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Abstract
Triacetic acid lactone (TAL) (4-hydroxy-6-methyl-2-pyrone) can be upgraded into a variety of higher-value products, and 
has potential to be developed into a renewable platform chemical through metabolic engineering. We previously developed 
an endogenous TAL sensor based on the regulatory protein AraC, and applied it to screen 2-pyrone synthase (2-PS) variant 
libraries in E. coli, resulting in the identification of variants conferring up to 20-fold improved TAL production in liquid 
culture. In this study, the sensor-reporter system was further optimized and used to further improve TAL production from 
recombinant E. coli, this time by screening a genomic overexpression library. We identified new and unpredictable gene 
targets (betT, ompN, and pykA), whose plasmid-based expression improved TAL yield (mg/L/OD595) up to 49% over the 
control strain. This work further demonstrates the utility of customized transcription factors as molecular reporters in high-
throughput engineering of biocatalytic strains.
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Introduction

Metabolic engineering strategies can be broadly categorized 
as “rational” or “combinatorial” [26], though nowadays in 
practice experimental approaches are often a combination 
of these. One form of combinatorial metabolic engineer-
ing involves the search for and identification of novel gene 
targets whose altered expression confers enhanced produc-
tion of a desired metabolite. A common bottleneck to the 
identification of rare mutants showing enhanced biochemical 
production, particularly when the biosynthesis of interest is 
not coupled to cell growth, is the availability of a suitable, 
high-throughput screen or selection system [5]. Custom-
ized, endogenous molecular reporting schemes in the form 

of transcription factors and other gene regulation systems 
have thus become the focus of much research [11, 19, 25].

TAL is a natural product and a potential biorenewable 
platform chemical, capable of being converted to a variety 
of commercially valuable intermediates and end products, 
including phloroglucinol (an important intermediate) [9], 
acetylacetone (a fuel additive), and sorbic acid (a food pre-
servative) [3]. TAL can be chemically synthesized from 
dehydroacetic acid [22] or ethyl acetoacetate [8]. Sustainable 
microbial biosynthesis of TAL has promise to replace chem-
ical synthesis, and has been pursued by several groups [2, 
10, 14, 21, 23, 27, 29]. These efforts have involved the use 
of Escherichia coli, Saccharomyces cerevisiae or Yarrowia 
lipolytica as host, and expression of either 2-pyrone synthase 
(2-PS) or 6-methylsalicylic acid synthase (6-MSAS) for TAL 
production and accumulation in the culture medium.

Our interests in improving TAL production by recom-
binant E. coli expressing 2-PS led to the design of a TAL 
sensor-reporter system based on the E. coli AraC regulatory 
protein. AraC variant “AraC-TAL” contains five amino acid 
substitutions and activates reporter gene expression at pro-
moter PBAD, in response to low-millimolar concentrations of 
TAL [23]. We used this reporter in a high-throughput screen 
to identify variants of 2-PS that enhance TAL production in 
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E. coli. Recently, this same AraC-TAL reporter was used to 
screen a library of transposons randomly inserted through-
out the E. coli genome, to identify knockouts conferring 
enhanced TAL specific titer [10]. As an alternate strategy 
to identify non-obvious gene targets, here we employ the 
AraC-TAL reporter system to screen an E. coli genomic 
overexpression library for enhanced TAL yield. Through 
this strategy we found that plasmid-based expression of betT 
(encoding choline: H+ symporter), ompN (encoding outer 
membrane porin N), and pykA (encoding pyruvate kinase 
II) result in up to 49% increased TAL yield, relative to the 
control strains. These results add to a growing list of genes 
whose controlled expression has potential to improve bio-
synthesis of polyketide natural products.

Results and discussion

Acetyl-CoA and malonyl-CoA are precursors in TAL bio-
synthesis, and many studies have described “rational” E. coli 
metabolic engineering efforts to enhance flux towards and/
or availability of these metabolites to improve production of 
malonyl-CoA-dependent compounds [4, 28, 30]. We tested 
the effects of several such genetic modifications on TAL 
yield by E. coli expressing our previously reported 2-PS 
“S1” variant. Briefly, up-regulation of acetyl-CoA carboxy-
lase or acetyl-CoA synthetase, and down-regulation of genes 
involved in fatty acids biosynthesis, were all met with little 
success. Details are provided in the supplementary material.

