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from 8.49 to 1.16%, predict possible exhaust filter failures 
and close the loop to prevent their occurrence and avoid 
lost batches.

Introduction

The main goal of any industry is to manufacture a prod-
uct within prescribed quality specifications. The ease 
with which this objective is met is directly related to the 
complexity of the product in conjunction with the ability 
to adequately control the way in which it is manufactured. 
Biopharmaceutical production, unlike traditional medicinal 
products manufactured using consistent chemical and physi-
cal techniques, involves biological processes with nonlinear 
dynamics, inherent batch variability and high sensitivity to 
minute changes in environmental parameters [22]. In addi-
tion, raw materials that can be extremely complex are often 
variable in composition, which can have an unpredictable 
and substantial impact on cellular metabolism [17]. Cellu-
lar growth and product formation in a bioreactor is recog-
nized as the most complex and significant unit operation in 
manufacturing a biopharmaceutical and governs the success 
of the overall process. However, there are still a variety of 
bioreactor operations that depend on off-line sampling for 
in-process control. In fact, very few sophisticated analytical 
measurements are performed in situ and only a handful of 
critical parameters such as pH, dissolved oxygen (DO) and 
temperature are monitored in real-time [6]. The clear need 
to increase process understanding and control led the Food 
and Drug Administration (FDA) to institute a quality initia-
tive in 2002 that has become known as quality by design 
(QbD). Soon after, the FDA realized that the advanced con-
trol of critical process parameters (CPPs) required to ensure 
quality would not be possible without adequate and reliable 

Abstract  Control of biopharmaceutical processes is criti-
cal to achieve consistent product quality. The most challeng-
ing unit operation to control is cell growth in bioreactors 
due to the exquisitely sensitive and complex nature of the 
cells that are converting raw materials into new cells and 
products. Current monitoring capabilities are increasing, 
however, the main challenge is now becoming the ability to 
use the data generated in an effective manner. There are a 
number of contributors to this challenge including integra-
tion of different monitoring systems as well as the func-
tionality to perform data analytics in real-time to generate 
process knowledge and understanding. In addition, there is a 
lack of ability to easily generate strategies and close the loop 
to feedback into the process for advanced process control 
(APC). The current research aims to demonstrate the use of 
advanced monitoring tools along with data analytics to gen-
erate process understanding in an Escherichia coli fermenta-
tion process. NIR spectroscopy was used to measure glucose 
and critical amino acids in real-time to help in determining 
the root cause of failures associated with different lots of 
yeast extract. First, scale-down of the process was required 
to execute a simple design of experiment, followed by scale-
up to build NIR models as well as soft sensors for advanced 
process control. In addition, the research demonstrates the 
potential for a novel platform technology that enables manu-
facturers to consistently achieve “goldenbatch” performance 
through monitoring, integration, data analytics, understand-
ing, strategy design and control (MIDUS control). MIDUS 
control was employed to increase batch-to-batch consistency 
in final product titers, decrease the coefficient of variability 
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monitoring and, as such, the process analytical technology 
(PAT) initiative was born in 2004 [9]. It is well understood 
that the ability to monitor CPP is paramount in develop-
ing the required process understanding that enables the 
advanced process control necessary to achieve enhanced 
quality in a consistent manner [3]. However, there are a 
number of challenges that exist when striving to put this 
concept into practice. First, biopharmaceutical manufactur-
ers are always hesitant to adopt new technologies due to pos-
sible regulatory hurdles. The justification required to obtain 
regulatory approval for process changes can be extensive 
and is often the reason why process improvements are not 
made. In addition, while there are a number of guidelines 
that define QbD and PAT, little published information exists 
relating to methodology of implementation in a manufac-
turing setting. Aside from regulatory concerns, there are a 
number of other very significant challenges related to PAT 
and implementation of advanced control in bioreactors [6, 
12]. These challenges can be divided into the following three 
broad categories; (1) monitoring, (2) data analysis and inte-
gration and (3) advanced control implementation.

Monitoring

There are various difficulties to overcome related to bio-
reactor monitoring that range from the physical limita-
tions of the sensors themselves to the complex medium 
and conditions that exist within the bioreactor. The three 
phase system of solid cells, liquid media and gas bubbles 
results in complex hydrodynamics and interactions within 
the bioreactor that create a challenging environment for 
monitoring [3]. This is compounded by the transient nature 

of batch processing, where substrate is being consumed 
as metabolites are being formed by an increasing number 
of cells, thereby changing fluid properties such as viscos-
ity and density. The “multiple variable’s” nature not only 
poses a challenge from a monitoring perspective but can 
also result in large quantities of data that must be analyzed 
using multivariate techniques to generate process under-
standing [12]. There are three types of variables that must 
be monitored to enable advanced control in bioreactors: 
physical (such as temperature, pressure, viscosity, agita-
tion, airflow, etc.), chemical (such as pH, dissolved oxygen 
(DO) and nutritional substrates, etc.) and cell-related or 
biological (such as total and viable cell density/concen-
tration, host cell proteins, metabolites, CO2 and product, 
etc.) [3, 19]. Sensors employed to monitor these variables 
must provide data in sufficient time to describe current 
conditions within the bioreactor and possibly affect change 
within the process as needed. Figure 1 shows the differ-
ence between in-line, on-line, at-line and off-line sensors/
measurements of which in-line are the only sensors capa-
ble of real-time data with on-line following close behind. 
Real-time sensors must be capable of withstanding harsh 
alkaline and acidic solutions during Clean In Place (CIP) 
as well as high temperatures during Steam In Place (SIP). 
Any type of sensor employed must be reliable, accurate 
and reproducible and should be easy to calibrate, use and 
maintain. A sensor should also be able to differentiate 
between background noise and measure process variables 
with sufficient sensitivity to detect small changes in con-
centration. When specifically focusing on nutrients and 
cell-related variables in the liquid phase of the bioreactor, 
very few sensors exist that meet these challenges other 

