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Abstract
2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharma-
ceutical areas. However, its industrial production and usage are limited by the fairly high cost of its petro-based production. 
Several bio-based 2,3-BD production processes have been developed and their economic advantages over petro-based pro-
duction process have been reported. In particular, many 2,3-BD-producing microorganisms including bacteria and yeast have 
been isolated and metabolically engineered for efficient production of 2,3-BD. In addition, several fermentation processes 
have been tested using feedstocks such as starch, sugar, glycerol, and even lignocellulose as raw materials. Since separation 
and purification of 2,3-BD from fermentation broth account for the majority of its production cost, cost-effective processes 
have been simultaneously developed. The construction of a demonstration plant that can annually produce around 300 tons 
of 2,3-BD is scheduled to be mechanically completed in Korea in 2019. In this paper, core technologies for bio-based 2,3-
BD production are reviewed and their potentials for use in the commercial sector are discussed.
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Introduction

Concerns over climate change and finiteness of fossil 
reserves have driven the development of eco-friendly and 
sustainable bio-based chemicals. However, replacement of 
petro-based chemicals with bio-based ones is very limited 
primarily due to cost competitiveness issue. The first biolog-
ical production of 2,3-BD was reported by Harden and Wal-
pole who used Klebsiella pneumoniae as a host bacterium 
in 1906 [1]. Industrial production of bio-based 2,3-BD was 
tried during world war II for the production of 1,3-butadiene 
[2]. However, it was short lived as many countries rapidly 
developed less expensive petro-based 1,3-butadiene produc-
tion processes using n-butene, butene, and ethanol [3, 4]. 
These facts suggest that bio-based 2,3-BD is not competitive 

as a raw material for the production of low-priced bulk and 
commodity chemicals.

Up to date, 2,3-BD has been recognized as a chemical 
with low industrial value. Therefore, it is manufactured in 
very small quantities via a chemical process using butene, 
which needs to be pre-separated from cracked gas. Further-
more, upon production, 2,3-BD exists as three isomers: 
(2R,3R)-BD (also known as levo), (2R,3S)-BD (also known 
as meso), and (2S,3S)-BD (also known as dextro) [5, 6]. 
Since a chemical catalyst cannot recognize these isomers, 
fairly expensive separation and purification processes are 
required to obtain stereospecific 2,3-BD (Fig. 1).

Recently, many studies have elucidated the role of 2,3-BD 
and indicated that 2,3-BD isomers show quite different phys-
icochemical characteristics and unique efficacies, especially 
in high value-added cosmetics, agriculture, and pharmaceu-
tical industries [7–12]. Due to well-known advantages of 
biological processes in terms of production costs compared 
to chemical process, interest in biological production of 2,3-
BD is increasing again [13].

In this paper, we reviewed current status of unit technolo-
gies including host strain development, feedstock utilization, 
fermentation, separation, and purification for bio-based 2,3-
BD production. Potentials of diverse application areas for 
2,3-BD depending on its isomers are also discussed.
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Microorganisms

Metabolic pathways

In biological system, the 2,3-BD formation pathway acts 
as a cellular carbon-and-energy storage system that regu-
lates NADH/NAD+ ratio. This pathway may also be acti-
vated to prevent intracellular acidification via formation of 
neutral compound, 2,3-BD [13]. Most microorganisms that 
produce 2,3-BD have three consecutive metabolic conver-
sion steps: pyruvate → α-acetolactate → acetoin and/or 
diacetyl → 2,3-BD (Fig. 2). First, pyruvate from glyco-
lysis is converted to α-acetolactate via decarboxylation 
which is catalyzed by an α-acetolactate synthase. Next, 

α-acetolactate is anaerobically converted to R-acetoin via 
an α-acetolactate decarboxylase. It also produces diacetyl 
as a minor byproduct via a spontaneous reaction due to 
instability under aerobic conditions [14]. Diacetyl is fur-
ther reduced to S-acetoin via a butanediol dehydrogenase 
or a diacetyl reductase with consumption of one NADH 
equivalent. Acetoin is an intermediate compound prior to 
the formation of 2,3-BD. Metabolic conversion of ace-
toin to 2,3-BD is reversible [12]. From these two types 
of acetoin (R-acetoin and S-acetoin), three types of 2,3-
BD classified as (2R,3R), (2S,3S), and (2R,3S)-forms are 
determined by stereospecific termination enzymes such 
as a butanediol dehydrogenase and an acetoin reductase. 
Strains of Klebsiella and Enterobacter genera mainly form 
(2S,3S)-BD and (2R,3S)-BD, while members of Bacillus 

Fig. 1   Comparison of chemical and biological processes for the production of 2,3-BD. Racemic mixture of isomers is obtained from crack gases 
using a chemical catalyst. Optically pure 2,3-BD isomers are derived from monosaccharides using microorganism
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genus form (2R,3R)-BD and (2R,3S)-BD [15]. Although 
the metabolic significance of stereoisomer formation needs 
further study, mechanisms of stereoisomer formation have 
been investigated by many researchers. According to pre-
vious reports, a single strain may have either multiple 
enzymes for catalysis of the termination step or a single 
enzyme with bifunctional activities for 2,3-BD production 
(Fig. 2). For example, it has been reported that (2R,3S)-
BD dehydrogenase derived from K. pneumoniae can cata-
lyze the interconversion between acetoin and 2,3-BD [16]. 
In addition, it shows a strong diacetyl reductase activity. 
In B. licheniformis, there are two genes encoding (2R,3R)-
BD and (2R,3S)-BD dehydrogenases to form (2R,3R)-BD 
and (2R,3S)-BD at 1:1 ratio [17]. Thus, 2,3-BD produc-
tion pathway is highly complicated by enzyme reactions 
depending on strains. Theoretically, the maximum produc-
tion yield of 2,3-BD via this pathway is 0.50 g/g·glucose 
(equivalent to 1 mol/mol) because two pyruvate mole-
cules derived from glucose can be assembled into a single 
2,3-BD molecule. In terms of redox balance, two moles 
of NADH are generated during glycolysis of 1 mol of 

glucose, resulting in a surplus of NADH via 2,3-BD syn-
thetic pathway because only 1 mol NADH is required to 
reduce acetoin to 2,3-BD. Thus, several reduced byprod-
ucts such as lactate, succinate and ethanol are also gener-
ated to balance the redox status in cells under anaerobic 
condition [13, 18, 19]. However, it is possible that NADH/
NAD+ ratio is regulated by respiration under aerobic con-
dition via regeneration of NAD+. Based on the understand-
ing of metabolic pathways, researchers have investigated 
and developed a number of strains to increase the produc-
tion and stereoisomer selectivity of 2,3-BD. This will be 
described in the “Strain development”.

