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Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme 
cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in 
most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic 
and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major 
pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme 
types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxyge-
nases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better 
understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is 
likely key to further process improvements.
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Introduction

Industrial-scale production of cellulosic ethanol based on 
enzymatic saccharification of biomass was established by 
several companies during the past decade [17, 298]. This 
production of cellulosic ethanol was initiated in 2012 by 
Beta Renewables at their site in Crescentino, Italy [55]. In 
2015, this plant had an annual production of about 40,000 
tons of ethanol using agricultural residues as feedstock. In 
2017, however, this plant was shut down due to economic 
problems in the parent company Mossi Ghisolfi Group and 
sold to Versalis [107]. In early 2020, Eni, an integrated 
energy company owning Versalis, announced that bioetha-
nol production in Crescentino will start again within the 
first half of 2020 [98]. Other companies like DuPont, Aben-
goa and GranBio have all had commercial plants in opera-
tion, but they have closed down production of ethanol due 
to economic and/or technical reasons. The POET-DSM 
Advanced Biofuels, a 50/50 joint venture between Royal 

DSM (Netherlands) and POET LLC (USA) demonstrated 
stable industrial production of bioethanol. Their Project Lib-
erty facility in Emmetsburg, Iowa (USA) produced for some 
time around 80 million liters of ethanol per year and had an 
80% uptime in 2017. However, also POET-DSM has now 
paused ethanol production at the site due to challenges with 
implementing the recent Renewable Fuel Standard [277]. 
Thus, the establishment of this industry has clearly been 
challenging, and it is currently also struggling with a low 
oil price.

Conversion of lignocellulosic biomass to ethanol involves 
five main steps, namely collection and delivery of feedstock 
to the plant, pretreatment of the feedstock (at the point of 
collection or on-site), enzymatic saccharification, fermenta-
tion and product formulation (see Fig. 1). In order to make 
the process viable, all these steps need to be considered from 
the economic point of view, with primary focus on feedstock 
handling, pretreatment and enzyme efficiency and enzyme 
costs [4, 383]. In this review, we will give an overview of 
recent technical improvements regarding pretreatment tech-
nologies that have been used at (semi-)industrial scale and 
then discuss in detail challenges and recent advancements 
regarding enzyme cocktails used for saccharification of lig-
nocellulosic biomass. We will focus on enzyme components 
that are critical for maximizing sugar recovery from the 
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pretreated feedstock and on the interactions between these 
components in enzyme mixtures. Finally, we will address the 
limitations of today’s cellulase cocktails and discuss possible 
strategies for their improvement.

Pretreatment technologies and their effect 
on the feedstock

A broad range of pretreatment technologies is available to 
enhance accessibility of lignocellulosic biomass to enzymes 
and hence promote saccharification, as reviewed by Yang 
and Wyman [389], Sun et al. [328] and Cantero et al. [50]. 
Among these, wet oxidation [307], hydrothermal pretreat-
ment [270], steam explosion [44, 275], dilute acid treatment 
[252], ammonia fiber expansion (AFEX) [16], sulfite pulp-
ing [301, 377] and methods based on the use of ionic liq-
uids and organic solvents [398] are the major technologies 
that have been used at demonstration or industrial scale over 
the past years. The choice of pretreatment depends on the 
type of feedstock as well as on the spectrum of desired end 
products [95, 301]. Hydrothermal pretreatment as well as 
AFEX and ammonium recycle percolation (ARP) technolo-
gies cause cellulose decrystallization, some hydrolysis of 
hemicellulose as well as lignin removal [18] and are primar-
ily used for grass-type biomass (corn stover, switch grass), 
while steam explosion and alkaline and sulfite pulping can 
also be used for woody biomass (e.g., poplar and spruce). 
Recent improvements aim at reducing saccharification costs 
and include the following: (1) combined removal of lignin 
and hemicellulose prior to mechanical refining [54, 193, 
388]; (2) restructuring native cellulose to the more acces-
sible allomorph cellulose III in a low moisture extractive 
ammonia (AE) process [78]; and (3) the use of biomass-
derived solvents for biomass pretreatment [179, 223, 322]. 
As an example, a pretreatment process recently developed 
at NREL [193], which uses a counter-current alkaline dea-
cetylation [194] followed by mechanical defibrillation of the 

feedstock, allows enzymatic saccharification at high consist-
ency, and the resulting hydrolysate is highly fermentable.

While some pretreatment technologies aim to increase 
plant cell wall accessibility via reorganization of plant cell 
wall polymers without removal of matrix polymers (AFEX, 
ARP), other technologies increase enzymatic accessibility 
of cellulose via fractionation of the biomass by separating 
lignin (e.g., alkali and sulfite pulping), hemicellulose (steam 
explosion) or both (ionic liquid or organosolv pretreatment) 
from cellulose. Detailed analysis of pretreated biomass with 
glycome profiling and immunolabeling of plant cell wall 
polymers indicate that not even the most efficient pretreat-
ment technologies, such as hydrothermal pretreatment [86, 
397], AFEX [264] and extractive ammonia pretreatment 
[13], can completely separate cellulose from the other cell 
wall polymers. Indeed, studies on the optimization of enzy-
matic biomass saccharification have revealed the need for a 
wide-spectrum enzyme cocktail, including cellulases and 
hemicellulases, to achieve complete saccharification of pre-
treated biomass, and the composition of the optimal enzyme 
cocktail depends on pretreatment and biomass type [21, 61, 
168].

The active components of cellulase cocktails

Cellulolytic enzymes

In 1950, Reese et al. postulated that cellulose is degraded 
in a two-step process, the first step being the conversion 
of native, crystalline cellulose to shorter, accessible cel-
lulose chains by a component called C1 and the second 
step being the conversion of the now more accessible cel-
lulose to oligomers and monomers by a component called 
Cx [291]. Over the years, the quest towards the isolation of 
the C1 and Cx components from fungal secretomes (e.g., 
[130, 385]) led to the identification of the core set of fun-
gal cellulose-active glycoside hydrolases (GHs), including 

Feedstock
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CelluloseLignin

Enzymatic
saccharification
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Mannanase
Xylanase
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enzymes
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Fig. 1   The main steps of the conversion of lignocellulosic biomass to ethanol. Depending on the choice of microorganism in the fermentation 
step, a range of different fuels and chemicals may be produced



625Journal of Industrial Microbiology & Biotechnology (2020) 47:623–657	

1 3

cellobiohydrolases (CBHs; cleaving off cellobiose from the 
cellulose chain ends), endoglucanases (EGs; cleaving cel-
lulose chains in non-crystalline regions) and β-glucosidases 
(BGs; depolymerizing soluble cello-oligosaccharides lib-
erated by CBHs and EGs) [386] (Fig. 2; Table 1). These 
GHs have been classified, based on sequence similarities, in 
the Carbohydrate Active enZymes (CAZy) database [219]. 
As an example, the model organism T. reesei, named after 
one of the pioneers of cellulase research, Elwyn T. Reese, 
secretes two CBHs, TrCel7A (formerly CBH I; a reducing 
end-specific CBH belonging to family GH7) and TrCel6A 
(formerly CBH II; a non-reducing end-specific CBH belong-
ing to family GH6), four EGs, named TrCel7B (formerly 
EG I), TrCel5A (formerly EG II or, in the very early days, 
also EG III), TrCel12A (formerly EG III), TrCel45A (for-
merly EG  V) and four BGs, TrCel3A (formerly Bgl1), 
TrCel3B, TrCel3F and TrCel3G [1, 231]. Two additional 

enzymes in the T. reesei secretome were initially annotated 
as EGs, namely TrCel61A (originally EG IV) [172] and 
TrCel61B (originally EG VII), but it is now clear that these 
enzymes are not EGs but lytic polysaccharide monooxyge-
nases (LPMOs), as discussed below.

Although there have been some early indications that 
oxidative processes contribute to cellulose conversion [99], 
cellulose decomposition was thought, for a long time, to 
occur primarily through the action of hydrolytic enzymes. 
The breakthrough came in 2010 with the discovery of oxi-
dative polysaccharide degradation by enzymes that were 
previously classified as CBM33s (chitin-binding proteins 
in bacteria) and GH61s (EGs in fungi) [351]. Today these 
enzymes are called lytic polysaccharide monooxygenases 
(LPMOs) and have been reclassified as Auxiliary Activity 
(AA) families 10 and 9, respectively, in the CAZy data-
base [212]. Over the past decade, several LPMO families 

Cellulose depolymerization Hemicellulose depolymerization

Lignin modification and depolymerization
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EG

