work volumes, and minimizes earthwork costs using linear
programming for each alternative vertical alignment,
subject to geometric specifications.

Both GA and TS have successfully solved combinatorial
optimization problems. However, the search processes are
significantly different. GA begins with randomly generated
initial solutions and uses the mechanics of selection, cross-
over and mutation, in which random numbers are used. On
the other hand, TS is based on gradient search and uses a
Tabu list which forbids or penalizes the search for certain
previously visited solutions to avoid local optimum entrap-
ment. Random numbers are basically not used in TS.
Applicability of GA and TS to forest road profiles is exam-
ined in this study.

Genetic algorithms

Genetic algorithms (GA) were developed initially by Hol-
land and his associates in the 1970s. Most early applications
were in the realm of artificial intelligence, such as game-
playing and pattern recognition (Reeves 1993). Applica-
tions to combinatorial optimization have also been
developed. In road design, Ichihara et al. (1996) used GA to
decide the location of control points while using dynamic
programming to decide the longitudinal grade for the low-
est earthwork cost. Suzuki et al. (1998) planned forest roads
for recreation with a digital map. They connected start
points, end points, and two randomly chosen points with
the Dijkstra method (Smith 1982) to increase driving
safety, and reduce earthwork volume and the viewed fre-
quency. Changing coordinates of the intermediate points,
they searched for the most suitable route using a genetic
algorithm.

First, we generated an initial population of five feasible
solutions considering the four control points from the
manual design (Fig. 3). The feasible solutions were gener-
ated by changing alternative height at control points and
end points at intervals of 1 m within 10m above and below
ground height randomly. The height of the start point is
assumed to be the same as the ground height. A “chromo-
some” (a single solution) consists of six “genes” represent-
ing the start point, four control points, and the end point.
Each gene is encoded as a vertical distance from ground
height. In many applications, the component vector, or
chromosome, is simply a string of Os and 1s. Goldberg
(1989) suggests that there are significant advantages if the
chromosome can be so structured, although a more recent
argument by Antonisse (1989) casts doubt on this. Each
chromosome in the initial population is evaluated by com-
puting the objective function value, thus each solution must
be feasible with respect to the constraints.

Parent chromosomes are then selected based on “fit-
ness” [the better the fitness value (objective function value),
the higher the chance of it being chosen]. They are then
“mated” by choosing a crossover point at random, then the
crossover occurs, and two “offspring” chromosomes (two
new solutions) result.
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Generate initial population of
chromosomes

Select mating a pair of
chromosomes for the heights at
control points

Apply crossover and mutation
routines

Is the population full?

Select mating a pair of
chromosomes for the placement
of control points

Apply crossover and mutation
routines

Is the population full? — No

Stop and report the best solution
found during search

Fig. 3. A flow chart of the genetic algorithm process

X =(0,-1,2,7,-9,4)
Y =(0,-10,5,-4,2,—1)

And if the crossover point were noted as being just before
the third control point, the pieces prior to the crossover
would be

X,(0,-1,2) X,(7,-9,4)
Y,(0,-10,5) Y5(—4,2,~1)

And the resulting offspring would become:

X,Y,(0,-1,2,-4,2,—1)
X,Y,(0,-10,5,7,-9,4)

A random mutation may then be applied to these off-
spring. If a random number on the range between 0 and 1 is
less than the mutation probability, the current vertical dis-
tance of a randomly chosen gene will randomly change. The
small number of genes would lead to a larger than normally
used mutation rate, 1-5% (Ichihara et al. 1996). De Jong
(1975) has been quoted as recommending that the bit-
mutation rate should be n”' where n is the string length. The
mutation rate is set to 20% based on this recommendation.
If offspring are feasible with respect to the constraints,
those are new chromosomes in the next search process
for the placement of control points. We created five new
chromosomes.
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Although the placement of control points is fixed during
choosing initial solutions randomly, the model searches for
an optimum solution with GA changing the placement of
control points as well as vertical distances at control points.
A chromosome (a single solution) contains information on
the placement of control points. Similarly, the crossover and
a random mutation are applied. Five new feasible offspring
are created for new chromosomes in the next generation.
We repeat this process for 10000 generations (iterations).

After the best solution has been found from the above
procedure, the genetic algorithm shown in Fig. 3 is again
applied in order to intensify the search in the region of the
best solution. In this second search process, five feasible
solutions are generated for initial solution again by chang-
ing alternative height at control points randomly at intervals
of 10cm within 1m above and below the best path. After
generating the initial solutions, crossover and mutation of
vertical heights at control points are carried out while the
placement of control points is fixed. This second process
stops after 1000 iterations.