Fig. 1   Examples of in-line, 
on-line, at-line and off-line 
monitoring. These are vari-
able data types that are often 
stored in different locations 
making integration a common 
challenge. Standard parameter 
control and data storage can be 
accomplished using distributed 
control systems (DCS), supervi-
sory control and data acquisi-
tion (SCADA) systems as well 
as simple programmable logic 
controllers (PLC)
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than spectroscopic sensors [of which near infrared (NIR) 
and Raman spectroscopy dominate] [12, 16, 23, 25].

Data analysis and integration

With the increase in PAT and advanced monitoring tak-
ing place in the industry, there is now a growing challenge 
of how to make best use of the data that is generated and 
transform it into process knowledge and understanding [15]. 
It has been noted that a large part of the future of quality 
improvement in biomanufacturing will be accomplished 
by better data analytics of the monitoring that is already 
in place, making possible more advanced control [11]. The 
goal of PAT is to identify meaningful data that will lead 
to process understanding, which ultimately enables process 
control. This advanced control is based on the link between 
process knowledge and product quality that is provided 
through advanced data analytics and ensures a more robust 
overall process [18]. To perform data analytics, the chal-
lenge of data integration from multiple sources must first 
be overcome. In many cases, data is generated and stored 
in different locations based on the technology being used, 
shown in Fig. 1. Standard bioreactor data is often stored 
in a supervisory control and data acquisition (SCADA) or 
distributed control system (DCS) while in-line monitoring 
using NIR spectroscopy or on-line off gas analysis would be 
stored in another location and can often even be of different 
data types based on manufacturer software. An integration 
tool is paramount to enabling the analysis of all types of 
data simultaneously to build the optimal multivariate analy-
sis (MVA) models for enhanced process understanding and 
statistical process control (SPC). Data integration between 
multiple sensors from different manufacturers is still a large 
challenge today and is a requirement for advanced process 
control [7]. With these extremely large datasets (big data) 
MVA must be used to properly make sense of the informa-
tion [4, 10]. MVA is used in a number of ways with respect 
to monitoring, ranging from a singular monitoring device, 
such as with spectra from a NIR probe, to modeling a num-
ber of process parameters that would be evolving during the 
course of a batch. Principal component analysis (PCA) and 
partial least squares (PLS) models are commonly employed 
in both situations. Data historian systems are often used to 
aggregate and store data that is then analyzed by modeling 
software packages. However, the integration challenge often 
results in not being able to use generated data effectively, or 
in some cases, abandoning the advanced monitoring entirely 
[7]. Once the data has transformed into process understand-
ing the final step in truly integrating PAT is to “close the 
loop” and feed back into the process to effect changes that 
will result in a more robust process with more consistent 
performance and enhanced product quality.

Advanced control implementation

With the understanding that any control methodology 
needs to be qualified from a regulatory standpoint, there 
still remains the challenge to make use of data monitoring 
and analytics in a fully integrated advanced process control 
strategy. This advanced process control would need to be 
integrated in such a way as to be able to adjust set points 
in existing proportional, integral, derivative (PID) control-
lers that may be under local programmable logic controller 
(PLC) or DCS control [18]. The use of multivariate models 
to generate “soft sensors”, where quality is inferred from 
process measurements, has been in effect for a number 
of years. However, there is a major challenge in the abil-
ity to use those soft sensors to implement process change 
in a real-time manner, specifically in a manufacturing set-
ting [8, 14]. Advanced control strategies require a platform 
that can integrate data from standard process parameters, 
UVA models, external analytical tools (perhaps utilizing 
PLS models), MVA models (i.e., soft sensors), mechanistic 
models, external models (for example those developed in 
Matlab or Python, etc.) as well as predictive models and then 
utilize the data through control logic that is able to manage 
alerts and feedback into the process. There are a number of 
examples in the literature where some parts of this have been 
achieved. Predictive PLS models using Raman spectra [2] as 
well as on-line and at-line monitoring of media constituents 
and cell-based data [24] have been integrated into control 
logic for feed control in small-scale bioreactors. In addi-
tion, a number of soft sensor applications have been reported 
where MVA models have been used to trigger certain feeds 
in lab-scale systems [14], however, full integration with 
closed loop control is currently limited in a manufacturing 
setting. Various PAT software packages are currently avail-
able such as SIPAT from Siemens, syn TQ from Optimal 
and GE’s Predix that perform a number of these aforemen-
tioned required functions. However, there are limitations 
around integrating third party software tools, incorporating 
mechanistic models and also implementing rule-based alert 
management revealing a need for an open platform approach.