CBHII

H2O2 H2O
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CDH
e–
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O2 H2O2
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H2O2
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H2O2 H2O
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Fig. 2   Schematic view of a cellulose fibril covered with hemicel-
lulose (orange) and lignin (brown) and key enzymes involved in 
the depolymerization of plant cell wall polysaccharides. The non-
reducing (NR) and reducing (R) ends of the cellulose chains are 
marked. Stars indicate oxidation catalyzed by LPMOs (triangles) 
or other redox enzymes (RE, grey). Orange spheres depict Cu(II) 
and blue spheres depict Cu(I) in the active site of LPMOs. Interac-
tions between hydrolytic and redox enzymes are indicated. For sim-
plicity, the multitude of hemicellulose-active enzymes, including, 
e.g., debranching enzymes, are indicated as “hemicellulases”, while 
lignin-active enzymes are referred to as redox enzymes (“RE”). Note 

that fungal secretomes may contain a variety of redox enzymes act-
ing on oligosaccharides and monosugars that are released from cel-
lulose or hemicellulose, as indicated in the “Cellulose depolymeri-
zation” panel. Also note that some LPMOs and EGs can act on the 
hemicellulose fraction, as indicated in the “Hemicellulose depo-
lymerization” panel. A more comprehensive variant of this figure 
can be found in [39], and a more complete list of enzyme types is 
provided in Tables 1 and 2: BG β-glucosidase, CBHI cellobiohydro-
lase I, CBHII cellobiohydrolase II, CDH cellobiose dehydrogenase, 
EG endoglucanase, LPMO lytic polysaccharide monooxygenase, RE 
redox enzyme (oxidases and peroxidases)
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have been described, and, as of today, families AA9-11, 
AA13-14 and AA16 comprise fungal LPMOs. AA15 type 
LPMOs have not been identified in fungi. Fungal LPMOs 
of the AA10 type are very rare and, while bacterial AA10s 
have been intensely studied, none of the putative fungal 
AA10s have been characterized. LPMOs contain a single 
copper co-factor, the reduction of which is crucial for the 
LPMO reaction [284, 351]. These enzymes catalyze the 
oxidative cleavage of β-1,4-glycosidic bonds of recalci-
trant polysaccharides, either in a monooxygenase reaction 
using molecular O2 and a reductant [351] or in a peroxy-
genase reaction using H2O2 [37, 38] (Fig. 3).

Importantly, the monooxygenase paradigm entails that 
reducing equivalents are being consumed by the LPMO in 
each catalytic cycle, whereas the peroxygenase reaction only 
requires priming amounts of reductant to reduce the LPMO 
to its catalytically active Cu(I) state (Fig. 3). It has been 
shown that the reducing power needed by LPMOs can be 
delivered in many ways, including a wide variety of small 
molecule reductants, such as ascorbic acid [351], phenolic 
compounds, including compounds derived from lignin and 
plant biomass in general [114, 190, 381], as well as certain 
redox enzymes [121, 190, 206, 274] (as reviewed by [39, 
117]). Both the catalytic mechanism of LPMOs and the rela-
tive importance of the O2-driven and H2O2-driven reactions 
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* *

Fig. 3   Possible reaction schemes for LPMO-catalyzed cleavage of 
glycosidic bonds. The triangles represent the LPMO, and the small 
spheres the active-site copper. Orange spheres depict Cu(II) and 
blue spheres depict Cu(I). The bottom left of panel a shows the 
O2-dependent monooxygenase reaction (1) and the bottom right of 
panel a shows the H2O2-dependent peroxygenase reaction (2). The 
upper part of panel a shows reactions that may occur in the absence 
of a polysaccharide substrate. The order of binding events is not fully 
resolved and the figure shows two scenarios, where the less likely one 
is labeled by an asterisk. Current data support formation of a ternary 
complex and do not support a ping-pong mechanism [163, 200]. It 
is interesting to note that reduction of the LPMO promotes substrate 
binding [188, 201] and could thus promote ternary complex forma-
tion. A scenario where the LPMO remains closely associated with 
the substrate in between consecutive catalytic cycles is conceiv-
able. Panel b shows the simplified reaction schemes for the proposed 
LPMO reactions. Note that several reaction mechanisms have been 
proposed for both the monoxygenase reaction [28, 235, 374] and the 
peroxygenase reaction [37] and that the figure shows one of several 
possible scenarios for each reaction. The figure also shows the uncou-

pling reaction with O2 that leads to formation of H2O2 (3; top left). In 
the H2O2-dependent reaction mechanism, step 4 indicates homolytic 
cleavage of the O–O bond of H2O2, for which experimental and com-
putational evidence is available [38, 163, 375]. One possible outcome 
is the subsequent formation of an oxyl intermediate (step 5), which 
has often been proposed as the hydrogen-abstracting intermediate in 
studies on LPMO catalysis. In this case, hydrogen abstraction would 
be followed by binding of the resulting hydroxyl to the substrate 
radical, in an oxygen-rebound mechanism (step 6). Hydroxylation 
leads to destabilization of the glycosidic bond and will be followed 
by spontaneous bond cleavage ([274]; not shown). While homolytic 
cleavage of H2O2 is supported by recent experimental evidence [163], 
alternative scenarios are thinkable [37, 163, 375]. Step 7 shows the 
reaction of a reduced LPMO with H2O2 in the absence of substrate 
(top right), which can damage the enzyme and lead to inactivation. 
It is worth noting that there is at least one additional example of an 
enzyme, in this case a non-heme mono-iron epoxidase, that was origi-
nally thought to be an oxidase (i.e., using O2) and that later turned out 
to use H2O2 [376]
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are the subject of debate and current research, as recently 
reviewed in [39, 60].

Since the postulation of the C1–Cx theory for cellulose 
depolymerization by Reese et al. [291], the nature of the 
C1 factor has been interpreted in a number of ways. First, 
cellobiohydrolases were thought to act as C1 factor [129]. 
It has been suggested that CBHs break non-covalent link-
ages between adjacent cellulose chains in crystalline cel-
lulose since they thread a single cellulose chain into their 
active site cleft (or even tunnel) and, thus, are potentially 
capable of extracting a longer piece of cellulose chain out 
of its crystalline context [122, 182]. While lifting a single 
cellulose chain (likely 6 or more glucose units) away from 
the crystalline lattice, i.e., decrystallization of cellulose, car-
ries an energy penalty, strong binding interactions between 
the enzyme and the cellulose, which relate to the processive 
nature of CBHs, could make such decrystallization energeti-
cally possible (see also below). Later, Arantes and Saddler 
proposed that carbohydrate-binding modules (CBMs), such 
as the one attached to the most studied CBH, TrCel7A, and 
expansin-like proteins, such as the Swo1 swollenin protein 
that induces swelling of cellulose [305], may fulfil the role 
of the C1 factor [10]. The discovery of LPMOs has led to 
the speculation that these enzymes may in fact be the long-
sought-after C1 factor [142, 245, 351]. This hypothesis is 
supported by multiple studies showing that LPMOs belong-
ing to various AA families induce fibrillation of cellulose 
fibers [149, 352, 364].

Of the T. reesei cellulases, the CBH TrCel7A has gained 
the most attention, primarily because it is the most abundant 
enzyme in the secretome, comprising close to 60% of the 
cellulolytic proteins [126]. The crystal structure of the cata-
lytic domain of TrCel7A reveals a tunnel-shaped active site 
[89], which can accommodate ten glucosyl units [64, 88]. 
The long substrate-binding tunnel of TrCel7A enables strong 
interactions with a single cellulose chain and contributes to 
the processive mode of action of this enzyme [26, 181, 182], 
as visualized by Igarashi et al. using high-speed atomic force 
microscopy [151]. Processivity is a key attribute of CBHs 
that makes them especially powerful in depolymerizing the 
highly compact structure of crystalline cellulose [26, 338, 
362]. On the other hand, processivity leads to stalling of 
CBHs when their path is blocked by other enzymes or sub-
strate-derived obstacles [73, 113, 152, 155, 199]. Further-
more, it has been claimed that the strong binding energies 
associated with processivity, in particular reflected in low 
off-rates [74, 198], make processive GHs intrinsically slow, 
as has been nicely demonstrated for processive chitinases 
[141, 394, 395].

Contrary to the CBHs, with their deep substrate-binding 
clefts, or even tunnels, cellulose-active LPMOs have a flat 
substrate-binding and catalytic surface, which is optimized 
for attacking surfaces such as those found in cellulose 

crystals [171, 350, 351]. Unlike CBHs and other GHs, 
LPMOs cannot use binding energy to distort the substrate 
towards the transition state for hydrolytic glycoside bond 
cleavage. Thus, LPMOs employ powerful oxidative chem-
istry, allowing them to cleave the β-1,4-glycosidic bonds 
of cellulose without the need to remove a cellulose chain 
from the crystalline lattice. Some LPMOs are known to act 
on non-crystalline substrates [7, 102, 154], and the most 
commonly used substrate for assaying the activity of cel-
lulose-active LPMOs is phosphoric-acid swollen (so, non-
crystalline) cellulose. Still, the ability of LPMOs to attack 
crystalline and other recalcitrant and insoluble polysaccha-
ride structures [68] is well documented [96, 351, 364] and 
likely comprises the most important role of these enzymes 
in biomass conversion.

Hemicellulolytic enzymes

Depending on the type of biomass and pretreatment technol-
ogy, pretreated biomass contains, in addition to cellulose, 
varying amounts of linear and branched polysaccharides, 
including the hemicelluloses xylan, glucomannan and 
xyloglucan, as well as pectin, all of which adhere to cel-
lulose fibers, forming a complex three-dimensional matrix 
[323]. These polysaccharides can form multiple substruc-
tures, and while many hemicelluloses are relatively easy 
to degrade, a fraction of these polysaccharides will form 
recalcitrant co-polymeric substructures that may hamper 
cellulose degradation [47, 261, 392]. Due to the high com-
plexity of these plant polysaccharides, a variety of enzyme 
activities are needed for their complete breakdown (Table 1). 
The most studied hemicellulose-active enzymes are xylan- 
and glucomannan-specific enzymes. These hemicellulases 
include GHs that cleave the polysaccharide main chain, i.e. 
endo-β-1,4-xylanases (shortly xylanases) and endo-β-1,4-
mannanases (shortly mannanases), as well as debranching 
enzymes that remove substitutions from the polysaccharide 
backbone (e.g., deacetylases, arabinosidases and galactosi-
dases). These enzymes and their potential uses have been 
reviewed by Malgas et al. [224, 227]. Interestingly, recent 
studies indicate that LPMOs belonging to class AA14 may 
be tailored to specifically act on recalcitrant xylan coating 
cellulose fibers [68] (Fig. 2).