Strain development

Microorganisms that can produce 2,3-BD are listed in 
Table 1. Native 2,3-BD producers can be classified into 
Gram-negative (mainly Enterobacteriaceae family) and 
Gram-positive (mainly Bacillus and Paenibacillus genera) 
bacteria. Several non-natural producers including Escheri-
chia coli, Lactobacillus lactis, and Saccharomices cerevisiae 
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Fig. 2   General biological routes for the production of three isomeric 
forms of 2,3-BD with mixed acid pathway. Dashed lines represent the 
route activated under aerobic conditions. Parenthesized number repre-
sents key enzymes required for 2,3-BD production. (1) α-acetolactate 
synthase; (2) α-acetolactate decarboxylase; (3) (2R,3S)-butanediol 

dehydrogenase (R-acetoin forming); (4) (2R,3S)-butanediol dehydro-
genase (S-acetoin forming); (5) (2S,3S)-butanediol dehydrogenase 
(S-acetoin forming); (6) (2R,3R)-butanediol dehydrogenase; and (7) 
diacetyl reductase (S-acetoin forming)



1586	 Journal of Industrial Microbiology & Biotechnology (2019) 46:1583–1601

1 3

Table 1   Current status for the production of 2,3-BD via biological process

Leading hosts Genotype Key strategies 
(medium, cultivation 
condition)

Major steroisomer Titer (g/L) Yield (g/g) Produc-
tivity 
(g/L/h)

References

Natural producer
 Gram- negative
  K. pneumoniae Random mutant Glucose and CSL (corn 

steep liquor) based 
medium, fed-batch

Mixture 150.0 0.43 4.21 [27]

  K. pneumoniae ΔadhE ΔldhA Glucose and YE 
(yeast extract) based 
medium, fed-batch

Mixture 116 0.49 2.21 [25]

  K. pneumoniae ΔldhA ΔadhE Δpta-
ackA

Glucose and mineral 
salt medium, fed-
batch

Mixture 91 0.45 1.62 [26]

  K. pneumoniae ΔwabG ΔbudC 
ldhA::gldA::dhaD

Glucose and YE based 
medium, fed-batch

(2R,3R) 61 0.36 0.51 [28]

  K. pneumoniae Overexpression of 
budA and budB

Glucose and YE based 
medium, fed-batch

Mixture 101.5 0.34 2.54 [24]

  K. pneumoniae Random mutant Corncob molasses 
based medium, fed-
batch

Mixture 78.9 – 1.3 [68]

  K. pneumoniae Wild Jerusalem artichoke 
tubers based medium, 
fed- batch (SSF)

Mixture 91.63 – 2.29 [60]

  K. oxytoca ΔaldA Glucose and mineral 
salt medium, fed-
batch

Mixture 130.0 0.48 1.64 [29]

  K. oxytoca ΔadhE ΔackA-pta 
ΔldhA, Metabolic 
evolution

Glucose and mineral 
salt medium, fed-
batch

Mixture 117.4 0.49 1.20 [32]

  K. oxytoca ΔldhA ΔpflB 
ΔbudC::bdh, overex-
pression of bdh

Glucose and YE based 
medium, fed-batch

(2R,3R) 106.7 0.40 3.1 [28]

  K. oxytoca ΔldhA Glucose and YE based 
medium, fed-batch

Mixture 115 0.41 2.27 [30]

  K. oxytoca ΔpduC ΔldhA Glycerol and YE based 
medium, fed-batch

Mixture 131.5 0.44 0.84 [65]

  E. aerogenes ΔldhA Glucose and YE based 
meidum, fed-batch

Mixture 118 – 2.19 [33]

  E. aerogenes ΔscrR Sugarcane molasses 
baesd medium, fed-
batch

Mixture 98.69 – 2.74 [55]

  E. cloace Δbdh ΔptsG Δldh 
ΔfrdA, overexpression 
of bdh and galP

Glucose and xylose 
based medium, fed-
batch

(2R,3R) 152 – – [34]

Corn stover hydro-
lysate based medium, 
fed-batch

(2R,3R) 119.4 – 2.3 [34]

  E. cloace Wild Cassava powder based 
medium, fed-batch 
(SSF)

Mixture 93.9 – 2.00 [53]

  S. marcescens Random mutant Sucrose and YE based 
medium, fed-batch

Mixture 139 0.47 3.49 [36]

  S. marcescens ΔswrW Sucrose and YE based 
medium, fed-batch

Mixture 152 0.41 2.67 [37]

 Gram-positive
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Table 1   (continued)

Leading hosts Genotype Key strategies 
(medium, cultivation 
condition)

Major steroisomer Titer (g/L) Yield (g/g) Produc-
tivity 
(g/L/h)

References

  B. subtilis Δupp ΔacoA ΔbdhA, 
Overxpression of 
bdhA and udhA

Glucose and LB based 
medium, fed-batch

(2R,3S) 49.29 0.47 0.095 [111]

  B. subtilis Δupp ΔacoA ΔbdhA 
Δpta Δldh; integra-
tion of P43::alsS-
alsD; P43::alsS-alsD-
budC-udhA

Glucose and LB based 
medium, fed-batch

(2R,3S) 103.7 0.939 0.224 [40]

  B. licheniformis Wild Glucose and YE based 
meidum, fed-batch

Mixture 115.7 – 2.4 [38]

  B. licheniformis Wild Glucose and YE based 
medium, fed-batch

Mixture 144.7 0.40 1.14 [39]

  B. licheniformis ΔbudC Glucose and YE based 
medium, fed-batch

(2R,3R) 123.7 – 2.95 [17]

  B. licheniformis Δgdh Glucose and YE based 
medium, fed-batch 
(50L)

(2R,3S) 90.1 – 2.82 [17]

  B. licheniformis Wild Inulin hydrolysate 
based medium, fed-
batch (SSF)

Mixture 103 – 3.4 [61]

  B. licheniformis Wild Apple pomace based 
medium, fed-batch

Mixture 113 – 0.69 [67]

  B. amyloliquefa-
ciens

Wild Glucose and CSL 
based medium, fed-
batch

Mixture 92.3 – 0.96 [42]

  B. amyloliquefa-
ciens

Overexpression of bdh 
and gapA

Glucose and CSL 
based medium, fed-
batch

Mixture 132.9 – 2.95 [43]

  P. polymyxa Wild Inulin extract based 
medium, batch

(2R,3R) 36.92 – 0.879 [51]

  P. polymyxa Wild Sucrose and YE based 
medium, fed-batch

(2R,3R) 111 – 2.06 [41]

Non-natural producer
 S. cerevisiae Δpdc1 Δpdc5, point 

mutatin in mth1, 
overexpression of 
alsS, alsD, bdh1

Glucose and YP based 
medium, fed-batch

(2R,3R) 96.2 0.28 0.39 [44]

 S. cerevisiae Δadh1 Δadh2 Δadh3 
Δadh4 Δadh, Δgpd1 
Δgpd2, overexpres-
sion of alsS, alsD, 
bdh1 and noxE

Glucose and YP based 
medium, fed-batch

(2R,3R) 72.9 0.41 1.43 [46]

 L. lactis Δldh ΔldhB ΔldhX 
Δpta ΔadhE ΔbutBA, 
overexpression of bdh 
and lactose utilizing 
pathway

Residual whey perme-
ate (lactose) based 
medium, batch

(2R,3S) 51 0.471 1.46 [22]

 L. lactis Δldh ΔldhB ΔldhX Δpta 
ΔadhE ΔbutBA, over-
xpression of sadB 
and lactose utilizing 
pathway

Residual whey perme-
ate (lactose) based 
medium, batch

(2R,3R) 32 0.401 0.62 [22]
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have been engineered for the production of 2,3-BD. Most 
studies for the mass production of 2,3-BD have been car-
ried out using bacteria in the family of Enterobacteriaceae, 
including those in Klebsiella, Enterobacter, and Serratia 
genera [15]. Although these aforementioned bacteria have 
been recognized as promising hosts, their pathogenicity 
(genera of risk group 2) has been pointed out as an obsta-
cle for industrial uses. Exceptional among them is K. oxy-
toca, which is classified as a risk group 1 strain according 
to the US National Institutes of Health guidelines (April 
2016). Interest in Bacillus strains producing 2,3-BD has 
been increasing recently because the genera of Bacillus and 
Paenibacillus are generally regarded as safe (GRAS) micro-
organisms. However, Bacillus strains have been reported to 
have rather low 2,3-BD production capabilities in terms 
of titer and productivity compared to Enterobacteriaceae 
strains. While most Bacillus species are difficult to cultivate 
and have high nutritional requirements, members belonging 
to Enterobacteriaceae could be used in a variety of sub-
strates and are easy to cultivate in a simple medium [10, 15, 
20]. In case of non-native producers, industrially relevant 
hosts such as E. coli, S. cerevisiae, and L. lactis have been 
studied for feasibility in large-scale production due to their 
well-characterized genetics and cultivation methods [6]. In 
addition, S. cerevisiae and L. lactis are known to exhibit a 
high degree of tolerance to alcohols and harsh industrial con-
ditions [21, 22]. However, the application of strains carrying 
heterologous pathways may be restricted in some products 
such as food and agricultural industries. Therefore, during 
selection of an industrial host, the organism needs to exhibit 
high production efficiency as well as non-pathogenicity for 
cost effective and safe production of bio-based 2,3-BD. In 
addition, it is necessary to review living modified organism 
(LMO) regulations depending on the country and purpose 
of use. Toward this end, first, an appropriate high-perform-
ing strain should be selected and, if needed, metabolically 
engineered to regulate and balance its metabolism, thereby 
increasing metabolic flux until the desired end product is 
obtained (Table 1). It is also essential to design strains to 
control stereospecificity and obtain an optically pure 2,3-BD 
isomer. Notably, most 2,3-BD-producing microorganisms 
have a tendency to produce a mixture of stereoisomers [23]. 