The objective of this research is to demonstrate such 
a platform through the application of PAT to an existing 
process to increase understanding and subsequently imple-
ment an advanced control strategy to obtain more consist-
ent batch-to-batch performance and reduce the potential for 
failed batches. A pilot scale 30 L Escherichia coli fermen-
tation process producing green florescent protein (GFP) as 
the target product was selected for this case study due to the 
high variability in final product concentration and the recent 
increase in failed batches. Failures were identified based on 
final GFP titers, which were reduced by 50% compared to 
the “golden-batch”, however, the cause was not clear due to 
insufficient understanding of the process. An investigation 
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revealed that the only difference in the failed runs was that 
a new lot of yeast extract (same manufacturer and supplier) 
had been used. The process was scaled down to 2 L micro-
bial bioreactors to perform a study that would identify pos-
sible contributors and NIR models were generated to track 
these critical constituents in real-time. After the root cause 
of the process, failures had been determined, the process 
was scaled up to 300 L and a control strategy developed to 
identify and avoid future failures. To decrease titer variabil-
ity due to induction time, also incorporated in the strategy 
was automated induction of GFP production based on real-
time monitoring of glucose and cell density. Included was 
a novel advanced control strategy utilizing a multivariate 
analysis (MVA) model that would make use of process data 
and univariate statistics to identify deviations from normal 
operation and predict possible exhaust filter clog failures due 
to condensate buildup in the filter. The strategy ultimately 
closed the loop by controlling set-points within predefined 
limits to save the batch.

Materials and methods

Scale‑down 2 L bioreactor study

Once the cause of the final titer failures was determined 
to be the change in composition of the newer lot of yeast 
extract (YE), the fermentation process was scaled down 
from 30 L Sartorius DCU3 stainless bioreactors to 2 L 
Sartorius BIOSTAT B plus glass bioreactors to perform 
a media study. Scale-down criteria included aeration rate 
(vvm or vessel volumes per minute) that was maintained 
at 0.5 vvm, bioreactor aspect ratio (height/diameter) that 
was maintained at 1.3, and bioreactor geometry (bioreac-
tor diameter/impeller diameter) that was maintained at 2.5. 
Temperature was controlled at 30 °C and dissolved oxygen 
(DO) was controlled to 50% by PID control of agitation, 
identical to the method used in the larger scale process. This 
ensured that kLa differences between scales was accounted 
for due to the automated agitation speed increase to match 
bioreactor oxygen transfer rates to culture oxygen uptake 
rates. Three media compositions were prepared and the 
bioreactor runs were performed in triplicate. Each media 
composition contained the same proprietary basal concentra-
tions of salts, glucose and antifoam (identical to the original 
process) with three runs conducted using 12 g L−1 of the 
older lot of YE (identical to the concentration used in the 
original process), three runs using 12 g L−1 of the newer lot 
of YE and three runs using 16 g L−1 of the newer lot of YE. 
The inoculum (E. coli BL21 DE3 genetically modified to 
produce GFP when induced with lactose or Isopropyl β-d-
1-thiogalactopyranoside, IPTG) was prepared by inoculat-
ing a 1 L shake flask containing 400 mL of growth media 

with a l mL vial from the working cell back. The flask was 
incubated overnight (~ 16 h at 30 °C and 200 rpm) until an 
OD600nm of ~ 6 was reached. Approximately 60 mL (tar-
get starting OD600nm = 0.2) was aseptically transferred into 
each bioreactor that had been autoclaved and allowed to cool 
overnight. Prior to inoculation controllers were initiated and 
the DO probe was calibrated to 100% air saturation.

Batch monitoring

A combination of different monitoring systems were used 
over the course of the batch: in-line included DO, pH, agita-
tion, airflow and temperature; at-line included glucose using 
an enzymatic YSI 2700 glucose analyzer (Yellow Springs 
Instruments) and optical density (OD600nm) using a bench-
top Thermo Scientific spectrophotometer (Genesys 20); off-
line included amino acid analysis using an Acquity UPLC 
system from Waters with a PDA detector. Samples were 
taken aseptically at regular intervals for at-line and off-line 
measurements. Samples were spun down in a centrifuge for 
2 min at 14,000 rpm and the supernatant was used for glu-
cose measurements as well as to blank the spectrophotome-
ter for optical density measurements. One mL of supernatant 
from each sample was frozen for subsequent analysis by the 
standard UPLC method as described by Waters [1].

Data analytics

All the data were tabulated and SIMCA from Umetrics was 
used to analyze the results. A multivariate batch evolution 
model (BEM) was generated to investigate the relationship 
between all the variables in a single context. Using time as 
a maturity variable, a PLS model, instead of a PCA model, 
was generated from the three-way process measurements 
array comprised of the number of batches, the process vari-
ables in each batch and batch time. The PLS model decom-
posed the maturity variable vector (y) and the observation 
data matrix (X) into scores (T), loadings (P and q), weights 
(W) and residuals (E and f) as follows:

A batch level PLS model (BLM) was generated in a simi-
lar fashion to determine the sources of variation in relation 
to performance attributes or parameters such as yield of 
cells on glucose (Yx/s), product concentration (g L−1) and 
maximum specific growth rate (µmax). In this case, the model 
decomposed the batch performance parameter matrix, of 
which only one value of each exists per batch, and the batch-
wise data matrix into scores, loadings, weights and residuals. 
The BLM model was used for batch-to-batch comparison as 
well as to predict performance parameters such as product 

(1)X = TPT
+ E,

(2)y = Tq + f .
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concentration based on new batch evolution data. This type 
of prediction capability creates the potential for soft sensor 
applications, especially in the case that the data analytics 
tool is utilizing real-time data [22]. The analysis was used 
to help identify the probable root cause of the failures and 
the increased understanding resulting from the data analyt-
ics helped enable the development of an advanced control 
strategy.

