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Introduction

Understanding microaerobic growth is important in appre-
ciating interactions in microbial communities, in the infec-
tion process of certain pathogens, and industrially in how 
we might better manipulate commercial large-scale cultures 
for efficient and reliable product formation. A number of 
articles have examined effects of microaerobic conditions 
on organisms from ecological and health perspectives [63, 
79, 112], photosynthetic microbe biology [22, 132] and in 
pathogen invasion [108, 113] and infection specifically by 
Neisseria [4], and Campylobacter [73]. Many large-scale 
industrial microbiological processes operate under partial 
aerobic conditions. For example, the production of PHB 
[70, 116, 131], polysaccharide based biopolymers [2, 16, 
43], lycopene and carotenoids [92], IPP-terpene processes 
for pharmaceuticals [35, 99, 114], and alcoholic biofuels 
[91, 117] [9, 15] have been discussed in reference to lim-
ited oxygen culture conditions. Other examples of use of 
microaerobic production conditions have appeared for lac-
tate [39, 101], acetoin [28], succinate [87], 2,3-butanediol 
[102], and H2S removal [129]. The metabolic reprogram-
ming occurring under microaerobic conditions has been 
considered along with the effect of several regulators FNR, 
ArcAB, NarL, NarP [140]. The screening of strains for 
high oxygen utilization has been emphasized for identifica-
tion of industrial production organisms [176].

In industrial practice, to produce high levels of product, 
high cell density is required that further taxes the ability 
to properly aerate the culture. Inadequate mixing in large 

Abstract Microaerobic growth is of importance in eco-
logical niches, pathogenic infections and industrial produc-
tion of chemicals. The use of low levels of oxygen enables 
the cell to gain energy and grow more robustly in the pres-
ence of a carbon source that can be oxidized and provide 
electrons to the respiratory chain in the membrane. A con-
siderable amount of information is available on the genes 
and proteins involved in respiratory growth and the regu-
lation of genes involved in aerobic and anaerobic metabo-
lism. The dependence of regulation on sensing systems 
that respond to reduced quinones (e.g. ArcB) or oxygen 
levels that affect labile redox components of transcription 
regulators (Fnr) are key in understanding the regulation. 
Manipulation of the amount of respiration can be difficult 
to control in dense cultures or inadequately mixed reactors 
leading to inhomogeneous cultures that may have lower 
than optimal performance. Efforts to control respiration 
through genetic means have been reported and address 
mutations affecting components of the electron transport 
chain. In a recent report completion for intermediates of the 
ubiquinone biosynthetic pathway was used to dial the level 
of respiration vs lactate formation in an aerobically grown 
E. coli culture.

 * Ka-Yiu San 
 ksan@rice.edu

1 Department of BioSciences, Rice University, Houston, TX 
77005, USA

2 Department of Bioengineering, Rice University, Houston, TX 
77005, USA

3 Department of Chemical and Biomolecular Engineering, 
Rice University, Houston, TX 77005, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10295-016-1851-6&domain=pdf


648 J Ind Microbiol Biotechnol (2017) 44:647–658

1 3

reactors coupled with limiting oxygen solubility and gas 
transfer obstacles are serious problems affecting reliabil-
ity and optimal productivity. In these large-scale processes 
inefficient production by a fraction of cells can have seri-
ous economic consequences as the non-productive oxygen 
limited cells not only do not produce the desired product 
in the normal amount, but also their metabolic by-products 
can affect the other cells in the bioreactor, limiting over-
all performance. Efforts to control such processes by reac-
tor design, gas transfer systems, and optimized electronic 
sensor-response systems have made technological advances 
for bioprocessing. However, the fundamental question of 
the physiology of microbial host and genetic modification 
of the host to optimize oxygen utilization has been less 
completely addressed.

There is a considerable background on factors affecting 
regulation of respiration. Too much respiration and oxida-
tion of carbon substrates, while being beneficial for cell 
energetics and for growth rate, lead to loss of carbon that 
does not go into product, especially if a reduced product 
is desired. Many reduced products of commercial interest, 
such as fuel molecules, are compounds more reduced than 
glucose, and many chemical intermediates for pharmaceuti-
cals, lactate or monomers for making polymers, fatty acids, 
etc. also require reduction reactions and similarly optimal 
formation of these molecules requires limiting oxidation of 
the feedstock for a high carbon atom yield process.