Because physical property of each isomer is unique, it may 
be important to adjust the selectivity of isomers depending 
on the application.

Gram‑negative bacteria

Klebsiella strains such as K. pneumoniae and K. oxytoca 
have been widely studied and engineered for 2,3-BD produc-
tion because of their superior ability compared to others. To 
enhance 2,3-BD production, two basic strategies have been 
adopted. The first one is to reinforce the 2,3-BD formation 
route and the second is to block byproduct generation. For 
example, the budA and budB genes (encoding α-acetolactate 
decarboxylase and α-acetolactate synthase, respectively) 
involved in 2,3-BD synthesis were overexpressed in K. 
pneumonia resulting in the production of 101.53 g/L of 2,3-
BD, with a productivity of 2.54 g/L/h [24]. As an example 
of the second strategy, inactivation of the ldhA (encoding 
lactate dehydrogenase) gene in a K. pneumoniae strain 
also increased 2,3-BD production with faster cell growth 
by reducing lactate formation, one of the major byprod-
ucts of the 2,3-BD formation pathway. Additional deletion 
of the adhE gene encoding alcohol dehydrogenase in the 
ldhA gene-deleted K. pneumoniae strain made it possible 
to produce 116 g/L of 2,3-BD with yield and productiv-
ity of 0.49 g/g·glucose and 2.21 g/L/h, respectively [25]. 
In addition to rational metabolic engineering, an in silico 
study has also been conducted for the prediction of strain 
improvement. Rathnasingh et al. have recently reported that 
in silico simulation-aided triple mutant K. pneumoniae strain 
by inactivating the ldhA, adhE, pta-ackA (encoding phos-
photransacetylase and acetate kinase) genes could produce 
91 g/L of 2,3-BD with a yield of 0.45 g/g·glucose and a 
productivity of 1.62 g/L/h in the mineral salt medium [26]. 
The approach was effective because metabolic character-
istics of mutants were consistent with results of in silico 
simulation. Furthermore, specific target engineering is not 
always the best strategy to improve the performance because 
random approaches might be more effective for some strains. 
Random mutagenesis techniques have been adopted for the 
development of effective 2,3-BD-producing microorgan-
isms. The highest 2,3-BD titer of 150 g/L after 38 h of 

Table 1   (continued)

Leading hosts Genotype Key strategies 
(medium, cultivation 
condition)

Major steroisomer Titer (g/L) Yield (g/g) Produc-
tivity 
(g/L/h)

References

 E. coli Overexpression of 2,3-
BD gene cluster with 
its operon originated 
from Enterobacter 
cloacae subsp. dis-
solvens SDM

Glucose and YE based 
medium, fed-batch

(2R,3S) 73.8 – 1.19 [47]
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fermentation was achieved using K. pneumoniae SDM strain 
which was generated by ion beam-based random mutation 
[27]. It resulted in the best production among reported wild-
type strains. Several studies have been conducted to improve 
production and isomer selectivity of 2,3-BD. Klebsiella pro-
duces (2R,3S)-BD as a major isomer, although its optical 
purity is not satisfactory due to the presence of multiple 
butanediol dehydrogenases [6]. However, several reports 
have provided evidence that engineering could change iso-
mer selectivity from (2R,3S)-BD to (2R,3R)-BD. To pro-
duce optically pure (2R,3R)-BD in the wabG gene-deleted 
non-pathogenic K. pneumoniae, the ldhA gene was deleted 
and two genes encoding glycerol dehydrogenase (encoded by 
dhaD and gldA) were overexpressed with concomitant dele-
tion of the native 2,3-BD dehydrogenase (encoded by budC), 
which result in the production of (2R,3R)-BD at 61 g/L with 
(2R,3S)-BD at 1.4 g/L by fed-batch fermentation [28].

Similar strain development strategies used in K. pneu-
moniae have been replicated in K. oxytoca which is classi-
fied as a non-pathogen according to the US NIH guideline. 
Low pathogenesis and high 2,3-BD production might be key 
advantages of K. oxytoca for industrial uses. In one study, 
K. oxytoca mutant strain deficient in ethanol synthesis, a 
major byproduct, was successfully constructed by replac-
ing the aldA gene (encoding aldehyde dehydrogenase) with 
a tetracycline resistance cassette. The mutant strain pro-
duced 130 g/L of 2,3-BD with yield and productivity of 
0.48 g/g·glucose and 1.63 g/L/h, respectively, by fed-batch 
fermentation [29]. To reduce the synthesis of lactic acid, 
which is another major byproduct, deletion of the ldhA gene 
in a K. oxytoca strain was carried out and produced 115 g/L 
of 2,3-BD with yield and productivity of 0.41 g/g·glucose 
and 2.27 g/L/h, respectively [30]. In another study, the pflB 
gene (encoding pyruvate–formate lyase) was additionally 
deleted in the ldh deleted mutant based on in silico simula-
tion to further enhance 2,3-BD production [31]. As a result, 
production yield was increased to 0.45 g/g·glucose with a 
similar titer of 113 g/L, suggesting that in silico simulation is 
a useful tool for accelerating strain development when target 
gene selection is difficult due to unknown metabolic path-
ways. Combining metabolic engineering-based deletion of 
adhE, pta-ackA, and ldhA genes and metabolic evolution can 
also improve strain performance. Adaptive evolution was 
carried out by transferring cultures serially more than 70 
times in glucose-containing medium to screen for efficient 
glucose-utilizing strains since metabolically engineered 
strains exhibit lower growth rates. Adaptive evolution is an 
effective alternative to metabolic engineering which may be 
difficult to perform in some cases. The combination of meta-
bolic engineering and adaptive evolution strategies made 
it possible to produce 117 g/L of 2,3-BD with yield and 
productivity of 0.49 g/g·glucose and 1.20 g/L/h by fed-batch 
fermentation [32]. To improve the production of optically 

pure 2,3-BD in K. oxytoca, Paenibacillus polymyxa-derived 
bdh gene (encoding 2R,3R-BD dehydrogenase) was overex-
pressed in budC (encoding 2R,3S-BD dehydrogenase), ldhA, 
and pflB-deleted K. oxytoca strain, resulting in 106.7 g/L of 
(2R,3R)-BD [(2R,3S)-BD, 9.3 g/L], with yield of 0.40 g/g 
and productivity of 3.1 g/L/h [28].