Scale up to 300 L manufacturing batches

The process was scaled-up to a 300 L bioreactor (equipped 
with a NIR probe from ABB and in-line AS16-N single 
channel turbidity probe from OPTEK with a 5 mm path 
length and operating wavelength between 730 and 970 nm). 
Three calibration batches were executed at the 300 L pilot 
scale to build NIR models for in-line monitoring of critical 
amino acids, glucose and optical density. Samples, coincid-
ing with spectral scans, were taken every 30 min for 7 h 
for each batch and the appropriate analysis was performed 
(UPLC for amino acids, YSI for glucose and OD600nm for cell 
density) so that a correlation could be made with the respec-
tive spectra. OPTEK concentration units (CUs) were corre-
lated to the offline OD600nm values by inputting the data into 
the OPTEK C4000 series photometric converter. A fourth 
batch was used to validate the spectral calibration models.

Spectroscopy

All sample scans were acquired using an in situ Solvias bub-
ble shedding transflectance probe (12 mm diameter, 230 mm 
length, 600 µm core and a fixed path length of 1 mm). The 
probe was connected to an ABB Fourier Transform Process 
Analyzer Near Infrared FTPA2000-200 series spectropho-
tometer (Quartz Halogen source) and detection system using 
a 10.7 m fiber optic cable consisting of high purity fused 
silica with bidirectional properties that was designed for 
wavelengths between 200 and 2400 nm. Spectral data was 
collected at a resolution of 8 cm−1 over a range of wavenum-
bers between 3800 and 14,000 cm−1. Each spectrum was the 
average of 1024 scans (background) or 128 scans (samples). 
Prior to each fermentation batch, the probe was cleaned and 
allowed to dry before taking a background reading in air.

Chemometrics

GRAMS/AI version 7.0 from Thermo Galactic was used for 
NIR spectral data collection, spectral processing, and model 
development. Datasets were created with spectra and their 
related reference data (generated from the primary meth-
ods previously described) and loaded into the GRAMS/AI 
PLSplus/IQ navigator to create a training data file (tdf). The 
software was then used to perform spectral preprocessing 

(i.e., derivatives, baseline corrections, smoothing, normali-
zations, mean centering) as well as to identify areas of cor-
relation between spectral wavelength regions and constitu-
ent concentrations. Pre-processing is required to eliminate 
unexplainable variation related to sensor noise or scattering 
effects. After developing a calibration, the software was used 
to perform statistical analysis on cross-validated data. Cross-
validation is the process of removing one sample from the 
dataset and predicting it using the calibration that is gener-
ated from the remaining samples. The predicted values are 
then compared to the actual value to evaluate the validity of 
the model. FTSW800 Process software (ABB) was used for 
the subsequent real-time monitoring for the validation batch 
and manufacturing runs. Calibration models were loaded 
into the FTSW800 and the analyte concentrations were auto-
matically calculated from process spectra. These values were 
sent to the ABB 800xa distributed control system (DCS) and 
applied materials advanced analytics and control system via 
a Matrikom OPC tunneler.

Additional 30 L batch runs

The advantage of real-time data was exemplified when 
using the NIR online analysis of the critical amino acids 
and glucose. This increased understanding instigated addi-
tional analysis of the two different lots of YE to determine 
the true root cause. In addition to being a major source of 
amino acids, YE also supplies numerous vitamins, specifi-
cally B vitamins. HPLC was used to analyze the YEs for 
their B vitamin content and based on the variations between 
lots, additional runs were performed at the original 30 L 
scale. Since the old lot had been depleted, all runs used the 
new lot of YE along with the original basal salts, antifoam 
and glucose concentration. The control consisted of YE at 
16 g L−1 and the other two runs were batched at 12 g L−1 
with one receiving an additional B vitamin complex mix 
of 4.1 mg L−1 B2-riboflavin, 48.0 mg L−1 B3-niacin and 
2.88 mg L−1 B12-cyanocobalamin when the slowdown in 
metabolism began to occur (at 4.75 h). An HPLC system 
(Agilent Ltd.) was used for the analysis and quantitation of 
vitamins in the two lots of YE as previously described [5].

Advanced control strategy designer

To be able to make use of the advanced monitoring in such 
a way as to feedback into the process, SmartFactory RX 
Analytics and Control from Applied Materials Inc. (Santa 
Clara, CA, USA) was used. The software was able to inte-
grate into multiple data sources such as our DCS (ABB 
800xa) system, SCADA (Sartorius MFCS) system and PI 
(OSIsoft) historian as well as monitoring systems such NIR 
analyzer (ABB), turbidity probes (OPTEK) and gas mass 
spectrometer (Thermo Scientific). The unique “drag and 
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drop” strategy engine allows for easy integration of models 
as well as rule-based logic implementation to manage alerts 
and alarms. It was also configurable to send notifications 
or to feedback and change process set-points accordingly. 
Using the information obtained through the additional moni-
toring of the scale-down and manufacturing runs, a control 
strategy was designed based on increased process under-
standing. The strategy was comprised of simple logic-based 
case statement blocks that managed model outputs as well 
as combined multiple sources of data, including the in-line 
NIR and turbidity data, to help verify YE composition was 
sufficient for optimal protein production, automate induc-
tion at the optimal time, and track univariate (UV) param-
eters for continuous process verification (CPV). The flow 
of blocks was determined based on the natural sequence of 
events required to control the process and will be shown 
later. The culmination of the strategy was the integration of a 
predictive multivariate empirical model built with a specific 
combination of univariate mechanistic statistics. This model 
demonstrated the complete functionality of the described 
platform since it not only could detect the potential for con-
densate buildup in the exhaust filter (which could result in a 
lost batch) but also effect changes to control parameters to 
avoid such a failure.