In addition to hemicellulases, some EGs and AA9 
LPMOs may also contribute to hemicellulose conversion 
because they are capable of cleaving the polysaccharide 
backbones of some, or even a wide range, of hemicellulosic 
polysaccharides, including xyloglucan, xylan and/or glu-
comannan [7, 102, 116, 150, 183, 320, 366] (Fig. 2, Table 1). 
While promiscuous endoglucanases [366] and some of the 
hemicellulolytic LPMOs cleaving mixed-linkage glucans, 
xyloglucan and glucomannan [7, 102, 183, 251, 272, 320], 
are active on isolated hemicelluloses, xylan-active AA9 (and 
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also AA14) LPMOs [68, 114, 116, 150] require xylan being 
complexed with cellulose. A likely reason for this is that 
insoluble forms of hemicelluloses associated with cellulose 
adopt different conformations than their soluble forms [47]. 
Consequently, screening for enzyme activity on natural sub-
strates or pretreated biomass instead of model substrates, 
such as microcrystalline or amorphous cellulose and isolated 
hemicelluloses, may be a prerequisite for accurately describ-
ing substrate specificities, or for detecting enzyme activity 
in the first place [68].

An evolutionary advantage for substrate promiscuity 
for EGs and LPMOs could be the ability to cleave recalci-
trant fractions of xyloglucan, xylan and glucomannan that 
adhere to cellulose fibers. As an example, TrCel7B is active 
on xylan [15], glucomannan [239] and xyloglucan [366]. In 
terms of promiscuity among EGs and LPMOs, the fact that 
GH7 EGs (such as TrCel7B), and potentially also some AA9 
LPMOs, can act on both xylan and glucomannan likely con-
tributes to their importance in enzyme cocktails for biomass 
breakdown [61, 168, 300, 355]. It is noteworthy that the 
activity of TrCel7B from T. reesei on xylan is comparable 
to, if not higher than, its activity on cellulose [15]. Xylans 
are abundant in all types of lignocellulosic plant biomass 
(i.e., grasses, hardwood and softwood), emphasizing the 
importance of xylan-active EGs and CAZymes in general in 
enzyme cocktails, irrespective of the origin of the feedstock. 
Most importantly, inclusion of CAZymes with broad sub-
strate specificities will help in designing universal enzyme 
cocktails for the breakdown of a broad range of biomass.

Complementarily to the action of enzymes converting 
hemicellulose polymers to shorter fragments, debranch-
ing enzymes are needed to enable the complete sacchari-
fication of hemicellulosic oligomers by β-xylosidases and 
β-mannosidases [224, 227]. Some debranching enzyme 
activities may be of particular importance as they cleave 
covalent linkages to lignin [157]. Substitutions of xylans 
include hydroxycinnamoyl and glucuronoyl groups, 
which have been shown to take part in the formation of 
covalent linkages between lignin and xylan. Enzymes 
potentially acting on lignin–hemicellulose bonds include 
feruloyl esterases, cleaving off hydroxycinnamoyl (includ-
ing feruloyl, p-coumaroyl, and cinnamoyl) groups from 
arabinosyl substitutions of the xylan backbone [71], and 
glucuronoyl esterases, cleaving off lignin alcohols having 
ester bonds with (methyl)-glucuronic acid substitutions of 
the xylan backbone [101, 243, 246]. These enzymes have 
received considerable attention as enzymatic cleavage of 
lignin–polysaccharide bonds potentially has a dual positive 
effect in biomass conversion: (1) improvement of enzy-
matic accessibility of plant cell wall polysaccharides and 
(2) removal of hemicellulose moieties from the residual 
lignin. The relevance of these enzymes for complete bio-
mass saccharification is emphasized in a recent study by 

Mosbech et al., showing that a glucuronoyl esterase from 
Cerrena unicolor, in combination with a GH10 xylanase, 
is able to completely remove xylan moieties from birch-
wood lignin [246].

Debranching enzymes and deacetylases are especially 
important in biomass decomposition because hemicellu-
loses coating cellulose microfibrils, in particular xylan and 
glucomannan, are known to be acetylated and substituted 
with glucuronic acid or galactose [46, 125, 392]. Removal 
of these substitutions changes cellulose–hemicellulose inter-
actions and may decrease the recalcitrance of the feedstock 
[265]. On the other hand, removal of substitutions from 
xylan and glucomannan polymers that are not directly asso-
ciated with cellulose microfibrils may decrease their solu-
bility in water and lead to the adsorption of linear, unsub-
stituted hemicellulose fragments onto cellulose fibers [165, 
195, 379]. While these hemicelluloses can be removed by 
xylanases and mannanases, they will limit cellulose acces-
sibility [379, 380]. In addition to acting on hemicelluloses, 
acetyl esterases may also act on lignin and change its prop-
erties [265], but the implications of this effect, and of the 
effects of deacetylating enzymes in general remain to be 
studied.

Other oxidoreductases in biomass conversion

In addition to GHs and LPMOs, fungal secretomes are rich 
in oxidoreductases, including cellobiose dehydrogenases 
(CDHs; belonging to family AA3_1 in CAZy), lignin-active 
laccases (family AA1) and peroxidases (family AA2), cop-
per-radical oxidoreductases (family AA5) and multi-copper 
oxidoreductases (family AA3). A detailed overview of these 
enzymes and potential interactions between them is provided 
in a recent review by Bissaro et al. [39]. Some of these oxi-
doreductases have been shown to directly (CDH) or indi-
rectly (laccase and polyphenol oxidase) interact with LPMOs 
(Fig. 2; Table 2). CDHs can reduce the active-site copper of 
LPMOs directly via their AA8 cytochrome domain [335], 
thus fueling the LPMO reaction, and may also contribute 
by generation of the LPMO co-substrate H2O2 [189]. Two 
polyphenol oxidases have been shown to promote LPMO 
reactions because they hydroxylate methylated or non-meth-
ylated monophenols (including lignin monomers), which 
thus become better reductants for LPMOs [115]. Alterna-
tively, laccase treatment of lignin, which as such is known 
to be able to drive LPMO reactions (see above), has led to 
increased LPMO activity [42, 269]. Perna et al. showed that 
the observed effect is due to increased H2O2-production by 
reactions involving laccase-modified lignin [269]. For the 
successful exploitation of these effects in biomass conver-
sion, however, further research is needed, addressing, for 
example, the interaction of lignin-active oxidoreductases 
with lignin, as well as the actual flow of electrons, the 
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generation and consumption of H2O2 and effects on both 
the LPMOs and other enzyme components.

Co‑operativity between enzyme 
components

In order to gain a deeper understanding of the mechanisms 
behind enzymatic biomass decomposition, individual 
enzyme components have been studied alone (enzyme 
characterization studies) and in combination with other 
individual enzyme components (minimal enzyme cocktail 
studies), cellulase cocktails or fungal secretomes (supple-
mentation or spiking studies). Already in the late 1970s, co-
operativity (Fig. 4) between different cellulases became clear 
when Wood and McCrae showed that CBHs enhance swell-
ing of cotton fibers by EGs [387]. Shortly thereafter, CBHs 
and EGs were described to exert a mutually positive effect 
on each other’s action during cellulose hydrolysis [140]. In 
other words, it was demonstrated that these two enzymes 
act synergistically (Fig. 4). Since then, several types of syn-
ergism have been observed between cellulolytic enzymes: 
between CBHs and EGs [253], CBHs, EGs and cellulose-
active AA9 LPMOs [134], and two cellulose-active AA10 
LPMOs [109]. The mechanisms of synergies between cel-
lulolytic enzymes have been in the focus of research on bio-
mass degradation, especially for cellulose, using for example 
detailed kinetic models [155, 253, 373] and atomic force 
microscopy [96, 120, 152]. A classical interpretation of this 
synergy is that EGs generate new chain ends for CBHs, but 
recent studies have indicated that additional mechanisms 
need to be considered [41, 100, 155, 202, 257, 279]. In par-
ticular, it has been proposed that EGs may promote CBH 
activity by attacking amorphous regions in the cellulose 

that CBHs are unable to pass during processive action [155, 
279].