Respiration pathways

Oxygen is an effective electronic acceptor and can provide 
a significantly higher ATP/glucose yield (more than 30 
ATP per glucose under aerobic conditions vs only 2 ATP 
from the glycolysis pathway under anaerobic conditions). 

Aerobic cultures are, therefore, in general more robust than 
their anaerobic counterpart. However, since NADH is being 
consumed in the electron transfer chain (ETC), the intra-
cellular NADH/NAD+ ratio has been shown to decrease 
significantly with increasing culture dissolved oxygen lev-
els [139]. Hence, these opposing trends impose conflicting 
demands: a robust culture for rapid cell growth to achieve 
high biomass and high cell energetics under aerobic metab-
olism, and the opposing demand for NADH in product for-
mation most readily attained under anaerobic conditions. 
Microaerobic conditions have thus been shown experimen-
tally and theoretically to improve performance of a number 
of bioproduction systems. However, it is difficult to main-
tain a set dissolved oxygen level in a large-scale production 
environment due to incomplete mixing and balance with 
the rate of oxygen uptake by culture.

As part of its ability to adapt to different growth con-
ditions, E. coli alters the composition of its respiratory 
system [159]. Important factors influencing aerobic respi-
ration are listed in Table 1. The three types of respiratory 
components are (1) dehydrogenases, which carry out the 
oxidation of organic substrates and feed electrons into the 
mobile quinone pool, (2) quinones, which deliver reducing 
equivalents to the terminal oxidoreductases, and (3) oxi-
doreductases, which reduce the terminal electron accep-
tors [44]. The ETC of E. coli is composed of membrane-
anchored dehydrogenases that reduce the quinone pool 
(ubiquinone-8, Q8) under respiratory conditions. Of these, 
the nuo and ndh pathways are most important in aerobic 
conditions. The quinone redox state is sensed by the ArcB 
protein and relayed through phosphorylation of the tran-
scriptional regulator ArcA, to affect expression of genes 
of the TCA cycle and the electron transport chain; these 
levels of functional components are then adjusted to mod-
ify the cell’s respiration vs fermentative metabolism in an 

Table 1  Factors influencing respiration

Regulators of anaerobic and aerobic active metabolic genes Function

ArcAB Senses redox state of quinone in membrane and affects gene expression of aerobic 
and anaerobic metabolic genes

Fnr Becomes active at low oxygen and enhances anaerobic metabolism

FnrS, arcZ, FrsA, Dan Modulators of the aerobic anaerobic transition through effects on gene regulation

Proteins involved in the function of oxidizing NADH

 Cytochrome oxidase genes: cydAB, cyoABCD, and cbdAB Perform the connection between the reduced membrane protein and oxygen in the 
ETS

 Nuo system Provide a means of oxidizing NADH and feeding the ETS

 NADH oxidase Provides a direct means of oxidizing NADH

Electron carriers

 Ubiquinone Acts as the major electron carrier in the membrane to the cytochrome oxidases 
under aerobic conditions

 NADH The main soluble electron carrier in E. coli coupling with many cell metabolic 
oxo-reduction reactions
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aerobic–anaerobic transition. The amount of each compo-
nent is strictly regulated to optimize the respiratory chain 
according to the substrates present and the physiological 
needs of the cell. One important function of the respiratory 
chain is the maintenance of redox balance and the regen-
eration of NAD+ from NADH. Under aerobic growth E. 
coli normally makes two different NADH dehydrogenases, 
NAD I and NAD II, and two different terminal oxidases, 
cytochrome bo3 and cytochrome bd. The electron flux 
through these enzymes is dependent on the concentrations 
of the enzyme in the membrane, the NADH, quinone, and 
oxygen concentrations, and the steady-state characteristics 
of the enzymes (i.e. Vmax and Km values for NADH, qui-
none and oxygen).