Results and discussion

Deviations in the final protein from the 30 L bioreactor 
batches began to occur more frequently than acceptable. Fig-
ure 2 shows an example of the difference between batches 
(titers ranging from 0.52 to 0.67 g L−1) that followed our 
“golden-batch” producing an average of 0.59 g L−1 GFP 

(left) and batches that exhibited a random decrease in cell 
growth (slope) near the 5 h mark accompanied by what 
seemed to be a metabolic shift before continuing the growth 
phase (right). Glucose was no longer completely consumed 
by hour 6 and final GFP titer was approximately half of what 
was expected (0.25–0.33 g L−1). The reason for these failed 
batches was unknown, which demonstrated a deficiency in 
process understanding. Failure investigations determined 
that the only variation between the “good” and “bad” batches 
was that a new lot of yeast extract (YE) had been used with 
the poor performing batches. The immediate solution to the 
problem, which returned batch performance back to the orig-
inal golden run standard (0.57–0.70 g L−1 with an average 
titer of 0.63 g L−1), was to increase concentration of the new 
lot (and all subsequent lots) of YE from 12 to 16 g L−1. The 
slightly higher average was most probably due to the original 
YE concentration being too close to the boundary level of 
limiting performance which also explains why slight varia-
tions in YE lots could have such an appreciable effect. Since 
YE is a major source of nitrogen, in the form of free amino 
acids, an initial analysis of the two YE lots was performed 
as seen in Fig. 3. It was clear there were obvious differences, 
however, the specific source of the failures was not evident 
and so a scale-down study was designed to investigate the 
evolution of amino acids throughout each batch.

Scale‑down 2 L bioreactor study

In the attempt to identify the source of the variation in fer-
mentation performance, three batch conditions were tested 
in triplicate at the 2 L scale. Figure 4 shows the averaged 
trend lines of glucose and optical density for all the biore-
actor runs. It is clear that at the original YE concentration, 

Fig. 2   Trends of “good” (left) and “bad” (right) batches. Failed batches were identified based on an abnormal reduction in growth rate near the 
end of the batch and that the main carbon source (glucose) was not totally consumed during the total batch time of 6 h
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the old lot of YE performs better than the new lot and that 
performance is increased when using a higher concentra-
tion of the new lot. The slightly improved performance of 
the higher concentration of the new lot indicated that the 
low concentration of the old lot of YE was on the preci-
pice of being sufficient to ensure glucose was the limiting 
nutrient. Along with at-line analysis of glucose and optical 
density, off-line analysis was performed at each time point 
to determine amino acid concentrations. Combining in-line 
data from the bioreactor parameters with at-line and off-line 

data created a very large dataset that required statistical data 
analytics to elucidate what variables were statistically sig-
nificant in their contribution to the variance.

SIMCA from Umetrics (Umea, Sweden), now owned by 
Sartorius stedim, was used to analyze the data by generating 
two models. A principal component analysis (PCA) of all 
the bioreactor data was performed using time as a maturity 
variable to determine vectors of scores at each time point for 
all the variables. This in effect created a partial least squares 
(PLS) model, which is defined as a batch evolution model 

Fig. 3   Amino acid percent 
weight comparison between two 
lots of yeast extract (YE) from 
the same supplier and manufac-
turer. The old lot with accept-
able performance is represented 
by solid bars and the new lot 
with poor performance by 
textured bars

Fig. 4   Averaged glucose 
(decreasing trend lines) and 
optical density (increasing trend 
lines) data for three batches at 
each media condition. Yeast 
Extract new lot at 12 g L−1 
(filled diamond), YE new lot at 
16 g L−1(filled circle) and YE 
old lot at 12 g L−1 (filled tri-
angle). Error bars are plus and 
minus one standard deviation
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(BEM) in the SIMCA software. The plot of all these scores 
enabled the comparison of each point based on two main 
principal components describing all the multivariate data at 
that time. Since scores of the identical principal components 
were used for each time point, it was possible to make a com-
parison and identify both expected operation as well as when 
the process deviated from “normal” operation. Figure 5 is 
a score plot of each time point from all nine batches. Six of 
the batches have points that are intermingled together, while 
points from the other three batches are all grouped together 
on the bottom right of the plot (as identified by the black 
circle). Interestingly, these points are all from batches using 
the original concentration (12 g L−1) of the new lot of YE. 
Using the software, a statistical analysis was performed that 
compared these two groupings to identify possible sources 
of variation. In addition, key performance attributes (KPAs) 
were calculated for each batch, such as maximum specific 
growth rate (µmax) and yield of cells on glucose (Yx/s) to ana-
lyze how the batch data variations impacted performance. 
This was accomplished by building PLS batch level models 
(BLM). Figure 6 shows the complex plot of sources of vari-
ation between the three batches of new YE at 12 g L−1 and 
the other six batches in the top graph and a simplified ver-
sion on the bottom where variables with minimal sources of 
variation were removed indicating two main amino acids, 
alanine and methionine, contribute highly to the source of 
variation in performance. Contribution of alanine increases 

dramatically at hour 4.5, while methionine does not vary 
until hour 5. Further study of these amino acids revealed that 
methionine was completely consumed by hour 5.5 and that 
the consumption rate of alanine between 4 and 6 h almost 
doubled with the new lot of YE (73.5 mM h−1) compared 
to the old lot (45.7 mM h−1), a greater change than with any 
other amino acid. This time range coincided with the meta-
bolic shift that occurred in the culture and as such these two 
amino acids were selected as ideal constituents to monitor 
in-line using NIR spectroscopy in the 300 L scale production 
bioreactor. Agitation speed was also identified as a contribu-
tor. However, since agitation was automatically increased to 
control dissolved oxygen (DO) the significance of this vari-
ation is a confirmation that respiration was indeed slowing 
at this time point due to the metabolic shift occurring from 
a nutrient limitation other than glucose.