Before using our AraC-TAL sensor to identify new gene 
targets for increasing TAL yield, we first sought to improve 
the ON/OFF (“contrast”) ratio of our sensor-reporter sys-
tem. Briefly, lacZ under control of the PBAD promoter is 
our reporter gene, with blue colony formation owing to 
β-galactosidase activity on substrate X-Gal indicating effec-
tor-induced reporter gene expression. “Leaky” expression of 
lacZ increases background color formation and reduces the 
contrast ratio, while weak expression under inducing con-
ditions similarly reduces contrast. To enhance the contrast 
ratio, we compared the use of plasmid-based vs. chromo-
somal reporter gene expression, and tested different ribo-
some binding site (RBS) sequences, corresponding to a vari-
ety of predicted translation initial rates (designed using the 
RBS calculator [6, 20]), placed upstream of lacZ. This led 
to our use of new strain SQ8 containing a single, chromo-
somal copy of the PBAD-lacZ reporter, with the weakest RBS 
tested. Figure 1 summarizes the results from this optimiza-
tion, using WT-AraC and its effector L-arabinose. Details 
of reporter strain construction, validation, and calibration by 
expression of different 2-PS variants (with AraC-TAL), are 
provided in the supplementary material.

To identify genes whose up-regulation improves TAL 
yield (defined as extracellular TAL concentration in liquid 

culture, per cell density), we constructed and screened 
three E. coli libraries (named GL-1, GL-2 and GL-3 kb), 
which differ by average size of overexpressed genome 
fragments. Details of library construction and characteri-
zation are given in supplementary material. The library 
sizes are roughly 1.5 × 105 (GL-1 kb), 3.2 × 105 (GL-2 kb) 
and 3.2 × 105 (GL-3 kb) (this estimate considers the use of 
two four-base cutters for partial genome digestion, and the 
ranges of DNA fragments recovered). The libraries were 
constructed such that each gene fragment was placed on a 
plasmid also expressing 2-PS variant S1, with no external 
promoter to control expression of cloned genes. For each 
library, sequencing eight naïve clones confirmed the ran-
domness of gene fragments. Clones were spread onto LB-
agar plates containing reagents for TAL production and 
screening (refer to supplementary material), and ~ 47,000 
colonies were screened (by eye) for blue color development. 
After about 16 h of growth, the 14 darkest blue colonies 
from each library were isolated for re-screening in liquid 
culture and HPLC analysis. These 14 re-screened clones 
from GL-1 kb, GL-2 kb and G-3 kb had average TAL yields 
of 101 ± 24, 91 ± 28 and 86 ± 34 mg/L/OD595, respectively. 
This trend of decreasing average yield may be attributed 
to the impact of increased plasmid size, which can reduce 
2-PS expression levels and generally enhance the burden of 
plasmid maintenance. However, the 14 clones from GL-3 kb 
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Fig. 1   Selection of an optimal PBAD_lacZ reporter construct. Four 
RBS sequences representing relatively high (RBS1) to low (RBS4) 
translation initiation rates were placed upstream of lacZ. Each 
reporter construct was tested as multi-copy (on a plasmid, “P”) or as 
a single copy (integrated into the genome, “G”). LacZ expression in 
the presence versus absence of L-arabinose was measured as the rate 
of fluorescence increase using β-D-galactopyranoside as substrate. 
Negative control is strain HF19 harboring pPCC423 (lacZ is not pre-
sent in this strain). The ON/OFF ratio (values given above each data 
set) is highest for a single copy of lacZ with RBS4 (RBS4-G)
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showed the highest variation and also included the top 
three TAL-producing mutants (TAL yields of 125, 130 and 
146 mg/L/OD595). Another 20 clones were therefore selected 
from library GL-3 kb for re-screening. The larger fragment 
library offers a higher probability that individual fragments 
are able to fully encode single genes and their promoters, 
which may explain the apparent advantage of this library, in 
spite of the larger plasmid size.

Among the 34 clones from GL-3 kb rescreened by liquid 
culture and HPLC analysis, the three most productive (TAL 
yield increased by 44.1, 20.5, and 49.2% over the strain car-
rying a control plasmid) were selected for further analysis. 
Results are summarized in Table 1. For all three clones, the 
corresponding gene fragment contained in the expression 
vector consisted of a single, full-length gene, including its 
upstream promoter. These genes are betT encoding choline: 
H+ symporter, ompN encoding outer membrane porin N, 
and pykA encoding pyruvate kinase II (Table 1). To confirm 
that each gene was responsible for the observed increased 
in TAL yield, each gene was then cloned under the con-
trol of promoter PltetO1, inducible by addition of anhydro-
tetracycline (aTc). We additionally cloned pykF encoding 
pyruvate kinase I, since this enzyme catalyzes the same 
reaction as pyruvate kinase II (ADP + phosphoenolpyru-
vate + H+ → pyruvate + ATP) [7, 17]. TAL production 
resulting from induced expression of these genes is shown 
in Fig. 2. Whereas induced expression of ompN and pykA 
increased TAL yield compared to the uninduced cultures, 
expression of betT or pykF did not improve TAL yield.