Over the past decade, the interplay of LPMOs with 
hydrolases has gained considerable attention [11, 96, 97, 
175, 248]. Studies with chitin-active [349] and cellulose-
active [134, 238] LPMOs have shown that these enzymes 
promote the action of classical hydrolytic enzymes, and after 
the discovery of the catalytic activity of LPMOs [351], it 
became clear that the presence of reducing power promotes 
the LPMO effects. Indeed, Harris et al. observed that the 
boosting effect of an LPMO on cellulase action required 
the presence of other compounds in the biomass, most 
likely lignin-derived [134]. In retrospect, it is clear that 
these observations relate to the reducing power that is pre-
sent in biomass but not in model cellulosic substrates such 
as Avicel [134, 143, 247]. In an important study, Eibinger 
et al. used confocal microscopy to show that a cellulolytic 
LPMO from N. crassa primarily acts on surface-exposed 
crystalline areas of the cellulose and that LPMO treatment 
promoted adsorption of a CBH, TrCel7A, to these crystal-
line regions, resulting in more efficient hydrolysis of these 
cellulose crystals [96]. Subsequent studies using real-time 
atomic force microscopy led to similar conclusions [97]. 
The work by Eibinger et al. provides evidence that at least 
some LPMOs cleave cellulose at crystalline areas and thus 
produce new chain ends, i.e. action sites, for CBHs. This 
highlights an important difference between LPMOs and EGs 
in terms of their mode of synergism with CBHs, since these 
enzymes cleave crystalline and amorphous parts of cellu-
lose, respectively.

Notably, the oxidation at the terminal glucose molecules 
after LPMO action will have multi-faceted impact on CBHs 
that will depend partly on the directionality of CBHs and 
partly on the affinity of individual CBHs for the oxidized 
chain ends. One of the two new chain ends generated by an 
LPMO will be oxidized, and CBHs may vary in terms of 
how well they interact with such oxidized chain ends. Inter-
estingly, molecular simulation studies on the oxidative cleav-
age of crystalline cellulose by LPMOs performed by Ver-
maas and colleagues indicated that C4-oxidized chain ends 
(i.e. oxidized at the non-reducing end) will be more readily 
hydrolyzed by non-reducing end-specific GH6 CBHs, such 
as TrCel6A [361].

Co-operativity between enzymes has also been studied in 
detail for degradation of various hemicelluloses [83], includ-
ing xylan [224] and glucomannan [227], the most abundant 
hemicelluloses in lignocellulosic biomass. On hemicellu-
loses, synergism occurs primarily between enzymes hydro-
lyzing the polysaccharide main chain and debranching 
enzymes. For xylan depolymerization, examples include 
synergism between the following: a xylanase and an ara-
binosidase [186, 360], xylanases and a glucuronidase [85], 
xylanases and acetyl esterases [35], a GH11 xylanase and 
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Fig. 4   Schematic representation of the difference between co-opera-
tivity and synergism between enzymes. Co-operativity between two 
or more enzymes implies that concomitant action of the enzymes 
gives saccharification yields that are higher than the yields obtained 
in reactions with individual enzymes (on the left, in blue). Synergism 
between enzymes implies that the concomitant action of the enzymes 
results in a yield that is higher than the sum of the yields obtained in 
reactions with the individual enzymes (on the right, in red)
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a CE5 acetylxylan esterase [315, 316], a GH10 or GH11 
xylanase and a CE1 feruloyl esterase [84, 103] and a GH10 
xylanase and a CE15 glucuronoyl esterase [246]. In addi-
tion, synergism between a GH11 xylanase and an AA14 
LPMO, both acting on the xylan backbone, has recently 
been observed [68]. Saccharification of glucomannan has 
been less studied because the plant cell walls of grasses and 
herbaceous plants, the more commonly used feedstocks for 
ethanol production, do not contain glucomannan. Examples 
of enzyme synergism in glucomannan degradation include 
the following: a mannanase and galactosidases [63, 228], a 
mannanase a galactosidase and two acetyl esterases [341], 
and a GH5 mannanase and a CE2 acetyl esterase [12].

Notably, studies on polysaccharide utilization loci in bac-
teria from the gut microbiota may provide further insight 
into the interplay of backbone-cleaving and debranching 
enzymes for compounds such as xyloglucan [208], pectin 
[222], xylan [297] and glucomannan [76, 204]. Since these 
polysaccharide utilization loci likely encode all enzymes 
needed for saccharification of a certain polysaccharide, 
they provide hints as to the preferred composition of enzyme 
cocktails for biomass saccharification containing fungal 
enzymes.

In natural biomass, cellulose, hemicelluloses (xyloglucan, 
xylan and/or glucomannan), pectin and lignin co-occur, and 
hence synergism of enzymes acting on different plant cell 
wall components can be anticipated to occur. Such “inter-
molecular synergism” has been described in the late 1990s 
for cellulases and xylanases acting on birch kraft pulp and 
for cellulases, xylanases and mannanases acting on spruce 
kraft pulp by Tenkanen et al. [340] and later for CBH and 
xylanase acting on pretreated corn stover by Selig et al. 
[316]. The interplay between cellulases and enzymes acting 
on hemicellulose has also been extensively studied by the 
Saddler group [144–146, 327]. Notably, cellulases, xyla-
nases and mannanases work synergistically with each other 
on spruce chemical pulp not only in the initial phase of the 
saccharification Várnai [359] but also throughout the course 
of the reaction. Apparently, depolymerization of cellulose, 
xylan and glucomannan proceeds simultaneously through-
out the process, indicative of a “peeling” type of synergism 
[355]. In a recent study, Nekiunaite and co-workers showed 
that cleavage of cellulose by a cellulose-active LPMO from 
N. crassa is inhibited by the presence of xyloglucan and that 
this inhibition is alleviated by adding a xyloglucan-active 
EG [251]. These findings point at the possible importance 
of promiscuous EGs [366] and LPMOs [7, 102, 114, 150] 
in the complete saccharification of lignocellulosic biomass. 
It seems clear that for the complete saccharification of any 
feedstock of interest, it is essential to identify key plant cell 
wall components that may hinder access to cellulose and 
other plant cell wall polysaccharides and to identify the 

corresponding carbohydrate-active enzymes (CAZymes) 
that cleave these.

Co‑operativity or synergism?

It is important to note that the term synergism should be 
used with care. Synergism between two enzyme components 
occurs if the concomitant action of the two enzymes results 
in a higher yield than when summing up the yields obtained 
when using the individual components (Fig. 4). Synergism 
is best observed between pure enzymes using low enzyme 
dosages and short reaction times, i.e. staying in the initial 
linear phase of the saccharification reaction [9, 225, 355]. 
Using longer incubation times may mask positive effects 
of combining enzymes acting on the same plant cell wall 
polymer. This can happen when the concomitant action of 
the enzymes leads to faster saccharification, which can be 
observed in the initial phase, but does not lead to higher final 
conversion yields.

While carefully designed laboratory experiments 
addressing synergistic effects may give insights into the 
mechanism of interaction between a selection of individ-
ual enzyme components, understanding the importance 
of individual enzyme components in cellulase cocktails 
remains challenging. To elucidate the effect of individual 
enzyme components on the total conversion yield, studies 
on the development of minimal enzyme cocktails (i.e. opti-
mizing blends of individual enzymes [21, 61, 168]) as well 
as spiking studies (i.e. partial replacement or supplemen-
tation of cellulase cocktails with an enzyme preparation 
[143, 146, 177, 250]) are used routinely. Such studies can 
lead to the identification of key enzyme components that 
are necessary for efficient saccharification of a feedstock. 
Since enzyme production costs (i.e., protein production 
costs) are an important factor in enzyme-based biorefin-
ing, it is important that the total protein loading is fixed in 
studies aimed at investigating enzyme co-operativity and 
identification of limiting activities [145]. A few examples 
of enzyme activities that may be limiting in the industrial 
conversion of lignocellulosic biomass are discussed below.

LPMOs and catalases

Using technical substrates (i.e. pretreated biomass) to test 
the performance of enzyme cocktails is essential for indus-
trial relevance. This is exemplified by the early work of Har-
ris et al., which indicated that LPMOs are active on ligno-
cellulosic substrates (such as pretreated corn stover) but not 
on pure cellulose substrates [134]. An explanation for these 
initial findings only became clear after the discovery that 
LPMOs need electrons, which lignin can provide [114, 381]. 
Recent studies indicate that lignin has a dual function in 
LPMO activation: it is able to reduce the active site-copper 
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of LPMOs and to produce H2O2 in situ from O2 [185, 269]. 
Importantly, lignin-active enzymes can affect the electron-
donating and H2O2-generating abilities of lignin, providing 
possible links between polysaccharide- and lignin-degrad-
ing enzyme systems [42, 115, 269]. Another possible link 
between these systems is that LPMO-facilitated in situ pro-
duction of H2O2 may be utilized by peroxidases to degrade 
lignin [213].

To employ LPMOs in the degradation of lignin-poor cel-
lulosic substrates, it is necessary to supply the saccharifi-
cation reaction with external reducing agents like ascorbic 
acid to activate the LPMOs [250]. For saccharification of 
cellulose-rich sulfite-pulped spruce, it has been shown that 
lignin-containing spent sulfite liquor can work as an elec-
tron donor [62, 65]. On the other hand, accumulating data 
confirm that the LPMO reaction can be driven by lignin 
remaining in the biomass after various pretreatments, includ-
ing dilute-sulfuric acid pretreatment [134], steam explosion 
[250] or hydrothermal pretreatment [48, 185], although to 
varying extents [296]. Thus, while lignin may be inhibitory 
to cellulases due to unproductive enzyme binding [23, 32, 
91, 260, 287, 288, 347] or shielding the polysaccharide [90, 
191], it may be crucial for LPMO activity in certain experi-
mental settings.