Tabu search

Tabu search is a recently developed solution strategy for
combinatorial optimization problems (Glover 1989) and
has evolved from gradient search techniques (Glover and
Laguna 1993). Gradient search techniques can guarantee an
optimal solution when the solution space is convex. How-
ever, some real-world combinatorial problems do not have
a convex solution space, and others are also discrete. Tabu
search can systematically look for feasible solutions to both
discrete and non-convex problems. The key to Tabu search
is that it remembers the choices it makes, thereby avoiding
becoming trapped in local optima, a feature not common to
traditional gradient search algorithms. This forces the ex-
ploration of other areas of the solution space, thus increas-
ing the chance of locating a good solution. Tabu search has
been successfully applied to a number of important prob-
lems. Within forestry, it has been used in developing plans
with spatial habitat requirements for elk (Bettinger et al.
1997) and aquatic habitats (Bettinger et al. 1998), and opti-
mizing stand harvest and road construction schedules
(Richards and Gunn 2000).

In this process, while the placement and the number of
control points are fixed, we generate a set of five feasible
solutions changing heights at control points at intervals of
1m within 10m above and below ground height randomly
(Fig. 4). Then, the best solution is used for Tabu search. The
Tabu list is developed to keep track of choices which have
been recently made. In the first iteration, the Tabu values in
the Tabu list are all zero.

height(0,—1,2,6,—9,4)

Tabu list = (0,0,0,0,0,0)

For each successive iteration of the model, a neighbor-
hood, which is a set of new feasible solutions, is created by

slightly changing the previous feasible solution. In our
model, a neighborhood is:

Ranmdomly develop an initial
solution

Calculate neighborhood for the
heights at control points
| Choose a candidate move |<—|

Reject candidate, adjust the
neighborhood

| Accept candidate, adjust Tabu
array

Calculate neighborhood for the
placement of control points

Reject candidate, adjust the
neighborhood

I Choose a candidate move |<7|

Accept candidate, adjust Tabu
array

Have we reached
he stopping criteria?

Yes

Stop and report the best solution
found during search

Fig. 4. A flow chart of the Tabu search process

0,-10,2,7,-9,4),
0,—1,—-10,7,-9,4

0,-9.2,7,-9,4),--(0,10,2,7,-9,4)
,(0,-1,-9,7,-9,4),---(0,-1,10,7,~9,4)
0,-1,2,-10,-9,4),(0,-1,2,—9,-9,4),--(0,-1,2,10,-9,4)
0,-1,2,7,-10,4),(0,-1,2,7,—8,4),---(0,~1,2,7,10,4)
(0,-1,2,7,-9,-10),(0,-1,2,7,—9,-9),--+(0,~1,2,7,-9,10)

~— ~— —

(
(
(
(

—

Tabu Search selects candidate decision choices from a
neighborhood.

If the candidate decision choice is Tabu (has been
selected previously), it can be rejected from consideration,
and another candidate is selected. Rules, called aspiration
criteria, can be set to allow consideration of candidate
choices that are Tabu. Aspiration criteria allow further con-
sideration of Tabu candidate choices if the inclusion of the
choice in the current solution will result in a solution that
has an objective function value which is better than any
previously observed objective function value. If a choice is
not Tabu, it is then evaluated for feasibility with respect to
requirements. If the inclusion of the candidate choice in the
solution will violate feasibility, the candidate choice is re-
jected. Feasibility is maintained at all times, thus strategic
oscillation is not used here (Richards and Gunn 2000).
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Table 1. Best average solutions of six optimization approaches and heights at control points
without changing the placement of the control points

Start  Control point End  Best Average
point point  cost cost
7 10 12 15 ($/m)  ($/m)
Manual design 0.00 -034 091 070 -041 000  269.57
Global optimum solution 0.0 -0.5 0.9 0.0 -1.0 1.3 237.93
Genetic algorithm 0.0 -0.5 08 00 -1.0 08 238.46  247.27
Tabu search 0.0 -05 09 00 -1.5 17 24575  261.86

If the inclusion of the candidate choice does not violate
feasibility with respect to the requirements, the candidate
choice is formally brought into the solution, and the result-
ing solution’s objective function value is compared against
the best previously observed objective function value
(stored in memory). If the resulting solution is better than
the previous best solution, it is saved as the best solution.
The algorithm moves forward one iteration with the inclu-
sion of the candidate choice in the solution. If the resulting
solution is not better than the previous best solution, the
algorithm moves with the candidate that will produce the
maximum positive gain in the objective function value. If a
positive gain is not possible, the algorithm moves with the
candidate that will produce the least decline in the objective
function value. Thus the search is not constrained at local
optima.