E. coli cells regenerate NAD+ and generate proton 
motive force for ATP production through the respiratory 
chain. One way to reduce the activity of ETC and thus the 
amount of oxygen used is reducing the cytochrome pro-
tein levels [61, 78, 127, 128] or affecting assembly of the 
protein–membrane complex [95] and both of these ways 
affect the proteins responsible for the utilization of NADH. 
Another way is to control the level of quinone electron car-
rier involved in the transfer of electrons from NADH to 
essential membrane proteins during the process by inacti-
vating its biosynthetic pathway [147] and then adding dif-
ferent amounts of an analog of quinone back to the culture 
of cells that are unable to synthesize the quinone, such as 
coenzyme Q1 [172] and noting the change in metabolites 
formed.

Regulation of proteins involved in the aerobic–
anaerobic transition

The regulation of the aerobic–anaerobic shift in E. coli 
has been extensively studied. E. coli possesses a number 
of sensing/regulation systems for the response to avail-
ability of oxygen [3, 12, 30, 53, 65, 72, 90, 96, 122, 133, 
134, 136, 157, 158] and channels electrons from donor to 
terminal acceptors such that the overall redox potential dif-
ference is maximized for any given growth condition. The 
adaptive responses are coordinated by a group of global 
regulators, which includes Fnr (fumarate, nitrate reduc-
tion) protein, and the two-component Arc (aerobic respira-
tion control) system. With the initial onset of anaerobiosis, 
ArcA is activated, and if these conditions persist or become 
more anaerobic, Fnr is activated leading to the upregulation 
of ArcA amplifying its effect [72]. The oxygen levels (per-
cent oxygen) that gave rise to half-maximal synthesis were 
reported as 0.02–0.04% for ethanol, acetate, and succinate, 
and 0.1% for formate [12]. The pO0.5, which is defined as 
the pO2 value resulting in a half-maximal expression, for 
expression of the adhE gene encoding alcohol dehydro-
genase was ~0.08% oxygen [12] and for expression of 

cytochrome oxidases was measured [154] for cyd (maxi-
mal at 1–1.4%) and cyo shut-off at 1–4%. The global gene 
expression effects of Fnr and ArcA have been reported [11, 
133, 134] with the Fnr transition occurring at 0.1–2% and 
Arc at 1–4%. The Arc system is a two-component regula-
tory system composed of ArcA, the cytosolic response 
regulator, and ArcB, the transmembrane histidine kinase 
sensor. ArcB is activated during the transition from aerobic 
to microanaerobic growth [66, 67] in response to the redox 
composition of the quinone pool [46] including menaqui-
none or dimethylmenaquinone [1, 13, 141] whose synthesis 
does not require oxygen [94, 103, 143, 159]. ArcB under-
goes autophosphorylation, and the ~P group is transferred 
to ArcA by a His → Asp → His → Asp phosphorelay [45, 
47, 84]. Consequently, the increased level of phosphoryl-
ated ArcA represses the synthesis of the citric acid cycle 
enzymes, while it activates the expression of cytochrome 
d oxidase and enzymes involved in fermentative metabo-
lism [90, 96, 158]. The Fnr protein, [157, 160] is a tran-
scription factor that coordinates the switch between aero-
bic and anaerobic metabolism at low oxygen levels. Fnr 
contains a Fe-S cluster that serves as a redox sensor. In the 
presence of oxygen Fnr is converted to a non-DNA bind-
ing monomer form [11, 53]. The Fnr system induces the 
expression of genes that permit anaerobically growing E. 
coli to transfer electrons to alternative terminal acceptors 
[51, 90]. Moreover, active Fnr elevates expression of arcA 
in anaerobic cells. Fnr also affects a number of genes in E. 
coli whose function has not been determined [75].