LPMO activity depends on supply of H2O2, either direct 
or indirect, i.e in situ production of H2O2 from O2. The lat-
ter needs a much higher supply of reductant (Fig. 3) and 
may only be feasible when the feedstock is relatively rich 
in lignin. For substrates with low lignin content, direct sup-
ply of H2O2 works extremely well [248], also at demon-
stration scale [65]. For lignin-rich substrates, however, the 
benefits of direct addition of external H2O2 are less clear 
[248], presumably due to side-reactions occurring between 
added H2O2 and lignin [185]. In situ production of H2O2 may 
happen close to the enzyme, perhaps even on the enzyme, 
which will increase the likeliness that the generated H2O2 
is indeed used by the LPMO rather than being consumed in 
side reactions between H2O2 and lignin.

A drawback of processes relying on in situ production of 
H2O2 is the lack of direct control over the amount of H2O2 
produced, meaning that intermittently high concentrations 
of H2O2 (and other reactive oxygen species derived from 
H2O2) could be experienced, which may be damaging to 
the enzymes. Accumulation of H2O2 may be prevented by 
the use of catalases, which convert H2O2 to water. Indeed, 
a study by Scott et al. showed that inactivation of LPMO-
containing cellulase blends was significantly reduced by 
addition of catalases [312]. Thus, a likely role of catalases, 
which are also present in fungal secretomes together with 
LPMOs [2], is to maintain low H2O2 levels in systems with 
in situ H2O2 generation (Table 2). Since catalases have Km 
values for H2O2 in the millimolar range, while LPMOs 
have Km values for H2O2 in the micromolar range [39, 200], 

LPMOs will still be active and not directly inhibited by the 
H2O2 consumption of the catalases. It should also be noted 
that abiotic factors will consume oxygen and generated reac-
tive oxygen species during typical incubation conditions for 
enzymatic saccharification of lignocellulosic materials (as 
illustrated in Fig. 2), and many aspects of the reactions tak-
ing place are not yet fully understood [266].

Today’s cellulase cocktails: what are 
the limitations and how to overcome these?

Commercial enzyme cocktails have been greatly improved 
since initial cocktails were launched on the market [160, 
238]. Most commercial cocktails are fungal-derived 
because several fungi are efficient degraders of plant bio-
mass and show high production levels of catalytically 
efficient cellulases. Family GH7 cellulases are generally 
considered to be highly efficient and are only found in 
fungi. Fungi secrete lignocellulose-degrading enzymes 
into the medium, enabling easy separation from the pro-
ducing organism Merino and Cherry [238]. However, fun-
gal secretome profiles differ between fungal strains and 
may vary a lot depending on the carbon source [2, 30, 59, 
240, 278]. This must be carefully considered when try-
ing to select natural enzymes for conversion of differently 
pretreated biomass feedstocks. Despite a lack of publicly 
available data, it is clear that optimization of enzyme cock-
tails will have different outcomes for different feedstocks 
and that a one-size-fits-all strategy may not be optimal 
[33, 136].

Through the years, individual components of the 
enzyme cocktails have been the subject of enzyme 
improvement [268], either through screening for novel 
enzymes from alternative organisms (e.g., [133, 299, 326]) 
or by applying enzyme engineering technologies (e.g., 
[6, 80, 244, 313]). Work done on commercial enzymes 
is not generally known to the public; typical targets for 
improvement of individual cellulases include increased 
hydrolytic efficiency and/or stability at process condi-
tions, reduced end-product inhibition and reduced lignin 
binding. Enzyme engineering strategies include directed 
evolution, usually based on combining random and site-
directed mutagenesis steps [124, 244, 368], modification 
of the linker region of bimodular cellulases [14, 313] and 
domain shuffling, i.e., creation of fusion/chimeric proteins 
by combining (partial or complete sequences of) catalytic 
domains and CBMs from different enzymes/organisms 
[138, 331, 337, 369]. Despite the tremendous work that 
has been done for cellulase optimization, we are still trying 
to understand certain fundamentals of how EGs and CBHs 
work, and work together, the aim being to develop better 
(mixtures of) EGs and CBHs [176, 203, 257, 303, 362].
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The significance of BG activity in alleviating end-prod-
uct inhibition of CBHs by cellobiose accumulating dur-
ing lignocellulose conversion was already clear in the late 
1970s [325]. Sternberg et al. [325] showed that Aspergil-
lus secretomes contain high levels of BG and can be used 
to compensate for the insufficient levels of BG activity in 
Trichoderma secretomes. In an early and quite unique study, 
Nieves et al. [254] assessed 13 commercial enzyme prepara-
tions from seven companies, including Novozymes’ Cellu-
clast 1.5L derived from T. reesei, for cellulolytic (i.e. filter 
paper) and β-d-glucosidase activities. The results of this 
study confirmed that the ratio of β-glucosidase-to-cellulase 
activity was two orders of magnitude higher in the A. niger 
preparations than in the T. reesei preparations. Novozymes’ 
Celluclast 1.5L had the lowest BG titer of the tested T. ree-
sei cocktails. A more recent report by Merino and Cherry 
[238] from Novozymes Inc. showed that engineering the 
production strain for Celluclast 1.5L to express a BG from 
A. oryzae led to significant improvement in both the con-
version yield and rate of cellulose saccharification by the 
cellulase preparation. Notably, cellulase cocktails that were 
subsequently launched on the market, including Novozymes’ 
Cellubrix or Cellic CTec series, have increased BG activity 
[48, 166] and do not require supplementation with BG for 
obtaining maximum saccharification efficiency, indicating 
that the production strains have been developed to express 
BGs at sufficiently high levels. Novozymes have recently 
discontinued the sales of their BG product Novozym 188, 
which has been commonly used to supplement Celluclast 
1.5L.

While the oxidative mechanism of LPMOs was not 
uncovered until 2010 [351], it was already clear in 2007 
that these proteins, at the time classified into the GH61 
family, had the potential to improve hydrolysis yields by 
T. reesei-produced cellulase cocktails. Merino and Cherry 
[238] observed that addition of certain T. terrestris-produced 
GH61s at less than 5% of the total protein load in hydroly-
sis reactions with Celluclast 1.5L enabled reductions in the 
total enzyme loading by up to two times. Similarly to BGs, 
GH61s, today called LPMOs, have been incorporated in the 
Cellic CTec series [48, 62, 135, 160, 250]. Of note, while the 
contribution of LPMOs to the efficiency of today’s cellulase 
cocktails is clear and important [49, 65, 146, 167, 248–250], 
optimizing this impact is not easy and requires careful con-
sideration of reaction conditions [60], as discussed below.

Depending on the substrate pretreatment method, hemi-
cellulases may also play a critical role in lignocellulose 
depolymerization. When working with substrates pre-
treated using neutral or alkaline conditions, hemicellulases 
may be of particular importance as these methods often 
leave hemicellulose fractions more or less intact Merino 
and Cherry [238]. It is well established that xylanase sup-
plementation enhances cellulose conversion in biomass 

prepared by leading pretreatment methods, such as AFEX, 
ARP and dilute acid treatments, and that this effect is due 
to the removal of insoluble xylan, which limits cellulose 
accessibility [196]. Xylanases may also contribute by con-
version of soluble xylo-oligosaccharides, which can inhibit 
cellulases [242, 283] to monomers. A study by Hu et al. on 
saccharification of steam-pretreated corn stover and poplar 
showed that, in addition to LPMOs, xylanases contribute to 
the efficiency of Cellic CTec2 [146]. As another example, 
the data sheet for Dupont’s Accellerase Trio shows that this 
cellulase preparation is enriched in xylanases [94]. To cope 
with the variation of hemicellulose types and contents in a 
broad range of industrial biomasses, enzyme companies have 
developed hemicellulolytic preparations (e.g., Novozymes’ 
Cellic HTec, DuPont’s Accellerase XC, Genencor’s Multi-
fect Xylanase, Dyadic’s FibreZyme, and AB Vista’s Eco-
nase XT) that may be used to supplement base cellulolytic 
preparations (e.g., Novozymes’ Cellic CTec or DuPont’s 
Accellerase 1500). Notably, lignocellulosic ethanol plants 
primarily work with grasses, e.g., bagasse, corn stover and 
giant reed, which contain high amounts of xylans but lack 
glucomannan. With the exploration of other potential feed-
stocks, including hardwood and especially softwood bio-
mass, which contain other types of hemicelluloses, further 
improvement of enzyme cocktails on this front is likely 
needed (see below).

Improvement of fungal strains for production 
of monocomponent enzymes and enzyme cocktails

As recently reviewed by Bischof et al. [36], Trichoderma 
reesei was discovered by researchers at the Natick Army 
Research Laboratories during World War II. Screening 
of 14,000 moulds isolated from rotting cellulose-based 
army equipment in the Solomon Islands for the ability to 
degrade crystalline cellulose resulted in the identification of 
the renowned ancestor of all current commercial T. reesei 
strains, designated as QM6a. Random mutagenesis of the T. 
reesei strain QM6a at Rutgers University led to the T. reesei 
strain RUT-C30, which is the prototype hyperproducer of 
cellulases and is commercially available [36, 271]. One of 
the key breakthroughs was truncation of the CRE1 transcrip-
tion factor responsible for repressing the transcription of 
cellulase genes in the presence of glucose, which led to a 
substantial increase in cellulase production [236]. Decades 
of genetic engineering of T. reesei has resulted in detailed 
knowledge of regulators and transcription factors involved 
in enzyme expression, which again has contributed to the 
generation of novel cellulase hyperproducing mutants, as 
reviewed by Bischof et al. [36]. Alternative to genetic engi-
neering of transcriptional regulators, other approaches to 
enhance expression levels of lignocellulose-active enzymes 
in T. reesei entail understanding the external conditions that 
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affect transcription and expression levels in fungal hosts 
[314], as well as promoter engineering, epigenetic engineer-
ing and metabolic engineering [92].