Scale‑up to 300 L for NIR model building

To determine the effect of these two amino acids, alanine 
and methionine, on the utilization of glucose, all three 
of these parameters were selected to incorporate into an 
advanced monitoring process analytical technology (PAT) 
strategy utilizing NIR spectroscopy. Real-time data is essen-
tial to elucidate batch performance especially when deal-
ing with microbial fermentations where rapid metabolism 
shifts occur. Models for each of these constituents were 

Fig. 5   Score plot of data points from all nine batches. The black ellipse to the bottom left represents all points from batches with the original 
12 g L−1 of the new lot of YE
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built using Grams AI software. Three batches were executed 
where samples were taken at regular intervals coinciding 
with NIR scans. The samples were analyzed to determine 
the concentration of glucose (YSI analyzer) along with ala-
nine and methionine (UPLC). A matrix was built linking 
the scans to each constituent concentration and an iterative 
process was performed to build models that would predict 
all three. Each PLS model was pre-processed using mean 
centering with no pathlength correction and a manual base-
line. The following spectral regions, in wavenumbers (cm−1), 
demonstrated the highest correlation to each constituent and 
were selected for building each respective model: glucose 
(7117–5987 cm−1), methionine (7425–6195 cm−1) and ala-
nine (6758–6106 cm−1). Figure 7 shows the cross-validated 
model predictions versus the actual values of all three con-
stituents. The cross-validation was performed by removing 
one sample from the dataset and using the other samples 
to build the model and predict the “unknown” sample. 
These plots indicated a good fit for all three constituents. 
Further evidence can be seen in the partial residual error 
sum squared (PRESS) plot in the bottom right image. All 
constituents had similar shaped plots but only the plot for 
glucose is shown. This plot shows that as factors are added 
to the partial least squares (PLS) predictive correlation, there 
is less error in the prediction. It is important not to select too 
many factors to avoid modeling noise, thereby increasing the 
error as seen in the upward drift near the end of the plot. The 
next step was to validate each model with a dataset that was 
not used when generating the models. Figure 8 shows a vali-
dation batch with predictions every 15 min along with at-line 
and off-line sample data. Ideally, up to ten batches would be 

used to generate more robust models, however, in this case, 
predictions were still acceptable with an average percent 
error for glucose of 3.29%, alanine of 3.75% and methionine 
of 19.17% (less acceptable). The results from the in-line NIR 
scans revealed a different result than what was expected. The 
initial thought that the amino acids were causing the growth 
limitation based on the original off-line data was proved to 
be incorrect when using in-line monitoring. The slowdown 
in glucose consumption actually occurred first followed by 
an increased consumption of alanine as seen in Fig. 8. This 
increased process understanding brought about by the NIR 
in-line data forced a re-evaluation as to the true growth-
limiting nutrient. This illustrates the insight that advanced 
real-time monitoring can provide during process develop-
ment, as well as during manufacturing. Previous research 
into alanine utilization in E. coli indicated that it, along with 
other key amino acids, is highly linked to B vitamin produc-
tion, which is very important for cell metabolism and growth 
rate [13, 20]. While E. coli can produce B vitamins, energy 
is taken away from growth and protein production, which 
would also explain the reduction in target protein associated 
with the failed batches. It should be noted that the original 
empirical model developed using SIMCA did not predict 
this possibility. However, these types of models, including 
PLS chemometric models, are purely data driven and are 
not suited for extrapolation of any kind. As such, it is criti-
cal that the model contains all possible data variation which 
might be observed in the process whether it be concentration 
ranges or process variables [21]. The trends in Fig. 8 that 
show the slowdown of glucose metabolism followed by an 
increase in alanine consumption, could be explained by a 

Fig. 6   The three main contribu-
tors to variation between good 
and bad batches (isolated 
from all the sources shown in 
the embedded top left plot) 
based on a PLS batch level 
model (BLM) relating in-line, 
at-line and off-line data to key 
performance attributes (KPA). 
Shown is the time range of 
4–6 h, where the metabolic shift 
occurred, alanine (filled dia-
mond), agitation (filled circle) 
and methionine (filled triangle)
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Fig. 7   NIR model calibrations for three constituents, alanine (top 
left), methionine (top right) and glucose (bottom left). All cross-val-
idated (one sample out at a time) R2 values were above 0.95 which 
indicates a relatively good fit for each model. The final plot (bottom 

right) shows the reduction in error as additional factors are added to 
the glucose model with a final recommendation of five factors based 
on the predicted residual error sum squared (PRESS) values

Fig. 8   300 L validation batch 
data with NIR scans (average of 
128 scans taken every 15 min) 
for the following models: glu-
cose (filled diamond), methio-
nine (multiplication sign) and 
alanine (plus) as well as at-line 
YSI measurements for glucose 
(filled square) and offline UPLC 
measurements for methionine 
(filled triangle) and alanine 
(filled circle) determined from 
manual samples taken at peri-
odic intervals



1599J Ind Microbiol Biotechnol (2017) 44:1589–1603	

1 3

metabolic shift of nutrient utilization required to produce 
more B vitamins. Further work was, therefore, carried out 
to investigate this theory at the original 30 L scale.