The concentration of certain anaerobic metabolites also 
affects ArcB function [96]. A mutant of Fnr that is active 
aerobically [68] has been used in metabolic experiments of 
the aerobic–anaerobic transition [137–139] and these stud-
ies suggested the recycling of Fnr to the active form was an 
important aspect. The Fnr protein cycle has been examined 
theoretically [152, 153] to prepare a more complete kinetic 
model of Fnr activity that included assembly of the iron-
sulfur cluster and degradation by ClpXP protease [153]. 
The simulation of E. coli response to sudden oxygen star-
vation has been reported with software for analyzing and 
modeling the process [135].

A kinetic model of oxygen regulation of cytochrome 
production has been developed [124], and the metabolic 
flux analysis of various arc, fnr or other strains using C-13 
labeling technique has been reported [118, 173, 174]. The 
new findings of additional factors affecting the anaerobic–
aerobic transition such as small RNAs [48, 49, 97] add com-
plexity to the models of the transition. For example, ArcZ 
directly represses arcB, and is itself repressed by the ArcBA 
system, providing a negative feedback loop [97]. Another 
example is FnrS, a highly conserved, anaerobically induced 
small sRNA, whose expression is strictly dependent on Fnr 
and negatively regulates many genes encoding enzymes 



650 J Ind Microbiol Biotechnol (2017) 44:647–658

1 3

with aerobic functions [19, 37]. These studies add to the 
wide impact of processes regulated by the Arc and Fnr 
systems under microaerobic conditions [13, 19, 37, 125]. 
The discovery of new proteins that influence components 
of the transition, for example, the SixA phosphatase [55, 
100, 119], FrsA (fermentation protein) [81], and the major 
anaerobic nucleoid protein, Dan, that acts in DNA filament 
formation [89, 151] indicate there are further characters to 
consider in the aerobic–anaerobic transition in more detail.

Correlating the metabolic consequences of low oxygen 
with gene expression studies

The effects of low oxygen on gene expression and cell 
metabolism have been studied using C-13 labeling and 
flux analysis [144]. Studies have examined dynamics [34] 
and correlated models with experiments [23]. The general 
foundation concerning genes, regulators, and physiological 
implications of low oxygen have been reviewed [13, 17, 54, 
64, 154]. As oxygen levels are reduced the cell will shift 
from the use of the Cyo pathway to the Cyd pathway, then 
at lower oxygen levels the fermentative pathway engages, 
oxygen using pathways are shut down and NADH formed 
in glycolytic processes is recycled by forming reduced 
products from pyruvate, e.g. lactate and ethanol. The 
change in metabolite pattern in response to availability of 
oxygen also modulates gene expression as well as enzyme 
activity. The flow through the citric acid cycle is inhibited 
by product accumulation. Acetyl-CoA is produced in oxy-
gen-rich environments by pyruvate dehydrogenase complex 
(Pdh) or anaerobically by pyruvate formate lyase (Pfl). Pdh 
is inhibited by ATP, acetyl-CoA, and NADH [41, 50, 76]. 
Active Pfl is a radical form protein inactivated by oxygen 
[85] but the YfiD protein can reactivate Pfl [162, 169]. 
Reduced flux of pyruvate through Pfl and Pdh results in 
pyruvate accumulation that activates lactate dehydrogenase 
(Ldh) [164]. These soluble metabolites exhibit effects on 
gene expression [77] and can affect physiological proper-
ties of surrounding cells. Useful recent models of the cen-
tral metabolic pathway [27, 74], the response of the Fnr 
system [152, 153], and the integration of “omic” and signal 
transduction data [31] have been published and serve as a 
framework in further modeling the transition.

The electron carrier quinones of the electron transfer 
chain

The lipid-soluble quinones that carry electrons within 
the membrane between electron input protein  complexes 
and the cytochrome oxidases for reaction with the elec-
tron acceptor (oxygen) are generally ubiquinone with 
an isoprene tail of varying length in different organisms 
and this biochemistry and the methods for production of 

Coenzyme Q or menaquinone (vitamin K) for health have 
been reviewed [5, 6, 29, 69, 80, 103, 104, 146, 163]. Under 
more anaerobic conditions or when using a different elec-
tron acceptor, menaquinone or dimethylmenaquinone acts 
as the carrier [142, 166]. The composition and level of the 
quinone carrier pool is altered under differing conditions of 
electron acceptors [143, 165].