Enterobacter is also an opportunistic pathogen with a 
high 2,3-BD production potential [6]. Lactic acid is a major 
byproduct of fermentation by this species. In a previous 
study, deletion of the ldhA gene in E. aerogenes with opti-
mization of both medium and aeration rate made it possible 
to produce 2,3-BD up to 118 g/L after 54 h of fed-batch 
fermentation [33]. To improve the optical purity, B. pumi-
lus bdh gene was overexpressed with deletion of endoge-
nous bdh in E. cloacae and pathways for the synthesis of 
major byproducts were blocked via deletion of ldh and frd 
(encoding fumarate reductase) genes. This engineered strain 
produced 152 g/L of optically pure (2R,3R)-BD [34]. This 
result may be the highest performance reported in studies 
that have focused on selectivity improvement. Selectivity 
is dependent on the strain employed as described above. 
Therefore, it is important to select a strain with a simple 
metabolic pathway, rather than multiple and/or non-specific 
dehydrogenases, to obtain optically pure 2,3-BD.

Lastly, Serratia is a representative microorganism belong-
ing to family Enterobacteriaceae that can produce 2,3-BD. 
The metabolic pathway for the synthesis of 2,3-BD in S. 
marcescens has been recently characterized [35]. In previous 
reports, random mutagenesis of S. marcescens H30 which 
is not a metabolically engineered one has achieved 2,3-BD 
concentrations of 139 g/L and also exhibited the highest 
productivity at 3.49 g/L/h [36]. Although random muta-
tion strain enhanced its performance, additional metabolic 
engineering further improved its performance. Because the 
2,3-BD production pathway of S. marcescens is regulated 
by the swrR gene coding for serrawettin W1 synthase, dele-
tion of the swrW gene in the same strain was performed to 
reduce the generation of foam and 152 g/L of 2,3-BD was 
produced with yield and productivity of 0.41 g/g·sucrose and 
2.67 g/L/h [37].

These aforementioned studies have nicely demonstrated 
the value and potential of Klebsiella, Enterobacter, and 
Serratia as industrial strains. In summary, Gram-negative 
2,3-BD-producing bacteria generally belonging to family 
Enterobacteriaceae can produce 2,3-BD effectively. In addi-
tion, their performance can be further improved via tech-
niques such as metabolic engineering, in silico simulation, 
and evolutionary engineering.

Gram‑positive bacteria

Besides Gram-negative bacteria belonging to family 
Enterobacteriaceae, Gram-positive bacteria belonging to 
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Bacillus and Paenibacillus are also capable of producing 
2,3-BD. They are recognized as promising hosts for indus-
trial fermentation due to their safe characteristics. Recent 
reports have suggested that their production performances 
are comparable to those of Klebsiella species, although 
they face challenges such as process efficiency and require-
ment of rich-medium. Several strains including B. licheni-
formis, B. amlyloliquefaciens, and P. polymyxa have shown 
good performance. Thus, they are expected to be promis-
ing industrial producers. A newly isolated B. licheniformis 
strain 10-1-A could thermo-stably produce 115.7 g/L of 
2,3-BD with high productivity and yield of 2.4 g/L/h and 
0.47 g/g·glucose [38]. The main advantages of B. licheni-
formis are: (1) it is classified as a GRAS strain and (2) 
it can be grown at relatively high temperature of 50℃ 
which can reduce the risk of bacterial contamination. In 
another study, fed-batch fermentation of B. licheniformis 
DSM 8785 achieved maximum 2,3-BD concentration of 
144.7 g/L with a productivity of 1.14 g/L/h by optimiz-
ing initial glucose concentration with stepwise feeding of 
nutrients [39]. Despite a relatively low productivity, the 
production titer appears to be similar to Gram-negative 
2,3-BD producers.

Metabolic simplicity of 2,3-BD in Bacillus is another 
advantage because optically pure 2,3-BD can be produced by 
Bacillus strains via simple modifications. Cross-functional 
activities of enzymes for 2,3-BD production in Bacillus 
might not be complex as found in other bacteria. Most B. 
licheniformis and B. subtilis strains produce (2R,3R)-BD 
and (2R,3S)-BD at a ratio close to 1:1 [38, 40]. However, 
when the budC gene was deleted, optically pure (2R,3R)-BD 
isomer can be produced in B. licheniformis with a titer of 
123.7 g/L. When the gdh gene was deleted, optically pure 
(2R,3S)-BD isomer can be produced with a titer of 90.1 g/L 
in B. licheniformis [17]. Also, B. subtilis can be engineered 
for production of (2R,3S)-BD stereoisomer. Systematic 
engineering strategies including reduction of byproducts, 
inactivation of (2R,3R)-BD dehydrogenase, incremental 
improvement of NADH availability, and overexpression of 
(2R,3S)-BD production enzymes made it possible to achieve 
103.7 g/L of optically pure (2R,3S)-BD with a yield of 
0.487 g/g·glucose [40]. These studies suggest that deletion 
of a single gene encoding 2,3-BD dehydrogenase in Bacillus 
is sufficient for the synthesis of 2,3-BD with a selectivity 
higher than 99%.

Paenibacillus polymyxa strain can naturally produce 
(2R,3R)-BD with high selectivity. It has been reported that 
111 g/L of (2R,3R)-BD with a selectivity of 98% can be 
achieved in high nutritional medium (60 g/L of yeast extract) 
using wild-type strain of P. polymyxa [41]. Although high 
nutritional requirement is a disadvantage, stereospecific 
production of (2R,3R)-BD without genetic modification of 
P. polymyxa is a great advantage for industrial application.

Bacillus amyloliquefaciens is also regarded as a safe 
microorganism and a promising candidate for industrial pro-
duction. Yang et al. [42] have newly isolated a GRAS strain 
of B. amyloliquefaciens designated as B10-127 that can pro-
duce 92.3 g/L of 2,3-BD with a productivity of 0.96 g/L/h. 
To further improve the strain’s performance, NADH avail-
ability and termination step of 2,3-BD synthesis were 
reinforced by overexpressing glyceraldehyde-3-phosphate 
dehydrogenase and 2,3-butanediol dehydrogenase, thereby 
increasing the production of 2,3-BD up to 132.9 g/L after 
45 h of fermentation [43].

While the performance of Bacillus has been tremendously 
improved as described above, the need for high nutrient lev-
els during cultivation and challenges associated with genetic 
engineering due to limited tools available should be resolved 
to facilitate the development of economically and industri-
ally useful strains in the future.

Other microorganisms

Several efforts have also been made to produce 2,3-BD 
in various non-native producers [21, 22]. S. cerevisiae is 
a model eukaryote with a clear genetic background. It is 
known as an efficient producer of ethanol. Recently, it has 
attracted attention as a platform strain for the production of 
2,3-BD. The production of 2,3-BD in S. cerevisiae can be 
improved stepwise by eliminating byproduct formation and 
redox rebalancing. In one study, pdc1 and pdc5 (encoding 
pyruvate decarboxylases) deletion mutants have been pre-
pared to make glucose tolerant strain (MTH1 A81P point 
mutation). Then, 2,3-BD biosynthetic genes alsS and alsD 
genes (encoding α-acetolactate synthase and α-acetolactate 
decarboxylase, respectively) from B. subtilis, and endog-
enous bdh1 gene were overexpressed, resulting in the pro-
duction of 96.2 g/L of (2R,3R)-BD with low yield and pro-
ductivity of 0.28 g/g and 0.39 g/L/h [44]. The synthesis of 
optically pure (2R,3R)-BD has been facilitated by the char-
acterization of endogenous bdh1 gene of S. cerevisiae [45]. 
Another study has found that redox rebalancing by overex-
pression of NADH oxidase (NoxE) following elimination 
of ethanol and glycerol biosynthetic pathways is effective 
for enhancing the productivity of 2,3-BD up to 1.43 g/L/h 
[46]. Thus, redox equilibrium mediated by NoxE overex-
pression is a key strategy to improve productivity by serving 
as an alternative to glycerol pathway that regulates NADH 
imbalance.