While T. reesei has played a vital role in the history 
of understanding and exploiting natural lignocellulose-
degrading enzyme systems, other filamentous fungal spe-
cies, including Aspergillus sp. [82], Neurospora crassa [93] 
and Myceliophthora thermophila [365], have also been stud-
ied in detail and may provide useful sources of enzymes or 
be developed as expression hosts for production of mono-
component enzymes or cellulase cocktails. Expression of 
recombinant proteins in filamentous fungi is traditionally 
based on the use of native expression systems, using innate 
transcriptional regulators and promoters. Transcriptional 
regulatory systems have been extensively studied in a wide 
variety of filamentous fungi [106, 241], and it has become 
clear that these systems are not widely conserved. Hence, 
knowledge of these systems is often not transferrable from 
one host organism to another, which is one of the reasons 
why the development of new filamentous fungal expression 
hosts is relatively slow [106, 241]. For species such as T. 
reesei, A. niger and A. oryzae, important regulatory systems 
are well-explored, as recently reviewed by Mojzita et al. 
[241]. In addition, relevant transcriptional regulators have 
been studied to varying extents for N. crassa [70, 197], M. 
thermophila [365, 378] and Thermoascus aurantiacus [309].

For the production of monocomponent enzymes, the tar-
get gene is commonly expressed under a strong promoter 
[22, 58, 106, 282, 365]. In some cases, rational engineering 
of the promoter may be used to enhance selective production 
of a recombinant protein in filamentous fungi; however, this 
approach is complex and often requires large-scale changes 
to entire gene networks [106]. Synthetic promoters are cur-
rently being considered more promising, since these can 
contribute to metabolism-independent protein expression 
[290]. Interestingly, external environmental factors such as 
light may affect the expression of plant cell wall-degrading 
proteins in filamentous fungi [308] and such factors thus 
need to be considered. A recent review on the use of light-
regulated promoters addresses the potential of using external 
environmental factors to induce expression of heterologous 
proteins in filamentous fungi [118].

Additional strategies for improving fungal production of 
heterologous proteins include introducing multiple copies 
of the gene of interest into the expression host [390], fusing 
target genes to innate genes that are strongly transcribed and 
developing protease-deficient strains [75]. Most importantly, 
fungal strain development also includes the production of 
strains with low (hemi)cellulolytic background tailored for 
production of single enzymes or completely defined enzyme 
cocktails. Current industrial strains include Novozymes Inc.’ 
protease-deficient A. oryzae JaL250 strain [390] as well as 
Roal Oy’s cellulase-deficient T. reesei strain [329], DSM’s 

cellulase-deficient T. reesei strain [5] and DSM’s protease- 
and (hemi)cellulase-deficient M. thermophila (previously 
Chrysosporium lucknowense) LC strain [281, 365]. Of note, 
these strains are the results of major (commercial) research 
investments and are not publicly available.

Recent work by Steven Singer and co-workers has dem-
onstrated that T. aurantiacus has a promising potential to 
become a thermophilic fungal expression host. T. aurantia-
cus secretes a limited number of endogenous plant cell wall-
degrading enzymes, and the natural secretome, despite being 
relatively simple, has high efficiency in biomass hydrolysis 
[233, 309]. As a first step, the Singer team has shown that 
xylose acts as an inducer for production of both cellulases 
and xylanases in T. aurantiacus [310] and has identified 
related regulatory elements, homologues of which occur in 
the genomes of other Ascomycetes [309].

While traditional strain development of fungal strains 
is tedious and time-consuming, the availability of an ever-
expanding number of fungal genome sequences through 
the Joint Genome Institute’s 1000 Fungal Genomes Project 
[162] and advanced gene-editing technologies [289] together 
enable the development of alternative fungal enzyme fac-
tories. Novel CRISPR/Cas9-based tools will facilitate the 
development of a variety of novel fungal hosts for heterolo-
gous protein production. Indeed, CRISPR/Cas9 has already 
been adapted successfully to engineer cellulase hyper-
producing strains of Myceliophthora species [217] and to 
recombinantly express enzymes in filamentous fungal hosts 
[290].

Identification of missing and underperforming 
enzyme components

Depending on the type of biomass and pretreatment tech-
nology, pretreated biomass feedstocks differ in composition 
and structure and thus hydrolysability by the same cellulase 
preparation, indicating the need for tailoring enzyme cock-
tails to the feedstock [143, 196, 318]. In addition to chemical 
composition and substrate structure, the soluble fraction of 
pretreated biomass, containing xylo-oligosaccharides and 
water-soluble lignin degradation products, may restrict the 
efficiency of some enzymes, due to inhibitory effects, while 
it may boost the efficiency of others, in particular LPMOs 
[226, 283, 381, 396]. Detailed studies have confirmed that 
the type of pretreatment impacts the efficiency of individual 
enzyme components, such as the CBH TrCel7A from Hypo-
crea jecorina (anamorph T. reesei) [159] and the LPMO 
TaAA9A from T. aurantiacus [143], which, in turn, affects 
the optimal composition of the enzyme cocktail necessary 
for breaking down the feedstock [144]. Therefore, the use 
of industrially relevant pretreated substrates is a prerequi-
site when evaluating the efficiency of enzyme cocktails and 
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when trying to identify key enzyme activities that may be 
missing or underrepresented in the enzyme cocktail.

What have we learnt from minimal enzyme cocktail 
studies?

As a first approximation, optimizing the composition of a 
core set of cellulases, possibly also including one or more 
hemicellulases, for maximizing saccharification of pre-
treated feedstock gives good indications as to which enzyme 
components are important. In general, minimal enzyme 
cocktail studies have confirmed that there is no “one-fits-all” 
enzyme cocktail and that the ratio of enzyme components 
in the optimized mixture depends both on the type of bio-
mass and pretreatment [21, 168, 174]. As an example, man-
nanases are not required for the saccharification of grasses, 
such as corn stover, which contain no glucomannan, while 
mannanase activity is essential for the saccharification of 
pretreated feedstocks that contain < 2% (even as low as 0.2%, 
w/w) glucomannan [21, 355]. In another study, Chylenski 
et al. showed that a four-component enzyme mixture that 
consists of TrCel7A and TrCel6A (CBHs), TrCel7B (EG) 
and AnCel3A (BG) and that had been optimized for degrada-
tion of sulfite-pretreated spruce was equally or more efficient 
than Cellic CTec2 and CTec3 [61]. Analysis of the hemicel-
lulase activities of the optimized and commercial enzyme 
mixtures indicated that the efficiency of the minimal enzyme 
mixture on spruce most likely stems from its higher activ-
ity against glucomannan as compared with the commercial 
preparations. It is well known that TrCel7B can not only act 
on cellulose but also on glucomannan [173, 239].

Importantly, three independent studies have found that 
the proportion of the xylan-active EG TrCel7B (19–30%, 
w/w) is significantly more important than that of another 
EG, TrCel5A (0–2%, w/w), in enzyme mixtures optimized 
for saccharification of pretreated barley straw, corn stover 
and wheat straw [21, 168, 300]. When optimizing a 16-com-
ponent T. reesei enzyme mixture for the saccharification 
of AFEX-treated corn stover, Banerjee et al. found that 
TrCel7A, TrCel7B, TrCel61A (= TrAA9A), TrXyn11A, and 
TrXyn10A and the TrCel3A BG were the most important 
components [21], emphasizing the importance and com-
plementarity of processive CBHs, promiscuous (i.e., xylan-
active) EGs, LPMOs and xylanases for complete biomass 
degradation. Notably, only a handful of studies included 
LPMOs in their enzyme mixtures [21, 61, 87, 174]. The 
results of these studies indicate a correlation between the 
lignin content of the pretreated feedstock and the importance 
of LPMO in the enzyme mixture, which may be attributed 
to the ability of lignin to drive LPMO reaction, as discussed 
above (e.g., [185, 381]). When assessing the optimal propor-
tion of LPMO in the enzyme mix, process conditions will 

have to be taken into account, too, since the LPMO reaction 
requires a source of oxygen.

While most minimal enzyme cocktail studies address 
interactions between the major T. reesei cellulases [21, 61, 
168, 355], some have also looked at thermostable CBHs 
and EGs from alternative fungal species, such as M. ther-
mophila, T. aurantiacus and Chaetomium thermophilum 
[87, 128, 168]. In processes run at higher temperatures, 
higher conversion yields can be achieved with (optimized 
mixtures of) thermostable enzymes as compared with T. ree-
sei enzymes [168]. LPMOs from thermophilic fungi, such 
as TaAA9A from T. aurantiacus [134, 146, 148, 272, 284] 
and AA9 LPMOs from M. thermophila [114, 117], have 
gained considerable interest recently. TaAA9A, for example, 
is a good candidate for being added to cellulase cocktails 
[250]; however, there is no publicly available information 
on whether it has been incorporated into today’s state-of-
the-art commercial cellulase mixtures. Although thermo-
stable enzymes have clear advantages in industrial settings, 
currently, no thermostable cellulase cocktails are available 
commercially [262].