The biosynthetic pathways of the quinone carriers have 
been determined and the enzymes and corresponding genes 
of E. coli have been identified. Studies of the growth of 
various mutants and the levels of ubiquinone have been 
reported. There is a low amount of ubiquinone in the cell 
under normal aerobic growth conditions. However, this low 
concentration is more than sufficient since mutations result-
ing in a moderately reduced level do not have drastic effects 
on cell growth physiology but grow more slowly [115] and 
have hypersensitivity to thiols [170]. For example, ispA 
mutants disrupted for farnesyl diphosphate synthase have 
lower levels of ubiquinone-8 and menaquinone-8 (less than 
13 and 18%), respectively [42]. UbiX mutants (an alterna-
tive to UbiD activity) have lower ubiquinone levels [52, 
171]. The ability of ubiquinone-8 to serve in the electron 
transfer chain with type II dehydrogenases was somewhat 
limited in membranes and cells that did not contain phos-
phatidylethanolamine in the phospholipid [107].

Genetic approaches to control respiration 
and oxygen utilization

Recent work on regulating respiration and generating 
altered E. coli that could form lactate or other reduced 
compounds under aerobic conditions has progressed based 
on the literature of genes required for respiration and newly 
appreciated genes that have a role in redox transfer. This 
avenue was advanced by Palsson’s group in articles dem-
onstrating aerobic fermentation properties on E. coli with 
several mutations [127, 128]. In that work the terminal 
cytochrome oxidase genes (cydAB, cyoABCD, and cbdAB) 
were inactivated and subsequent selection allowed a strain 
to be obtained that could carry out mixed acid or primarily 
lactate production (0.8 g/g lactate from glucose) under aer-
obic conditions. Additional removal of a quinol monooxy-
genase gene (ygiN) led to activation of ArcA aerobically. 
This strain formed D-lactate as a sole by-product under 
both oxic and anoxic conditions. The quinone pool changed 
from ubiquinones in normal cells to menaquinones in the 
mutant strain [128]. This physiological situation led to 
activation of the ArcB/ArcA system and altered the meta-
bolic flux pattern with the flux through the tricarboxylic 
acid (TCA) cycle being greatly reduced, while glycolysis 
and formation of oxaloacetate were enhanced. The find-
ing that transcriptomic results could be correlated with the 
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in vivo function was encouraging for future gene manipu-
lation strategies in the redox arena. In studies of E. coli 
mutants with deletions of three cytochrome terminal oxi-
dases the results showed a fermentative metabolic pattern 
in the presence of oxygen [14]. The electron flux through 
cytochrome bd-II oxidase did not form a proton motive 
force for ATP generation and cells then conducted ATP 
synthesis only by substrate level phosphorylation reactions. 
Thus the P/O ratios can vary severalfold depending on the 
electron flux distribution through the respiratory chain. An 
interesting hypothesis based on a genome-scale metabolic 
model of E. coli was proposed [175]. The authors pro-
posed that bacterial cells managed the protein composition 
of the cytoplasmic membrane for optimal ATP production 
under the growth condition by regulating the production 
of ATP by either the coupled ETC or substrate-level reac-
tions and that membrane occupancy and total allowable 
protein level in the membrane may constrain cell metabo-
lism, phenotypic properties and oxygen-energy physiology. 
The study of gene regulation and coordination of nitrogen 
and carbon metabolism by analysis of transcript levels of 
metabolic pathway genes and metabolic gene regulators in 
E. coli with mutations in cytochrome oxidases, and regula-
tory genes, fnr, and fur and others, also demonstrated the 
value of transcriptomics in metabolic analysis [82, 83]. 
The examination of the coordination of metabolic conse-
quences of such genetic changes suggested an interconnec-
tion between cAMP and PII-Nitrogen regulatory systems 
and illustrates the connections of more complex networks 
that should be taken into account in practical applications 
related to metabolic engineering and defining optimal cul-
ture conditions.