If the change of the second control point from 2 to 9 is
feasible with respect to the constraints and represents the
best possible improvement in the objective function value
or the least deterioration of the objective function value, it
is given the Tabu value 3.

height(0,—1,9,7,—9,4)
Tabu list = (0,0,3,0,0,0)

After each subsequent iteration of the model, the Tabu
value is decreased by one. When the Tabu value equals zero
once again, the second control point is not considered Tabu,
and will not be subject to the Tabu restriction.

Although the placement of control points is fixed during
choosing initial solutions, the placement of control points
changes during Tabu search:

placement(0,7,10,12,15,18)
Tabu list = (0,0,0,0,0,0)

If the change of the first control point from 7 to 3 is formally
accepted into the solution, the Tabu value for the first con-
trol point is set to 15 in this study. A new neighborhood is
then created, and the search process continues. This process
ends when 1000 iterations have occurred.

After the best solution is found from the above proce-
dure, we intensify the search in the region of the best solu-
tion. The Tabu search shown in Fig. 4 is carried out for
vertical heights at control points again at intervals of 10cm
within 1m above and below the best path in order to decide
the final best path while the placement of control points is
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Fig. 5. The fitted normal distribution of the randomly generated solu-
tions without changing the placement of control points

fixed. This second search process ends when 100 iterations
have occurred.

Results and discussion

Optimization of vertical alignments without changing the
placement of control points

The model was developed with Microsoft Visual C++ on a
desktop computer under Windows 2000. Six optimization
approaches were conducted for each condition. First, we
optimized vertical alignments without changing the place-
ment of control points. In these analyses, we conducted
1000 iterations for both the first and second GA process and
100 iterations for both the first and second TS process. In
order to examine the quality of the solutions found by GA
and TS, we found the global optimum solution by complete
enumeration of all alternatives. This required about 87h.
The cost of the global optimum solution, $237.93/m was less
than that found manually, $269.57/m (Table 1).

We also generated 10000 feasible solutions randomly for
a random sample in order to examine the quality of the
solutions found by GA and TS. While the program gener-
ated 10000 feasible solutions, the program also generated
about 12 million unfeasible solutions. This indicated that it
was hard to find feasible solutions for this problem. The
average cost was $1160.82/m, the best was $249.21/m, the
worst was $2336.42/m, and the standard deviation was
$352.22/m. We fitted a normal distribution to the feasible
solutions for the random sample (Fig. 5). The distribution
was checked with a y” test. Since the sample was randomly
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Fig. 7. Lowest cost found by TS without changing the placement of
control points (search interval is 1 m before iteration 100 and search
interval is 0.1 m after iteration 100)

generated, the fitted distribution should approximate the
actual distribution for all possible solutions in the search
space. If the distribution of all possible feasible solutions is
assumed to be normally distributed with a mean and vari-
ance derived from the random sample, then we can say that
the global optimum solution of $237.93/m was better than
99.57% of all possible feasible solutions. In other words, the
probability of finding a solution that is less than $237.93/m is
0.43%. The solution value found manually was superior to
99.44% of the solutions in the distribution. We assume this
high achievement is due to the designer’s knowledge and
experience.

Average and best costs found by GA were $247.27/m and
$238.46/m, respectively, while average and best costs found
by TS were $261.86/m and $245.75/m, respectively (Table
1). The best solution found by GA was almost the same as
the global optimum solution. Six solutions found by GA
were less than that found manually (Fig. 6). On the other
hand, solutions found by TS seemed to be entrapped in two
local optimum solutions (Fig. 7). One was $245.75/m and
another was $294.08/m, which was worse than that found
manually. However, a solution value of $294.08/m was still
quite good, surpassing 99.31% of the possible feasible solu-
tions. Therefore, we could say that both GA and TS found
“good” solutions. If strategic oscillation was used to search
between feasible and unfeasible regions in TS, it might find
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Fig. 8. The fitted gamma distribution of the randomly generated solu-
tions by changing the placement of control points

a better solution than that found by TS tested in this study
(Richards and Gunn 2000).

According to computational time, TS took about 40 min
and GA took about 50min for each search. GA was gradu-
ally reaching toward the optimum solution during the
search, as GA uses random numbers (Fig. 6). On the other
hand, Fig. 7 shows that the cost was rapidly decreasing
during the TS process. This indicated that we could use a
smaller number of iterations to reduce the computational
time in the TS process. While GA was a powerful tool for
finding a near-optimal solution, TS might be more useful for
a large-scale problem due to its shorter solution time.