Another heterologous host L. lactis is an excellent strain 
for transforming dairy waste into value-added chemicals. 
In one study, L. lactis was engineered for the production of 
dual isomers (2R,3S)-BD and (2R,3R)-BD [22]. First all 
major byproduct pathways were eliminated by deleting genes 
encoding three lactate dehydrogenase (LDH) homologs, 
phosphotransacetylase (PTA), alcohol dehydrogenase 
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(ADHE), and native butanediol dehydrogenases (BudAB). 
Subsequently, codon-optimized versions of butanediol dehy-
drogenase from E. cloace and alcohol dehydrogenase from 
A. xylosooxidans were introduced into the engineered strain 
to generate 51 g/L of (2R,3S)-BD and 32 g/L of (2R,3R)-
BD from whey waste. This study demonstrates that optically 
pure synthesis of each isomer in L. lactis depends on the 
specific enzyme introduced.

Escherichia coli, a model strain for bacterial research, has 
also been utilized for 2,3-BD production by overexpressing 
a 2,3-BD gene cluster with its operon originating from E. 
cloacae subsp. dissolvens Another heterologous host SDM 
strain [47]. As a result, 73.8 g/L of optically pure (2R,3S)-
BD was produced by fed-batch fermentation [47].

Based on these reports, it can be concluded that the pro-
duction of 2,3-BD is possible through non-native and native 
producers. The low toxicity of 2,3-BD and the high activity 
of introduced enzymes in heterologous hosts can facilitate 
the production of 2,3-BD in various hosts. Because the effect 
of endogenous genes encoding 2,3-BD metabolism-related 
enzymes on non-native producers is minimized, synthesis 
of optically pure 2,3-BD with high selectivity may be an 
advantage.

Recently, cyanobacteria have also been selected as hosts 
for the production of 2,3-BD from abundant atmospheric 
carbon dioxide by way of photosynthesis. Nozzi et al. [48] 
have improved 2,3-BD production by cyanobacteria such as 
Synechococcus elongatus 7002 up to 1.6 g/L after 16 days 
of fermentation at a rate of 100 mg/L/day by systematic 
screening of different variables including: operon arrange-
ment, copy number, light strength, inducer concentration, 
cell density at the time of induction, and nutrient concentra-
tion. Despite a low yield of 2,3-BD conversion, this study 
presents the possibility toward a sustainable process which 
does not rely on traditional carbon sources [49].

Available feedstocks

Diverse raw materials have been evaluated based on their 
cost and sustainability for industrial production of 2,3-BD 
(Fig. 3). Because raw material cost constitutes a large pro-
portion of the total production cost, cheap and abundant bio-
masses have been investigated. Due to the resistance associ-
ated with the use of food resources in industrial production 
of biochemicals, an ideal solution would be utilizing waste 
products and excess biomass. Among non-cellulosic bio-
masses, relatively inexpensive and abundant substrates used 
include whey, sugarcane, cassava, Jerusalem artichoke, and 
crude glycerol [50–53]. Lignocellulosic biomass is also an 
attractive option for biorefinery because it is an abundant 
resource all around the world. In addition, it is available 
sustainably with a low cost.

Non‑lignocellulosic biomass

Molasses, a byproduct of sugarcane industries, contains 
diverse nutrients including sucrose, minerals, organic com-
pounds, and vitamins. Sugarcane molasses has been recog-
nized as a suitable carbon source for fermentation due to its 
low price and rich sugar composition [54]. However, mixed 
sugars in molasses are used less efficiently than pure sucrose 
because substrate utilization pathways are subjected to car-
bon catabolite repression (CCR) [49]. Therefore, engineer-
ing of the regulatory system is needed to overcome this chal-
lenge. For example, high concentration of 2,3-BD exceeding 
98 g/L has been obtained in a fed-batch fermentation using 
sugarcane molasses as a primary carbon source in sucrose 
regulator (ScrR) encoding gene-deleted E. aerogenes strain 
[55]. Sugarcane-derived raw sugar (sucrose) containing a 
low level of impurities has also been validated as a prom-
ising carbon source for efficient production of 2,3-BD in 

Fig. 3   Example of the entire process including feedstock preparation, 
strain development and fermentation, and separation and purification 
steps for the production of chirally pure 2,3-BD from raw materials
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diverse microorganisms, although it is more expensive than 
molasses [56, 57].

Cassava is a relatively cheap and abundant starch crop 
widely cultivated in tropical and subtropical areas. It is avail-
able throughout the year due to easy planting and harvesting 
methods. In addition, it lacks competition in terms of price 
because cassava starch does not have substantial applications 
in food industry compared to corn starch [58]. It is known as 
one of the most efficient carbohydrate production crops since 
roots of cassava have high starch contents. It can be utilized 
in a number of diverse forms, including cassava starch, cas-
sava powder, cassava baggasse, cassava chips, and fresh cas-
sava roots. In one study, a newly isolated E. cloace strain was 
used for 2,3-BD production using cassava powder as carbon 
source [53]. Under optimal conditions, 93.9 g/L of 2,3-BD 
was produced after 47 h of simultaneous saccharification and 
fermentation (SSF) [53].

Jerusalem artichoke is an inexpensive and abundant non-
grain raw material. Fresh Jerusalem artichoke tubers contain 
about 20% carbohydrates, of which inulin accounts for more 
than 70% [59]. Inulin is composed of multiple fructose units 
terminated by a glucose unit. It can be hydrolyzed by inuli-
nase to fructose and glucose. Production of 2,3-BD by K. 
pneumoniae from Jerusalem artichoke tubers was success-
fully carried out, with a production of 91.6 g/L after 40 h of 
fed-batch SSF process [60]. Inulin hydrolysate has also been 
used for 2,3-BD production by thermophilic B. licheniformis 
strain, with a titer of 103 g/L and a high productivity of 
3.4 g/L/h through a fed-batch SSF process [61]. To directly 
use Jerusalem artichoke tuber for 2,3-BD production without 
supplementation with inulinase, a P. polymyxa strain has 
been utilized as a host because this strain naturally secretes 
inulinase. By conducting one-step batch fermentation using 
raw inulin as a substrate, 36.92 g/L of (2R,3R)-BD with 
purity of 98% was produced [51].

Whey is a byproduct of the dairy industry. It contains 
about 5% lactose and 1% protein. Due to its ready avail-
ability in many countries, utilization of whey for 2,3-BD 
fermentation has been examined by many groups. However, 
concentrations of available sugars in whey are low. As a 
result, fermentation productivity using whey as a substrate 
is rather low compared to that with conventional substrates 
such as starch and sugar-based sources. Thus, cell immobi-
lization technology has been developed to overcome such 
problem of low productivity [62]. However, it is still neces-
sary to improve process efficiencies for industrial uses.

Glycerol is generated as a byproduct from ethanol fer-
mentation, fat saponification, and biodiesel production. It is 
also a promising substrate for industrial production of 2,3-
BD [63]. Of particular note, a growing surplus of glycerol 
in the world market is expected in the near future because 
the demand for biodiesel is growing and total weight of bio-
diesel-derived crude glycerol is equivalent to almost 10% of 

biodiesel production [64]. Biodiesel-derived crude glycerol 
has been used as the sole carbon source of the metabolically 
engineered K. oxytoca M1, where pduC (encoding glycerol 
dehydratase subunit) and ldhA genes are deleted to reduce 
the formation of byproducts such as 1,3-propanediol and lac-
tate [65]. This double mutant strain could produce 131.5 g/L 
of 2,3-BD from crude glycerol with yield and productivity 
of 0.44 g/g·crude glycerol and 0.84 g/L/h, respectively, in 
fed-batch fermentation.