The idea of control of respiration and of avoiding exces-
sive loss of carbon to the formation of undesired products 
such as CO2 has been taken to the industrial organisms, 
Corynebacterium glutamicum [78] and Zymomonas mobilis 
[60]. A C. glutamicum strain that had a completely inac-
tivated aerobic respiratory chain (cydAB qcr) was able 
to grow aerobically in complex medium but had a 70% 
reduced biomass yield and could also grow in glucose 
minimal medium after supplementation with peptone. The 
modified C. glutamicum strain displayed a fermentative 
metabolism with L-lactate as the major metabolite and suc-
cinate and acetate formed in lesser quantity. The observa-
tion that phosphofructose kinase overexpression is criti-
cal for high production of lactate in C. glutamicum under 
oxygen deprivation has been reported [155]. The use of the 
normally aerobic organism, C. glutamicum, under oxygen 
deprivation has been examined for high yield production of 
several commercial products [56, 57, 71, 106, 120, 121]. In 
the case of Z. mobilis, mutation of genes leading to respira-
tory deficiency generated strains with higher ethanol fer-
mentation under aerobic conditions. The strains were also 

more thermotolerant and it was considered that the strains 
benefited from the lower amount of reactive oxygen species 
and reduced stress associated with oxygen respiration.

The use of oxygen in the electron transport chain has 
been studied in E. coli and many organisms. This mem-
brane system contains various cytochromes and electron 
carriers, such as the quinone, ubiquinone. One way to try to 
control the extent of electron transfer chain (ETC) activity 
and thus the amount of oxygen used would be to control 
the cytochrome protein levels by controlling their expres-
sion [10, 109, 110]. This strategy exists in the native cyo 
and cyd systems that respond to different levels of oxygen 
[17, 109, 154]. Another viewpoint is to consider the level 
of quinone [5]; Zhu et al. [172] have shown by knockout 
of the biosynthesis pathway and adding small amounts of 
ubiquinone back to the culture, respiration could be con-
trolled. Another approach is to modify the biosynthesis of 
the quinone electron carrier by altering expression of that 
operon encoding the enzymes of the biosynthetic pathway. 
Some of these alternatives have been explored previously; 
however, it is experimentally difficult to control the exact 
level of a partially-on system by these means, and gener-
ally it was found that cells behaved either as unaffected 
wild type or were completely inactive for the pathway, 
enhancing interest in other ways to finely control levels of 
such key molecules by genetic control of the network (Ben-
nett and San, unpublished data). In general, control can be 
difficult since the level of the factor may be very low, for 
example, the quinone pool is only about 1 nmol/mg DCW 
[38, 52, 170, 171] so changes in expression of the operon 
encoding the biosynthetic pathway for the quinone can 
overshoot or undershoot the transition threshold level and 
make the ETC always off or always on.

The concept of manipulation of a key cofactor 
to control a large flux pathway

In cell metabolism, it is desired to control a large flux 
using a controller that can be regulated at an appropriate 
level, either at a defined fixed level or at a feedback con-
trolled response level. At the genetic level, synthetic biol-
ogy approaches of “gene circuits” have allowed control of 
cell responses [58, 59, 98, 130, 148, 150] by modifications 
in promoter strength [20, 33, 105], subjecting expression to 
exogenous parameters such as inducer or light [86, 149] or 
cell formed substances in feedback loops [21, 26, 36, 62, 
93] using repressors and antirepressors [24], activators and 
layered circuits [111], inverters [40, 123], or RNA respon-
sive elements that act primarily at the level of transcription 
or translation [7, 8, 18, 25, 32, 88, 126, 145] which affect 
the level of the appropriate enzyme(s) of a biosynthetic 
pathway.
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An additional strategy to finely control a large metabolic 
flux by using a “metabolic transistor” approach has been 
proposed and its implementation feasibility has been exam-
ined [168]. In this approach a small change in the level or 
availability of a key participant in generating the large flux 
is controlled and the change in this basal level, considered 
as a base current in a transistor, has a large effect on the 
flux through the major pathway analogous to the change 
in current in an electrical transistor [156, 161]. There are 
a number of ways in which the level of a small molecule 
in the cell can be manipulated. Among these are the direct 
alteration of the expression of the biosynthetic pathway via 
promoter or translation control; another means to affect 
the level could be to degrade, excrete or otherwise bind 
the small molecule so it cannot participate in the reaction 
where it is required for the major flux.