Pyruvate kinase I encoded by pykF and pyruvate kinase 
II encoded by pykA catalyze the same glycolytic reaction, 
but the enzymes have distinct physical, chemical [24] and 
kinetic properties [13]. The enzyme pyruvate kinase I is 
activated by fructose 1,6-bisphosphate, while pyruvate 

Table 1   Plasmid-cloned genomic fragments that lead to improved TAL yield

Clone Improvement Chromosomal fragment (size, genes included, and chro-
mosome location)

Notes

GL01 44.1 ± 5.2% betT: encodes choline: H+ symporter

GL02 20.5 ± 2.6% ompN: encodes outer membrane pore protein N

GL03 49.2 ± 6.0% pykA: encodes pyruvate kinase II
lpxM: encodes myristoyl-ACP transferase (no 

promoter was present)
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Fig. 2   Effects of induced gene overexpression (by aTc addition) on 
TAL production by E. coli strain SQ8 expressing 2-PS variant S1 at 
16 h: a culture optical density (OD595); b yield
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kinase II is activated by AMP [13]. Under conditions of 
relatively low fructose 1,6-bisphosphate levels owing to 
growth on glycerol [12] (as in this study), pyruvate kinase 
II is up-regulated and the dominant form to divert car-
bon flux from PEP to pyruvate [16]. Since pyruvate is a 
precursor to acetyl-CoA and malonyl-CoA (required for 
TAL biosynthesis), this may explain the observation that 
overexpression of pykA, but not pykF, leads to improved 
TAL yield. Note that TAL production by strain SQ8 grown 
on LB medium supplemented with glycerol is more than 
tenfold greater than when instead supplemented with glu-
cose (refer to Table S4). To the best of our knowledge, up-
regulation of pykA as a metabolic engineering strategy to 
increase malonyl-CoA-dependent flux when using glycerol 
has not been previously reported.

betT encodes inner membrane protein choline: H+ sym-
porter, which is responsible for choline uptake by E. coli 
to synthesize glycine betaine [1]. ompN encodes outer 
membrane porin N, one of several porins responsible for 
transport of small polar molecules (< 600 Da) [18]. While 
induced expression of betT did not improve TAL yield, 
increasing the copy of this gene with its native promoter 
(carried on a plasmid) was beneficial (Table 1). Since both 
betT and ompN encode transport-related membrane pro-
teins, it is likely their altered expression influences either 
TAL transport across the cell membrane, or perhaps TAL-
related toxicity. We therefore tested whether expressing 
these proteins reduced TAL toxicity. Briefly, growth rate 
and cell density were monitored in the presence of various 
concentrations of TAL which impair growth of E. coli, 
with and without induced expression of betT or ompN. 
No significant effect of induced expression on growth was 
observed.

In a recent study by Li et al., the same AraC-TAL sensor 
was used to screen an E. coli transposon insertion library, 
resulting in the identification of several gene deletions 
(ΔrcsA, ΔfhuA, ΔcsgA and ΔtonB) that led to improved 
intracellular malonyl-CoA accumulation and hence TAL 
yield [10]. We similarly constructed, verified, and screened 
libraries of colonies with randomly inserted chromosomal 
transposons (methods are provided in supplementary 
material). However, upon re-screening using the same 
culturing methods as for the genome fragment libraries, 
we only identified one gene deletion, ΔzapE, that led to 
improved TAL yield by 35.8%. This discrepancy in results 
may be related to the significantly higher cell densities 
(> 10-fold) and TAL yields (> 4-fold) that we observed, as 
compared to this previous study. When ompN and/or pykA 
were overexpressed in the ΔzapE strain, no further TAL 
yield improvement was obtained. zapE encodes an ATPase 
involved in cell division [15], and the mechanism by which 
its deletion affects TAL yield is not clear.

Conclusion

In this study, the contrast ratio of our previously devel-
oped AraC-TAL sensor-reporter system was enhanced, 
and the improved reporter was applied in high-throughput 
screening to identify new and unpredictable gene targets 
(betT, ompN, and pykA), whose plasmid-based expression 
improved TAL yield. Screening random transposon inser-
tions similarly identified a target for gene deletion (zapE). 
This work further demonstrates the utility of customized 
transcription factors as molecular reporters for library 
screening and engineering of biocatalytic strains.
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