Lignocellulosic biomass

Lignocellulose is composed of carbohydrate polymers (cel-
lulose and hemicellulose) containing different sugar mono-
mers that are tightly bound to aromatic polymer (lignin). 
This compact structure makes it hard to directly use ligno-
cellulosic biomass. Preprocessing under conditions of high 
temperatures with acid or ammonia solutions for hydrolysis 
of biomass to release free sugars is normally needed before 
using lignocellulosic biomass. Usually, acidic hydrolysis 
generates several toxic derivatives such as furfural and 
5-hydroxymethylfurfural that can inhibit the growth of 
microorganisms and impede production performance [66]. 
Despite its low biosynthetic performance, lignocellulosic 
biomass is inexpensive and abundant without competing 
with the food industry, making it an attractive feedstock for 
biorefineries in the future. To produce 2,3-BD, various lig-
nocellulosic biomasses from agricultural residues and wood 
such as corn cob, corn stover, and apple pomace have been 
utilized and it has been confirmed that industrial scale pro-
duction of 2,3-BD using lignocellulosic biomasses is fea-
sible [67, 68]. Because hydrolysis of lignocellulose yields 
mixtures of sugars containing predominantly glucose and 
xylose [69], strain engineering is normally required for effi-
cient utilization and conversion of these sugars into 2,3-BD.

Corn stover hydrolysate has been investigated as a highly 
promising industrial substrate. Several demonstration stud-
ies have been carried out. In one study, carbon catabolite 
repression is eliminated by simultaneous deletion of glu-
cose transporter-encoding gene ptsG and overexpression of 
a galactose permease encoding gene galP in E. cloace strain 
SDM to achieve simultaneous utilization of glucose and 
xylose. With additional engineering strategies for reducing 
byproduct formation and enhancing specific production of 
(2R,3R)-BD, 119.4 g/L of (2R,3R)-BD was produced using 
corn stover as a raw material after 51 h of fermentation, 
with a productivity of 2.3 g/L/h [67]. As another example, a 
newly isolated B. licheniformis X10 strain possessing high 
tolerance to fermentation inhibitors such as furfural, vanillin, 
formic acid, and acetic acid was used for fed-batch fermenta-
tion and 74 g/L of 2,3-BD was produced from corn stover 
hydrolysate with a productivity of 2.1 g/L/h [70].
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Corncob molasses as a waste product derived from xylitol 
production is also one of the candidates for industrial pro-
duction of 2,3-BD. For example, 78.9 g/L of 2,3-BD was 
produced by K. pneumoniae strain after 61 h of fed-batch 
fermentation [68]. Apple pomace is an abundant processing 
waste which remains after juice pressing. It has increasingly 
been used in biotechnology applications. Currently, apple 
pomace hydrolysate is used for microbial 2,3-BD produc-
tion. For example, 113 g/L of 2,3-BD was produced using 
B. licheniformis NCIMB 8059 strain [67].

Other low cost and abundant biomasses such as empty 
palm fruit bunches and marine algal biomass have also 
been investigated as raw materials for 2,3-BD production 
[71, 72]. Available biomass could be enhanced depending 
on the production host employed by testing and evaluating 
various non-lignocellulosic types of biomass in the future.

Fermentation and recovery processes

Optimization of fermentation and recovery processes is 
essential for maximizing the performance of microorgan-
isms and producing high purity products. Since enzymes 
catalyzing the 2,3-BD production pathway are significantly 
affected by oxygen, dissolved oxygen (DO) level that regu-
lates fed-batch fermentation has been intensively studied for 
mass production of 2,3-BD. For recovery, various methods 
have been developed. Optimization studies are still under-
way to reduce production cost because it has been estimated 
that recovery from fermentation accounts for more than 
50% of total cost [73]. As a pre-commercialization study, 
GS Caltex have developed whole fermentation and recovery 
processes for 2,3-BD production. Construction of a demon-
stration plant with an annual capacity of 300 tons is under-
way. Because it is designed to produce 2,3-BD for specialty 
chemical applications such as cosmetics, economic feasibil-
ity for commercialization of 2,3-BD is expected.

Fermentation

Fermentation efficiency of 2,3-BD production is affected 
by diverse parameters such as aeration, agitation, pH, tem-
perature, amount of inoculum, and substrate concentration. 
Culture protocols classified as batch, fed-batch, continuous, 
and cell recycling with bioreactor configuration are also very 
important factors in fermentation operation [15].

It is generally agreed that control of oxygen supply is the 
most critical factor for efficient production of 2,3-BD. In ear-
lier work, a trade-off relationship between biomass and 2,3-
BD production depending on supplied oxygen level has been 
found [74]. Low oxygen levels are necessary to achieve high 
yield production of 2,3-BD. However, overall productivity of 
2,3-BD is reduced because cell mass formation is decreased 

under low oxygen level [75]. Also, it is necessary to set an 
optimized oxygen level to enhance fermentation perfor-
mance depending on strains employed because inactivation 
of α-acetolactate synthase occurs irreversibly under aerobic 
conditions [76]. To determine a proper oxygen supply regi-
men, parameters such as oxygen transfer rate (OTR), oxygen 
transfer coefficient (KLa), and respiratory quotient (RQ) have 
been utilized as determining factors to find optimal aerobic 
conditions in conventional studies [77–79]. However, these 
parameters are not easy to control under real fermentation 
conditions. Thus, finding more controllable parameters for 
large-scale fermentation is still needed. In this context, agita-
tion speed-control based strategies have been investigated to 
optimize the fermentation condition for efficient production 
of 2,3-BD. In a two-stage agitation speed control strategy for 
K. oxytoca, agitation speed was set at 300 rpm to obtain high 
cell growth during the first 15 h of growth phase and agita-
tion speed was subsequently reduced to 200 rpm to maxi-
mize 2,3-BD production [80]. In another study, the agitation 
speed was changed from 450 to 350 rpm when the remaining 
acetoin concentration was higher than 10 g/L to efficiently 
convert acetoin into 2,3-BD in K. oxytoca. These conditions 
made it possible to achieve about 113 g/L of 2,3-BD with 
yield and productivity of 0.45 g/g·glucose and 2.1 g/L/h, 
respectively [31]. Regarding final product accumulation, it 
was found that optical purity of 2,3-BD was also correlated 
with oxygen supply. When O2 availability is increased dur-
ing fermentation, the ratio of (2R,3S)-BD was increased 
with concomitant reduction in optical purity of (2R,3R)-BD 
from 98 to 93% [81].

Control of culture pH has been extensively investigated 
as an important variable to enhance production of 2,3-BD 
during fermentation. Acidic conditions are generally feasible 
for the production of alcoholic compounds. From an evolu-
tionary point of view, activation of 2,3-BD production might 
be triggered as a survival adaptation under acidic conditions 
due to the accumulation of organic acids because 2,3-BD is 
a neutral compound [82]. In this context, it has been found 
that acetic acid can function as an inducer for activation of 
the 2,3-BD production pathway and that 2,3-BD production 
by K. pneumoniae was increased more than 2-fold when 
acetic acid was supplemented at less than 1% [83]. Although 
low pH and supplementation of acetic acid to some extent 
were effective for 2,3-BD production, finding optimized pH 
conditions for each host strain is required because low pH 
is generally deleterious to cell growth. According to prior 
experimental results, optimum pH values for 2,3-BD pro-
duction by K. oxytoca, K. pneumoniae, and E. aerogenes 
are in the range of 5–6 [13]. In contrast, Bacillus strains can 
produce much higher amounts of 2,3-BD at much higher pH 
than Enterobacteriaceae. A pH from 6.3 to 6.8 was optimal 
for P. polymyxa [84]. B. licheniformis could efficiently pro-
duce 2,3-BD at pH 6–7 [85]. At fixed pH level, additional 
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enhancement of 2,3-BD production was achieved by apply-
ing a forced pH fluctuation method to trigger accumulation 
of 2,3-BD. By consecutively raising the pH levels at exact 
time intervals, more efficient conversion from glycerol to 
2,3-BD was realized [86].