B vitamin analysis

The first step was to analyze the lots of YE to compare con-
centrations of B vitamins. Results from HPLC analysis of the 
two lots can be seen in Fig. 9. The variation suggested that 
there was a significant difference in content of B vitamins at 
the same concentration of YE. Three 30 L bioreactors were 
then batched under identical conditions using the new lot 
of yeast extract except for the following modifications. One 
batch contained 16 g L−1of YE, one contained the original 
12 g L−1 of YE and the last contained the same 12 g L−1 of 
YE but a B vitamin complex was prepared to add during 
the batch between 4.5 and 5 h of run time correlating to the 
change in metabolism previously observed. The concentra-
tion and composition of B vitamins to add was estimated 
based on the variation between the two lots determined by 
HPLC as seen in Fig. 9. Since the 30 L bioreactors are not 
equipped with NIR probes, at-line samples of glucose (YSI 
analyzer) and optical density (spectrophotometer at 600 nm) 
were used to determine batch performance. The top graph in 
Fig. 10 contains the at-line trends from these experiments 
and confirms that lack of sufficient B vitamins was the actual 
root cause of the failures. The optimal growth was achieved 
at 16 g L−1 YE, however, it was evident that at the beginning 
of the batches all exhibit similar growth until approximately 
4.5 h. At this point, the two batches with lower concentration 
of YE begin to slow and the B vitamin complex was added 
to one batch at approximately hour 4.75. The additional B 

vitamins had almost an immediate effect of returning the 
growth rate back to what was observed at the higher con-
centration of YE. The bottom graph in Fig. 10 includes the 
agitation trends for each run and confirms the effect of the 
additional vitamins. Agitation is controlled based on culture 
demand and recorded real-time so that it can be used to pin-
point the exact time of shifts in culture oxygen requirements. 
There was a similar increase in agitation in the two biore-
actors with 12 g L−1 YE until the B vitamins were added, 
and then the respiration increased to closely follow what 
was observed in the bioreactor with 16 g L−1, as evidenced 
by the slope of the agitation trend lines. It is clear that the 
additional B vitamins in the 12 g L−1 run were not sufficient 
to obtain identical results to the 16 g L−1 bioreactor, based 
on data in Fig. 10. Cell density was still slightly lower and 
overall oxygen demand was not as high, however, it is evi-
dent that performance was improved in comparison to the 
standard 12 g L−1 YE batch. With the root cause determined 
and the corrective action in place using 16 g L−1 of YE, 
the next step was to utilize the advanced monitoring at the 
300 L scale in a control strategy that would make use of 
this increased knowledge and close the loop to affect greater 
consistency in product titers from batch to batch.

Advanced control strategy

A very common challenge in manufacturing is to make use 
of advanced monitoring tools in an effective way. To achieve 
this, the first requirement is a level of integration that links 
monitoring (including advanced analyzers) to data-ana-
lytic modeling tool. This dual functionality of utilizing 
advanced monitoring tools along with multivariate modeling 

Fig. 9   Comparison of various 
B vitamin concentrations, 
determined by HPLC, in two 
lots of yeast extract at 12 g L−1. 
The solid bars represent the old 
lot with acceptable performance 
and the textured bars represent 
the new lot with poor perfor-
mance. (Pantothenic values are 
shown divided by a factor of 10 
for scaling purposes)
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capabilities to build soft sensors, are both crucial not only 
to generate process understanding, specifically during the 
process development stages, but also to allow for advanced 
control during manufacturing. Once accomplished there is 
still the requirement for a platform where control strategies 
can be designed that will have access to all these types of 
data and be able to close the loop and integrate back into 
equipment controllers. This is essential to implement the 
necessary changes that will increase consistency and qual-
ity, thereby reducing the number of lost batches. The Ana-
lytics & Control (A&C) software package, purchased from 
Applied Materials, was selected as the platform solution to 
try and meet this overall challenge. This software achieved 
the integration of our DCS system from ABB as well as 
the SCADA system from Sartorious. In addition, PAT tools 
such as the NIR probe from ABB (for inline measurement of 
glucose and alanine) and our turbidity probe from OPTEK 
(for inline cell density) were integrated for use in the final 
control strategy. The A&C software also includes data ana-
lytic capabilities, where MVA models can be generated for 
soft sensors that can be incorporated into strategies for real-
time or even predictive type monitoring and control. The 
built in strategy designer allowed for easy drag and drop 
design of a control strategy as shown in Fig. 11. It should 

be noted that simple control logic can also be configured in 
the DCS system but this would not have been applicable to 
bioreactors controlled by the SCADA system or have the 
capability to integrate soft sensor technology for advanced 
control purposes. The control strategy shown in Fig. 11 has 
multiple functionalities. The first was to use A&C to build a 
univariate analysis (UVA) model around the change of ala-
nine concentration over time (a univariate soft sensor). The 
model characterized normal consumption rates of alanine 
when B vitamins were not limiting (based on slope). In the 
event that there is a rapid decrease of alanine caused by low 
B vitamin concentrations the model limits will be exceeded 
and the strategy will send an alarm notification to the opera-
tor that the batch may be suspect and additional feed could 
be added to achieve acceptable protein titers. To date, this 
predictive control notification has not been required since 
the current YE concentration is in excess of what is required.