In the “metabolic transistor” approach, the precursors 
leading to the biosynthetic pathway of the small molecule 
were being manipulated by effective partitioning of these 
precursor intermediates at the introduced node. This precur-
sor control approach is particularly effective for a pathway 
network that consists of irreversible or close to irrevers-
ible reactions since the first step of the pathway network 
exerts the most control on its metabolic flux according to 

metabolic control theory. Wu et al. [168] has successfully 
demonstrated the control the ETC in wild-type E. coli 
by fine-turning the expression of geranyl diphosphate:4-
hydroxybenzoate geranyltransferase from Lithosper-
mum erythrorhizon (lePGT-1). The reaction catalyzed by 
lePGT-1 plays as a competing pathway on the substrates 
of the ubiquinone-8 (Q8) synthesis pathway, namely at IPP 
and 4-HB, and introduction of this new node is effective 
in affecting the flow through the Q8 biosynthetic pathway 
and subsequently the level of Q8. The Q8, which serves 
to deliver reducing equivalents between electron donors, 
such as NADH dehydrogenase (NDH), succinate dehy-
drogenase (SDH), and terminal electron acceptors, such as 
cytochrome oxidases or reductases, is an essential element 
under aerobic respiratory conditions [6] (Fig. 1). Hence, 
controlling the level of intracellular Q8 has a direct influ-
ence on the ETC activity.

Using this approach, Wu et al. [167, 168] showed that 
it is possible to control the activity of the electron transfer 
chain in a tunable manner and manipulate the production of 
reduced products while limiting consumption of oxygen to 
a defined amount even under fully aerobic conditions. The 
intracellular Q8 concentrations showed a graded response 
to the lePGT-1 induction levels (IPTG concentrations). 
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Fig. 1  A schematic showing the interplay/competition for NADH 
between the electron transfer chain (ETC) and a reduction reac-
tion leading to reduced product formation. The metabolic transis-
tor approach to control the ETC activity through Q8 manipulations 
is also shown. The intracellular ubiquinone Q8 concentration can be 
adjusted by dialing lePGT-1 expression up and down. Higher lePGT-1 
expression increases the drainage of two key Q8 biosynthetic pre-
cursors, GPP and 4-HB, leading to a lower intracellular Q8 concen-

tration. In addition, controlling the level of intracellular Q8 has a 
direct influence on the ETC activity. Lower the ubiquinone Q8 con-
centration will reduce ETC activity and increase NADH availability. 
Increased NADH availability will provide more reducing equivalence 
for reduced product formation. Gpp geranyl pyrophosphate, 4-HB 
4-hydrobenzoate, G-4-HB geranyl-4-hydrobenzoate, lePGT-1 geranyl 
diphosphate:4-hydroxybenzoate geranyltransferase from Lithosper-
mum erythrorhizon
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Furthermore, the authors have shown that it is possible to 
achieve a maximum theoretical yield of lactate production 
under fully aerobic conditions and minimize the “carbon 
burnt” (carbon lost as carbon dioxide) by limiting the ETC 
activity via lowering the intracellular Q8 concentrations.

Conclusions and future prospects

The complexity of respiratory metabolism and its control 
has been explored through biochemical and genetic experi-
ments. Routes for the more precise control of oxygen uti-
lization under conditions providing microaerobic culture 
conditions have been proposed and demonstrated. With the 
advent of synthetic biology and the ability to test numerous 
regulatory designs, particular applications useful to indus-
trial processes that allow more reliable and controllable and 
optimized operations of large-scale cultures are likely to 
be implemented. The potential application of a “metabolic 
transistor” approach to control respiration, such as situa-
tions where biosynthesis or availability of a limiting factor 
is crucial for a biological process, is appealing. With further 
study of the variety of respiratory systems existing in wide 
diversity of microbes, the understanding of the controls that 
make an organism well suited to an ecological niche will 
become more apparent.
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