Temperature is also one important parameter for indus-
trial fermentation in terms of cell growth, strain perfor-
mance, and operational cost. Most 2,3-BD-producing bac-
teria have optimal growth temperatures from 30 to 37 °C. 
However, these moderate temperature conditions present 
some problems for industrial fermentation processes due 
to ease of contamination and increased cooling cost [87]. 
In this context, thermophilic 2,3-BD-producing bacteria B. 
licheniformis has great potential for industrial production 
because this strain is GRAS classified and optimally grows 
at 50 to 60 °C [38, 39].

Generally, the inoculum size used in 2,3-BD production 
affects the productivity, but not its yield, based on carbon 
source consumed [10, 88]. However, a few studies have 
reported that an increase in inoculum size has a positive 
effect on the yield [85]. Although inoculum size has an 
insignificant effect on overall performance, it is important 
to set optimal inoculum size because increased inoculum 
size may positively affect the productivity and yield of 2,3-
BD [89]. To optimize fermentation conditions, substrate 
concentration may also be considered. Usually 5–10% of 
substrate is used for 2,3-BD fermentation, although rela-
tively low concentration has also been used for industrial 
scale fermentation [90]. Basically, the production of 2,3-BD 
may be reduced at low substrate concentration during the 
growth phase, while production inhibition generally occurs 
at high substrate concentrations. Therefore, it is important to 
maintain adequate substrate concentrations below toxic level 
in the reactor. Also, operation mode and strain-dependent 
optimization of substrate concentration should always be 
implemented to enhance the production of 2,3-BD.

Besides operation parameters, fermentation modes 
including batch, fed-batch, continuous, cell recycle, and 
immobilized cell systems have also been tested to determine 
the most effective mode for industrial production of 2,3-BD. 
Batch mode is often favored due to the feasibility of recovery 
which requires no residual sugar in the fermentation broth. 
Although traditionally developed systems such as continuous 
culture, cell recycle, and immobilized cell systems have been 
demonstrated to have higher performance, especially for ele-
vated productivity, they have limitations in terms of process 
stability, economic feasibility, and contamination problems 
[91–93]. Based on numerous studies, it is generally agreed 
that the most effective operation mode for 2,3-BD, which 
is less toxic than many other chemicals for industrial pro-
duction, is fed-batch fermentation with intermittent feeding 
of substrate when residual nutrients are depleted. Industrial 
scale production of 2,3-BD has been successfully achieved 

via fed-batch fermentation using diverse microorganisms 
including those belonging to genera Klebsiella, Enterobac-
ter, Paenibacillus, Serratia, and Bacillus (Table 1).

Separation and purification

Purification of 2,3-BD from fermentation broth contain-
ing dissolved and solid components is difficult due to its 
high boiling point and high affinity to water. For economic 
production of 2,3-BD, low cost and efficient separation and 
purification steps need to be set up. To date, diverse separa-
tion methods including unit processes such as steam strip-
ping [94], solvent extraction [95], reverse osmosis [96], and 
pervaporation [97], and combined processes such as extrac-
tion and pervaporation [95], extraction and salting out [98], 
and alcohol precipitation and vacuum distillation [99], have 
been investigated to reduce energy consumption and increase 
product recovery. However, the scale-up of integrated pro-
cess to produce high purity 2,3-BD has not been attempted 
due to economic challenges and the lack of 2,3-BD mar-
ket. Steam stripping demands a large amount of energy. In 
addition, the high boiling point of 2,3-BD makes it hard to 
use conventional distillation for separation. Extraction and 
salting out mediated methods have limitations in terms of 
low yields and high demand for extractants or salts for sepa-
ration. Large volumes of wastewater generated from unit 
processes also need to be considered because wastewater 
treatment costs are not negligible. Above all, a slow tech-
nology development is inevitable because 2,3-BD-based 
market is yet to be established. Therefore, improvements in 
separation and purification processes are required to increase 
production yields and purity based on the product-related 
market needs. Recently, GS Caltex, a Korean petrochemi-
cal company, has developed separation and purification 
processes for 2,3-BD from fermentation broth, achieving 
over 99.5% purity. Construction of a demo-scale plant is 
currently underway. The entire process can be divided into 
two stages. The first stage involves removal of insoluble par-
ticles from fermentation broth, using centrifugation and/or a 
filtration process to remove cells and small molecules such 
as proteins. The second stage is designed for the removal 
of soluble impurities using electrodialysis, ion exchange, 
evaporation, distillation process, and so on (Fig. 3). Elec-
trodialysis is used to remove inorganic salts such as Na+, 
K+, Ca+, and Mg+. Filtrate depleted of inorganic salts is 
then passed through an ion exchange column to remove 
organic acids. The treated liquid devoid of impurities is 
subjected to evaporation and distillation to remove water 
and increase the purity of 2,3-BD [100]. In addition to these 
steps, decolorization and deodorization are added depending 
on the application that the product is destined for. Due to 
the nature of fermentation broth, the product has a slightly 
yellow-like color and fermentation odor after separation and 
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purification. GS Caltex has also developed decolorization 
and deodorization processes to facilitate the production of 
colorless and odorless high-quality products via distilla-
tion after adding neutralizing agent and activated carbon to 
fully remove remained impurities [101]. The final product 
begins to be used in specialty products such as cosmetics 
currently. Although the cost of separation and purification 
still accounts for a large proportion of production cost, GS 
Caltex has continuously upgraded process efficiency and 
product quality. The technology developed by GS Caltex will 
be further validated before its implementation in commercial 
plants based on economics and marketability.

Potential applications

High price strategies are important to commercialize bio-
chemicals. However, market entry has been difficult because 
conventionally produced biochemicals compete with petro-
chemicals for similar industrial purposes. In this regard, it is 
very important to identify the demand for high value-added 
areas that are differentiated from petrochemical products. 
In this regard, 2,3-BD is a promising industrial chemical 
with many potential applications (Fig. 4). It could be widely 
used in chemical, cosmetics, agricultural, pharmaceutical, 
and food industries. Conventionally, potential uses of 2,3-
BD have mainly focused on chemical and fuel industries as 
a bulk production chemical. This scenario has delayed its 
commercialization using biological production processes, 
for economic reasons. Recently, however, emerging appli-
cation areas for using this compound include cosmetics, 

Direct uses

Derivatives / polymers

Dehydration
Methyl ethyl ketone, Butadiene

Dehydrogenation
Acetoin, Diacetyl

Ketalization
Acetone 2,3-butanediol ketal

Esterification
2,3-Butanediol diester

Polymerization
Polyols Polyurethane

Polymerization

Agriculture 
• Pest control agent
• Drought resistance
• Plant growth stimulator

Cosmetics 
• Antiseptic
• Humectant

Phamaceutical and food
• Innate immunity enhancer
• Anti-inflammation 
• Biomarker

• Antifreeze

D-(-)-2,3-BD, Levo, (2R,3R)

L-(+)-2,3-BD, Dextro, (2S,3S)

Meso-2,3-BD, (2R,3S),
Optically inactive

(2R,3S)

• Softening agents
• Plasticizers 
• Fumigants 
• Printing inks 

Other applications

(2R,3R)

(2R,3R) / (2S,3S)

Fig. 4   Potential application areas of 2,3-BD, including chemical, cosmetics, agricultural, pharmaceutical, and other industries



1596	 Journal of Industrial Microbiology & Biotechnology (2019) 46:1583–1601

1 3

agricultural, pharmaceutical, and food industries. Thus, 2,3-
BD is attracting attentions again. These opportunities could 
contribute to a rise in value and market expansion of 2,3-BD.