Spiking studies to highlight enzyme activities lacking 
in commercial cellulase mixtures

Another, more direct approach to identify underperform-
ing enzyme activities in cellulase cocktails is the supple-
mentation or partial replacement of enzyme cocktails with 
either individual enzymes [134] or fungal broths [299]. An 
early example includes the supplementation of the T. ree-
sei-derived Celluclast 1.5 cocktail with A. oryzae-produced 
Novozym 188 to compensate for the limited BG activity 
(e.g., in [299]). Analogously, several studies have shown 
co-operativity between commercially available cellulase, 
xylanase and pectinase preparations [19, 33, 119, 145], 
using combinations of products such as Accellerase 1000, 
Celluclast 1.5L, Spezyme CP, Multifect Xylanase, Multifect 
Pectinase and Viscozyme L. These studies add further proof 
to the general observation that no commercial cellulase prep-
aration fits all substrates and highlight the importance of 
feedstock-specific enzyme blends.

To identify enzyme components that may be lacking in 
cellulase cocktails, commercial cellulase mixtures have also 
been supplemented with fungal culture broths or (semi)puri-
fied enzyme components. Celluclast has been studied exten-
sively in spiking studies, revealing the positive impact of 
xylanase, mannanase and LPMO supplementation on the 
efficiency of cellulose saccharification [81, 87, 143, 177, 
250, 272, 382], as also discussed above. In some cases, 
in-house fungal (e.g., T. reesei) culture broths have been 
used to showcase the positive effect of selected enzymes, 
such as three AA9s from Geotrichum candidum [205] 
or two AA14 LPMOs from Pycnoporus coccineus [68], 
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on saccharification efficiency. The direct effects of these 
(purified monocomponent) enzymes will also have to be 
tested on the latest generation (hemi)cellulase cocktails for 
benchmarking.

The most recent commercial cellulase cocktails have also 
been subjected to spiking-type of studies. As an example, 
Agrawal et al. have shown that the performance of Cellic 
CTec2 on acid or alkali pretreated bagasse and rice straw 
can be boosted by addition of two AA9 LPMOs from the 
thermophilic fungi Scytalidium thermophilum and Malbran-
chea cinnamomea [8]. Very recently, von Freiesleben et al. 
have reported that supplementation with GH5 and GH26 
mannanases leads to improved saccharification of pretreated 
lodgepole pine by Cellic CTec3 [367], confirming previ-
ous indications concerning suboptimal levels of mannanase 
activities in Cellic CTec3 for softwood saccharification [61]. 
As another example, d’Errico et al. showed that a Cellic 
CTec preparation and the β-glucanase preparation UltraFlo 
possess only low amounts of glucuronoyl esterase activity 
and that supplementing these products with CE15 glucu-
ronoyl esterases boosts their saccharification efficiency 
on pretreated corn fiber [77]. The positive effect of CE15 
supplementation on the saccharification yields varied with 
the substrate [77], further corroborating the importance of 
feedstock-specific enzyme blends.

The interplay between process configuration 
and enzyme efficiency

The main considerations for process optimization entail 
(1) the type of feedstock and pretreatment method, (2) the 
choice of enzymes and their pH and temperature optima, (3) 
separate (SHF) or simultaneous (SSF) saccharification and 
fermentation steps, (4) stirring and aeration, (5) the possibil-
ity of on-site enzyme production and (6) possible measures 
for enzyme recycling. The choice of the process configura-
tion (such as pretreatment, SHF/SSF and enzyme recycling) 
and physical parameters (such as temperature and level of 
dissolved oxygen) will have consequences for enzyme activ-
ity and stability. Of note, the enzymatic process is often sep-
arated into two phases: an initial liquefaction phase, in which 
the solid, particle-like feedstock becomes “fluid” (pumpable) 
and a saccharification phase, in which the polysaccharides 
are completely converted to soluble (mono-)sugars.

The choice of feedstock and pretreatment has a large 
impact on the type and amount of lignin remaining in the 
feedstock and, consequently, on the efficiency of both cel-
lulases (in terms of the extent of unproductive binding) and 
LPMOs (in terms of delivery of reducing power). The tem-
perature used during the enzymatic step(s) has to be care-
fully selected to compromise between enzyme efficiency 
and enzyme inactivation. Notably, the use of thermosta-
ble enzymes next to regular, less thermostable, cellulase 

cocktails will require alternative process configurations 
[363]. One possible scenario may be a liquefaction step run 
at elevated temperatures with a few selected thermostable 
enzymes, followed by full saccharification at lower tempera-
ture. In SSF, obviously, the temperature needs to be adapted 
to the fermenting microorganism. Of note, the impact of 
temperature goes beyond the impact on enzyme stability and 
activity, since temperature also affects potentially impor-
tant abiotic factors such as reductant stability and dissolved 
oxygen levels, which may affect LPMO activity and/or the 
in situ generation of reactive oxygen species.

The improved efficiency of Cellic CTec2 compared to for-
mer, less efficient cellulase cocktails partly stems from the 
inclusion of LPMOs [146, 250]. The presence of molecular 
oxygen and/or H2O2 (Fig. 3) is crucial for LPMO activity, 
which will have to be considered in process design in gen-
eral, and when choosing between SHF and SSF in particu-
lar. In a study comparing lactic acid production in different 
process setups, it was found that SHF performed better than 
SSF, and this was ascribed to the consumption of oxygen 
by the fermenting organisms in SSF, which lowered LPMO 
activity [249]. This is opposite to what has been observed 
in experiments with non‐LPMO-containing cellulase cock-
tails, where SSF processes tend to be more efficient [49, 230, 
256, 344]. Interestingly, Cannella and Jørgensen showed 
that the relative performance of SSF and SHF approaches 
varied with substrate loading [49]. At 20% (w/w) substrate 
loading of wheat straw, SSF with LPMO-containing Cellic 
CTec2 performed better, but at 30% (w/w) substrate loading 
the SHF approach yielded more ethanol, possibly because 
LPMO activity, which is only expected in the SHF approach, 
becomes more important at higher substrate concentrations 
[49]. With the possibility of direct supply of low (i.e., non-
lethal) amounts of H2O2 to saccharification reactions, in par-
ticular for low-lignin feedstocks, a more efficient SSF setup 
that fully harnesses the power of LPMOs may become pos-
sible, since this would avoid competition for oxygen between 
the fermenting organism and in situ generation of H2O2. 
However, so far no studies have been published on this topic.

Overall process economics and efficiency may be 
increased further by producing enzymes on site, instead of 
using (combinations of) commercially available cellulase 
cocktails [161]. The carbon source used in growth media 
has been shown to have clear impacts on the protein expres-
sion profile of fungal expression strains [255]. Thus, on-site 
enzyme production may allow for tailoring the cellulase 
cocktail (i.e., the composition of the fungal secretome) to 
the feedstock of the biorefinery, by using this feedstock as 
the carbon source when cultivating the cellulase expression 
strain [1, 255].

Since enzymes are catalysts and, in principle, could 
be used many times, enzyme recycling may be consid-
ered during process design [147, 164]. Enzyme recycling 
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is a complex process that requires in-depth knowledge of 
enzyme–substrate interactions [346] and the mechanisms 
of enzyme adsorption–desorption [258, 280, 342, 358]. In 
principle, enzyme recycling could be done in two ways, 
either recycling the unhydrolyzed solid residue with bound 
enzymes or recycling the liquid phase with free (non-bound) 
enzymes [294, 295]. Both approaches have shown poten-
tial for saving enzyme costs [137, 293, 348], but they also 
make the process more complex. It is important to note that 
while enzyme recycling may seem attractive and “simple”, 
such recycling has some intrinsic limitations. At the end of 
the hydrolysis, key enzyme components may be diluted out 
in the recycled enzyme fraction as different enzyme com-
ponents will remain free or adsorbed on the feedstock as 
well as become inactive to various degrees [215, 280, 358]. 
LPMOs likely suffer from autocatalytic inactivation, espe-
cially when substrate concentrations become low in the later 
phase of a degradation reaction (see above), whereas it is 
well known that certain cellulases may get “stuck” by non-
productive binding to cellulose in an essentially irreversible 
fashion [156, 232, 259, 267].