Optimization of vertical alignments by changing the
placement of control points

We tried to optimize the profile by changing the placement
of control points as well as the heights at control points. In
this case, it was not possible to search all alternatives and
find the global optimum solution within a reasonable time.
Therefore, we only examined the probability of the results
found by GA and TS by comparing with a random sample.
We randomly generated 10000 feasible solutions again by
changing the placement of control points. In this case, the
program generated about 20 million unfeasible solutions.
Therefore, this problem was harder for the program to find
feasible solutions than the previous problem in which the
solutions were generated without changing the placement
of control points. We fitted a gamma distribution to the
feasible solutions for the random sample (Fig. 8). The distri-
bution was checked with a y” test. The average cost was
$1288.29/m, the best was $267.92/m, the worst $2968.73/m,
and the standard deviation was $454.80/m.

GA ($152.41/m) and TS ($180.59/m) both found a solu-
tion with a minimum cost, lower than that without changing
the placement of control points ($237.93/m), while the mini-
mum, maximum, and average values of the random sample
in this problem were worse than those found in the previous
problem (Table 2). Assuming the gamma distribution for
the random sample, the probability of finding a solution
better than the best value found by GA and TS was less
than 0.01%. According to computational time, GA and TS
took about 7h and 2h, respectively. Although we could not



Table 2. Best and average costs ($/m) of six optimization approaches
with different numbers of control points

Number of control points 3 4 5
Genetic algorithm Best 200.70  152.41 135.17
Average  233.660 16697  148.24
Tabu search Best 212.48 180.59 127.14
Average 25832  207.51 141.45
Table 3. Costs for each element ($/m)
Element Sub-element Manual Best
design solution
Staking 1.22 1.22
Clearing and grubbing 8.52 9.05
Earthwork allocation 8.14 8.12
Concrete block 232.72 89.14
Surfacing Base course 6.19 6.20
Traction surface 325 3.53
Watering Excavation 0.99 0.97
Surfacing 1.81 1.83
Seeding and mulching 0.84 1.03
Drainage and riprap Culvert 0.44 0.44
Riprap 0.02 0.02
Maintenance 543 5.59
Total 269.57 127.14

examine how close to the global optimum solution these
solutions were, it was clear that both GA and TS found
“good” solutions within a reasonable time. While GA could
find the better solution by spending more time than TS, TS
found a good solution in less time. Coding skill, fine-tuning
of algorithms, and testing of parameters are different be-
tween GA and TS. However, this trend of the difference
between GA and TS is similar to the result without chang-
ing the placement of control points.

Next, we examined the effect of the number of control
points on construction cost. We conducted searches with
three and five control points (Table 2). Even though the
number of control points was reduced from four to three,
the best value found by GA and TS with changing the
placement of three control points was less than that without
changing the placement of four control points. Therefore, it
is important to examine the placement of control points.
However, it is hard to examine all control point placements
manually. So, this method might be helpful for a designer to
decide the forest road profile. When the number of control
points was increased from four to five, TS found a better
solution than GA and any other solutions found in this
study. The best solution found by TS with five control
points, $127.14/m, was less than half of manually designed
value, $269.57/m (Table 2, Fig. 1); 86% of total costs de-
signed manually were concrete block costs (Table 3). The
Tabu search successfully optimized vertical alignments
which reduced concrete block costs and total costs to
$89.14/m and $127.14/m, respectively. Moreover, the
amount of material moved from the borrow area was re-
duced from 73.94 to 0.94m’. As a result, the model was able
to balance fill and cut volumes in this section.
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Conclusions

In this study, we tested two methods used to design a forest
road profile using the genetic algorithm and Tabu search
heuristic techniques to minimize construction plus mainte-
nance costs. The results indicated that both GA and TS
found “good” solutions within a reasonable time. Because it
is not possible to evaluate many alternatives manually, this
model is helpful for a designer. While GA found a better
solution than TS, TS found a good solution in less time.
Therefore, a hybrid method, using TS first and then using
GA, might find a better solution in less time than a single
method using either GA or TS.

If the number of control points was increased, the con-
struction cost would be reduced because the forest road
profile would become closer to the ground profile and the
earthwork volume would then be reduced. However, driv-
ing safety and comfort might be decreased when the gradi-
ents changed at more points. We should consider the
trade-offs between the economic aspect of roads and other
road design considerations such as the driver’s comfort in
the future work.

In the future, we expect that forest roads will be designed
using data from a high-resolution DEM from LIDAR, if
LIDAR becomes more common and its accuracy increases.
In this model, earthwork volume was calculated using the
average end-area method. This method is suitable only for
application to level terrain. This model would be more accu-
rate using LIDAR and by incorporating methods of calcu-
lating the earthwork volume which are more suitable for
hilly and mountainous terrain (Easa 1992).
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