Fuel, bulk chemical, and polymer industries

Industrial interest in 2,3-BD began during World war II 
because it could be converted to 1,3-butadiene via dehydra-
tion using chemical catalysis and then 1,3-butadiene could 
be used for the production of synthetic rubber [15]. While 
1,3-butadiene is generated by 1,2-elimination of a water 
molecule, another dehydration product, methyl ethyl ketone 
(MEK), an effective fuel additive as well as an industrial 
solvent for resins and lacquers, is produced by pinacol rear-
rangement. After combination with MEK and hydrogenation 
reaction, high-quality aviation fuel octane can be produced 
from 2,3-BD [50]. (2R,3R)-BD can be used as antifreeze 
because its freezing point is lower than −30 °C. In addition, 
it can serve as a monomer to synthesize polymer [12]. 2,3-
BD can also be used as a novel chain initiator and extender 
in the manufacture of polyol and polymeric isocyanate that 
are intermediates of polyurethanes [102].

Cosmetics and personal care industries

The cosmetics industry is now demanding cosmetic raw 
materials that are sustainable, eco-friendly, and natural. As 
a representative example, Loreal, the world’s top cosmetics 
company, announced its new sustainability commitment for 
2020 “Sharing beauty with all” in 2013 (The Loreal Sustain-
ability Commitment, 2013). It has created a framework with 
four clear commitments: innovating, producing, living, and 
developing sustainably. Consequently, 2,3-BD is one of the 
raw materials most suitable for mega-trend changes in the 
cosmetics industry. It has great potential as an ingredient of 
both cosmetics and personal care products.

Safety and efficacy are also important for use as a cos-
metic raw material. 2,3-BD is expected to have minimal 
toxicity because it can be found easily in nature. Reliable 
toxicity test result can be found in Sigma-Aldrich’s safety 
data sheets for 2,3-BD and in safety assessment reports 
of alkane diols (Cosmetic ingredient review 2018 Safety 
Assessment of Alkane Diols as Used in Cosmetics), describ-
ing that there are no acute toxicity, skin or eye irritation, or 
skin sensitization, thus supporting the viability of 2,3-BD in 
cosmetics. Regarding safety issues, there are data suggest-
ing that 2,3-BD could be utilized as antiseptic, humectant, 
emollient ingredients in cosmetics. According to a patent 
filed by global cosmetic company Amorepacific [8], com-
positions containing (2R,3S)-BD show antibacterial effects 
as a preservative to improve storage stability of the product 
compared to chemical preservatives such as parabens and 
phenoxyethanol which may potentially cause skin irritation 

as allergens. It has been noted that 2,3-BD could be con-
tained in cream, lotion, powder, essence, pack, hand sani-
tizer, hand wash, body wash, cleansing cream, cleansing 
gel, cleansing foam, cleansing water, soap, and so on [8]. In 
addition, 2,3-BD has already been registered in INCI (Inter-
national Nomenclature of Cosmetic Ingredients), IECIC 
(Inventory of Existing Cosmetic Ingredients in China), and 
others. Therefore, 2,3-BD can be used as a raw material for 
cosmetics. It is expected that it may be used as an alternative 
to 1,3-BD, a chemically derived material used in existing 
products.

Agricultural industries

2,3-BD is also expected to be used for various purposes in 
the agricultural industry. The most important factor to be 
considered before using 2,3-BD as an agricultural product 
is its safety to the environment and people. It is recognized 
to be a safe chemical because it is known to be a constitu-
ent of edible products such as fruits and wines [103]. Also, 
we found that 2,3-BD did not show any phytotoxicity effect 
on agricultural crops such as tomato, cucumber, or pepper 
(un-published data). Moreover, there will be little residual 
toxicity, a problem of chemical pesticides, because 2,3-BD 
is readily biodegradable. The efficacy of 2,3-BD as an active 
ingredient for growth and protection of plant species has also 
been validated. According to previous studies, (2R,3R)-BD 
can trigger substantial growth promotion and induced sys-
tematic resistance (ISR)-mediated protection effects against 
bacterial pathogen Erwinia carotovora in Arabidopsis [104, 
105]. In addition, it has been confirmed that (2R,3R)-BD at 
a does range of 1 mg to 100 pg/plant in tobacco can induce 
its systematic resistance to Erwinia carotovora [106]. 2,3-
BD has been reported to be effective against fungal diseases 
as well as bacterial diseases. Application of (2R,3R)-BD to 
the soil can reduce diseased leaf area of Agrostis stolonifera 
by 20–40% against fungal pathogens, Microdochium nivale, 
Rhizoctonia solani or Sclerotinia homoeocarpa compared 
to the water control. In addition, it can reduce the number 
of lesions per leaf area of Nicotiana benthamiana caused 
by Colletotrichum orbiculare by 77% [7, 11]. One of the 
most intriguing recent findings is that 2,3-BD is effective 
in controlling viral diseases. Currently, there is no effective 
anti-viral agent in the market. Recently, it has been reported 
that treatment with 2,3-BD can significantly reduce the 
incidence of naturally occurring viruses such as Cucumber 
mosaic virus and Tobacco mosaic virus compared to water 
control, thus increasing the yield of mature pepper fruits 
[107]. 2,3-BD has been reported to be effective for reducing 
diverse abiotic stresses. Induced drought tolerance of Arabi-
dopsis mediated by leaf stomatal closure was detected when 
plants were treated with (2R,3R)-BD [9]. This phenomenon 
has been confirmed to be due to the induction of H2O2 and 
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NO accumulation in guard cells [108], suggesting that 2,3-
BD could be utilized as a resistant material to prevent or 
ameliorate drought disaster. Based on these multi-functional 
advantages of 2,3-BD, it is expected that agricultural prod-
ucts containing 2,3-BD as an active ingredient could be 
developed with a strong impact in the pesticide market soon.

Other applications

The pharmaceutical industry may have greater interest in 
this compound soon as it has been reported that 2,3-BD can 
trigger enhanced innate immunity and result in clearance of 
damaged liver cells by activating natural killer cell activity 
[109]. It has been shown that 2,3-BD has anti-inflammatory 
effects according to an earlier report. It can ameliorate endo-
toxin-induced acute lung injury in rats [110]. These find-
ings imply that 2,3-BD could potentially be used for human 
therapeutics. Furthermore, it may have use as a food additive 
or a health supplement based on its efficacy as an immunity 
enhancer because 2,3-BD is natural substance that exists in 
naturally prepared or occurring products such as wine, beer, 
fermented foods, soils, and plants [104]. In addition, it is an 
eco-friendly substance that can be produced by microbial 
fermentation.

Conclusions

Bio-based chemical 2,3-BD is one of the compounds previ-
ously restricted to industrial production. Despite many ben-
efits of 2,3-BD, its use has been limited due to low competi-
tiveness of biological process for 2,3-BD production, high 
price of chemically synthesized 2,3-BD, and poor devel-
opment of product applications. To facilitate technological 
development of biological processes, metabolic engineering 
studies have been extensively employed to overcome host 
limitations. A number of inexpensive and abundant carbon 
sources have been evaluated. In addition, scale-up has been 
realized based on the process development for fermenta-
tion, separation and purification. For example, GS Caltex, 
a Korean company, is planning to launch a demonstration 
plant with an annual capacity of 300 tons in 2019 based on 
a 10-year study of bio-based 2,3-BD production. In fact, 
chemically synthesized (2R,3S)-BD sold by Sigma-Aldrich 
is priced at more than $25,000/kg, a high price unsuitable 
for commercial use. Although chemically synthesized 2,3-
BD is used only in trace amounts of reagents currently, we 
are trying to apply it in a wide range of products used in 
real life because biological processes can produce optically 
pure 2,3-BD at a low cost. It will soon be possible to identify 
2,3-BD in various cosmetic products, further expanding its 
application in agriculture, pharmaceutical, and food indus-
tries in the near future. To this end, a continuous market 

analysis is needed because 2,3-BD is not currently available 
commercially. Despite many improvements to date, efforts to 
improve business and economic efficiency based on further 
technological and market development to address customer 
needs are continuously needed. Successful market entry 
of 2,3-BD as a biochemical product may represent a novel 
standard in biochemical product research.
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