Importantly, one of the current targets when optimizing 
saccharification setups concerns how to leverage LPMO 
activity while keeping LPMOs from inactivation. As dis-
cussed above, LPMO inactivation may be caused by reactive 
oxygen species that derive from reactions between O2 and 
lignin [185] or that are formed by the LPMO itself [37] or 
by other redox enzymes present in the enzyme mixture [39]. 
It has been shown for various reaction setups that too high 
feeding rates of externally added H2O2 [200, 248] or too 
high levels of in situ production of H2O2 [185, 269] lead to 
LPMO inactivation. Recent studies following the accumu-
lation of LPMO products over the course of H2O2-assisted 
saccharification of industrial feedstocks [37, 65, 167, 248] 
clearly indicate that LPMO inactivation occurs presumably 
due to the accumulation of H2O2 in the reaction mixture, 
although the extent and rate of inactivation over time remain 
to be elucidated. Notably, there is a clear difference between 
LPMOs in terms of redox stability [66, 272], partly due to 
the presence or absence of CBMs (discussed below). Con-
sequently, process robustness may be increased by screening 
for LPMOs with higher stability. Successful process opti-
mization may further include control of the rate of addition 
or in situ generation of H2O2, control of dissolved oxygen 
levels, supplementation with catalase and/or superoxide 
dismutase to maintain low levels of H2O2 and superoxide 
radicals [37] as well as online monitoring and control of 
the redox processes taking place during saccharification, 
e.g., through online monitoring of the oxidation–reduction 
potential [167]. Before the power of LPMOs can be lev-
eraged to its fullest extent, however, further fundamental 
research is required to better understand the impact of reac-
tive oxygen species generated in biotic and abiotic redox 

processes on LPMO activity and to unravel the mechanisms 
of LPMO inactivation in the presence of industrially relevant 
feedstocks.

The role of CBMs: for cellulases, hemicellulases 
and LPMOs

Many of the enzymes discussed above contain one, or 
sometimes more than one, additional domain referred to as 
carbohydrate-binding module (CBM) [40]. Such modules 
may bind to various faces of cellulose crystals, to the more 
amorphous regions of cellulose or to one or more hemi-
cellulose types [51, 234]. Accordingly, some CBMs target 
surfaces (i.e., multiple polysaccharide chains, such as the 
CBM1 of TrCel7A), others target single polysaccharide 
chains, whereas the third type directs the catalytic domain 
to act at polysaccharide chain ends [123]. Substrate-binding 
by CBMs, while being fully reversible [90, 216, 267], may 
be very strong, because of which it has sometimes even been 
considered  almost irreversible [52, 292]. Irreversible bind-
ing would be puzzling since it does not seem favorable for 
enzyme efficiency. There have been many theories about 
what CBMs do and how they work, including proposals that 
some CBMs may increase substrate accessibility by disrupt-
ing the crystalline structure of cellulose [40, 127]. The pri-
mary role of CBMs, with massive experimental support, is 
that they promote proximity between the appended catalytic 
domain and the substrate, thus promoting enzyme efficiency.

To some extent, CBMs and substrate binding are a 
double-edged sword in saccharification efficiency. On the 
one hand, CBMs increase the enzyme’s affinity to its sub-
strate [184], which promotes enzyme activity on insoluble 
cellulose [345, 353]. For processive CBHs, the CBM has 
been proposed to promote the feeding of the cellulose chain 
into the CBH active site [184] and to increase processiv-
ity [25, 153, 181, 333], as well as to promote the stability 
of the CBH-cellulose complex. On the other hand, strong 
substrate binding via CBMs hinders desorption of bound 
enzymes [74, 333], which may get stuck on the substrate 
[199]. Moreover, CBMs contribute to unproductive binding 
of cellulases to lignin [286, 287, 321], which may result in 
enzyme inactivation.

The proximity effect of CBMs can be compensated by 
increasing substrate concentration, which will promote sub-
strate binding of enzymes independent of the presence of a 
CBM. In 2013, Várnai et al. showed that, at high substrate 
concentrations, the truncated, CBM-free versions of the four 
CBM-containing cellulases from T. reesei (TrCel7A, 6A, 7B 
and 5A) were as efficient as the full-length enzymes [356]. 
Since then, the positive effect of increasing substrate concen-
tration on the efficiency of cellulases and LPMOs without 
CBMs has been confirmed by a number of studies, as has the 
potentially negative impact of CBMs in reactions with high 
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substrate concentrations [53, 66, 158, 170, 210, 334]. This 
observation can be explained by CBM-free cellulases hav-
ing higher desorption rates (“off-rates”) [333] and reduced 
unproductive binding to lignin [260, 288], while increased 
substrate concentrations will overcome diffusional limita-
tions of the CBM-free enzymes [372]. Of note, the presence 
or absence of CBMs in the enzyme components will affect 
potential enzyme recycling strategies. Using CBM-free 
enzymes will facilitate recycling unbound enzymes from the 
liquid phase [137, 258], while CBM-containing enzymes 
may be recycled in a bound form, with the unhydrolyzed 
solid residue and/or after desorption from the unhydrolyzed 
solid residue [211, 294, 295, 348].

CBMs also occur in LPMOs, although many LPMOs, 
including some of the best-studied ones with documented 
effects on cellulose saccharification [143, 178, 250, 284], 
lack CBMs. LPMO literature shows that certain single-
domain LPMOs bind very well to their substrates, whereas 
recombinantly expressed catalytic domains of CBM-contain-
ing LPMOs sometimes seem to bind weakly [66, 110, 132]. 
It may thus seem that nature has evolved different strategies 
for LPMOs to have affinity for their substrates, but this is 
not yet sufficiently supported by systematic experimental 
studies. Existing data show that the CBMs of LPMOs have 
the same function as in GHs [53, 66, 72, 110, 111, 192, 
209, 371] and it has also been shown that, like for GHs, 
the presence of a CBM becomes less important, and even 
unfavorable, when running reactions at high substrate con-
centrations [66].

Importantly, LPMOs that are reduced and meet O2 or 
H2O2 while not being bound to the substrate are prone to 
autocatalytic inactivation, due to the redox reactivity of 
the Cu(I) ion in the (reduced) catalytic center [37]. Thus, 
for LPMOs, proximity of the substrate not only promotes 
activity, but also stability, since proximity of the substrate 
increases the chances for the LPMO to engage in productive 
(i.e., oxidative cleavage of the substrate) rather than damag-
ing side reactions. Several studies have shown that deletion 
of the CBM from a CBM-containing LPMO indeed leads to 
increased enzyme inactivation [66, 108, 273]. On the other 
hand, LPMOs have been found to bind more strongly to pol-
ysaccharides when the active site copper is in the reduced, 
i.e., Cu(I), state [188, 201], which is expected to favor their 
stability.

Interestingly, the importance of the proximity effect 
was also suggested by experiments with a cellulose-bind-
ing CBM-containing pyrroloquinoline quinone-dependent 
pyranose dehydrogenase (PDH) that can deliver reducing 
equivalents to LPMOs and thus drive the LPMO reaction. 
Upon removal of the CBM from this PDH, the LPMO reac-
tion became less efficient and it has been suggested that this 
is due to proximity effects [357]. When the PDH is bound to 
cellulose, it will activate the LPMO while the LPMO is in 

close proximity to the substrate. On the other hand, a PDH 
that is free in solution will activate LPMOs that are not close 
to the substrate, thus increasing the chances for off-pathway 
reactions.

Concluding remarks

Thanks to the efforts of a large research community and 
enzyme companies, today’s enzyme cocktails for saccharifi-
cation of lignocellulosic biomass are so effective that indus-
trial bioethanol production from such biomass has become 
a reality. Improved biomass pretreatment techniques have 
contributed to this development [391]. Despite much pro-
gress in the enzyme area, further improvements still seem 
possible. For example, it is still not fully clear how proces-
sive cellulases work and how the interplay of these essential 
but rather slow enzymes with other enzymes could be opti-
mized [57, 169, 302, 306, 362]. Recent insights concern-
ing the role of H2O2 and enzyme inactivation suggest that 
so far, we have not harnessed the full potential of LPMOs. 
Furthermore, despite much research on LPMOs in the past 
decade, exactly how these enzymes co-operate with classical 
cellulases remains largely unknown (see [343] for a recent 
study). Finally, recent work suggests that LPMOs could play 
a role in removing (traces of) recalcitrant hemicellulose, 
which may promote cellulolytic processes [68, 150]. On 
that note, further research on the impact of residual hemi-
cellulose fractions in pretreated biomass and the possible 
roles of (any) hemicellulolytic enzymes in dealing with such 
fractions is still needed.

While research related to the enzymatic processing of 
lignocellulosic biomass has focused mainly on conversion 
of the polysaccharides, there is growing evidence that bio-
mass saccharification and lignin modification by enzymes 
are interconnected [39]. Although our current understanding 
of enzymatic processing of lignin is still very limited, there 
is a growing interest in lignin valorization. As lignin con-
stitutes nearly a third of plant biomass, the fate of the lignin 
fraction will need to be considered in the further develop-
ment of biorefining processes for efficient and economic 
processing of lignocellulosic feedstocks [24, 285, 311]. A 
good example for the way forward is the so-called BALI 
process, where sulfite pretreatment generates both valuable 
carbohydrate and lignin streams which can be turned into 
valuable products [65, 301].

In addition to lignin valorization, there is a concerted 
ongoing research effort aimed at developing a widened 
portfolio of biomass-derived products, including cellulose-, 
hemicellulose-, and lignin-based polymers, oligomers and 
monomers, as well as products resulting from fermentation 
of lignocellulosic sugars, i.e., production of ethanol. Alter-
native fermentation products include microbial biomass for 
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food and feed [29, 207, 336], alternative biofuels such as 
butanol [237] and commodity as well as high-value chemi-
cals [317, 384]. In an environmentally and economically 
successful biorefinery, these products will co-exist as part 
of a flexible product portfolio that is continuously adjusted 
to feedstock availability, technological developments and 
market needs.
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