The second part of the strategy was to utilize the inline 
glucose and cell density measurements to trigger induction 
at the optimal concentration and density. Since there are var-
iations from batch to batch in terms of overall fermentation 
time, it is not optimal to use batch time as the indicator for 
induction. Glucose concentration and cell density at the time 
of induction have a high impact on target protein production 

Fig. 10   Top: glucose (decreas-
ing trend lines) and optical 
density (increasing trend lines) 
data for three 30 L batches 
at identical operating condi-
tions except for the following. 
12 g L−1 YE (filled diamond), 
16 g L−1 YE (filled circle) and 
12 g L−1 YE with additional B 
vitamins added at 4.75 h (filled 
triangle). The bottom plot shows 
the real time agitation speed for 
each batch, 12 g L−1 YE (bot-
tom trend line) 12 g L−1 with 
addition of B vitamins at 4.75 h 
(middle trend line) and 16 g L−1 
YE (top trend line). Agitation 
was in cascade control and 
automatically changed based on 
oxygen demands of the culture 
(increased respiration rate 
requires higher agitation speeds)
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and normally sampling is done to analyze these parameters 
at-line, which often results in variation in optimal induction 
time from batch to batch. Three batches were executed at the 
300 L scale to test the induction control where the pump was 
actuated based on in-line process parameters instead of at-
line analysis. Eliminating this variability led to an increase 
in consistency from batch to batch based on a decrease in 
coefficient of variation (CV) from 8.49 to 1.16% as well as 
a higher average GFP titer of 0.69 g L−1. It should be noted 
that this titer has also been achieved using at-line monitoring 
for induction, however, not in a consistent manner.

The final part of the strategy was to implement advanced 
predictive control by not only predicting when an out of 
limit event might occurs but also to close the loop to change 
set-points based on a multivariate analysis (MVA) model 
(a multivariate soft sensor). A MVA model was generated 

based on gas flow rates and backpressure control output to 
predict possible internal pressure issues due to condensate 
buildup in the exhaust filter. The failure is preceded by 
abnormal output to the back pressure controller as the filter 
begins to clog. However, backpressure control output varies 
depending on gas flow changes during processing as well as 
pressure set-point and total flow. Therefore, an MVA model 
was necessary to predict when the filter was beginning to 
clog as can be seen in part three of Fig. 11. The strategy 
automatically reduces gas flow into the reactor and opens a 
condensate valve on the exhaust filter to allow the filter to 
recover before returning control back to the bioreactor con-
troller. Utilizing historical data, the MVA prediction model 
for abnormal backpressure output was able to predict a filter 
clog 3.3 h prior to the actual failure allowing for extra time 
to save the batch. Since no such event has occurred while 

Fig. 11   Unique strategy designer for advanced process control that 
initiates at the start of every batch. Three control workflows are 
shown including a univariate model monitoring abnormal depletion 
rate of alanine [1], a set of rules implemented using a case block 
(taken from the menu on the bottom left and easily configured as 

shown on the bottom right) that when satisfied trigger induction [2], 
and a complex control strategy that predicts a filter clog will occur 
using a multivariate model and closes the loop to effect changes to 
save the filter and the batch [3]
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running the control model, a simulation was performed with 
water in the bioreactor. Blocking the exhaust filter caused the 
model to successfully trigger and feedback pre-determined 
commands to the DCS system via object linking and embed-
ding for process control (OPC) to reduce the inlet airflow 
and open the exhaust condensate valve to relieve pressure. 
Real-time multivariate analysis also offers the ability to 
monitor batch health during the run, relative to the golden 
standard, from a holistic view rather than relying on a single 
parameter at a time approach.

Conclusions

The results of this research show that the use of PAT is a pow-
erful tool when seeking to generate process understanding and 
implement advanced control. It is evident that developing these 
advanced techniques during process development allows for a 
much smoother transition during technology transfer to manu-
facturing. In addition, advanced monitoring and soft sensors 
have been shown here to increase process understanding by 
revealing details that would not normally be seen by normal 
sampling or by end of batch testing. This research elucidates 
the importance of real-time batch evolution information when 
performing experimentation to link process parameters to per-
formance and quality attributes. However, this is only part of 
the equation. This research also elucidates the current gaps 
that exist in the industry and exemplifies the need for a plat-
form technology that can enable true advanced process con-
trol through implementation of the novel and complete system 
depicted in Fig. 12. The initial requirement is for monitoring 

(M), however, to make use of all different types of monitor-
ing an integration (I) platform is required. This integration is 
critical for various types of analyzers and variables but also 
for various third party modeling tools as well. With the moni-
toring integrated into one location, data analytics (D) can be 
performed to generate process understanding (U) and allow 
soft sensors or predictive models to be built and incorporated, 
along with other monitoring information, into strategies (S) 
that enable advanced control (C) or MIDUS Control. The 
results of this work demonstrate a MIDUS Control platform 
through the use of analytics and control from applied materi-
als. The platform was able to integrate multiple sources of data 
and perform analytics in real-time to execute strategies that 
automated protein induction and decreased batch to batch vari-
ability so that “golden-batch” performance could be achieved 
more consistently. In addition, the platform was configured to 
detect possible failures with sufficient time to automatically 
implement process changes and save batches from failure. The 
potential of this platform is only beginning to be explored and 
currently more models are being configured around predic-
tive maintenance and probe health. Much work remains to be 
done in this area, however, the Midas touch, achieved through 
employing MIDUS control, have been proven to be a reality.
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