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Introduction

The past few decades have witnessed the commercial appli-
cation of bioleaching to extract copper from secondary 
copper sulfide ores [9, 61]. It is estimated that at least 15 % 
of current worldwide copper production was obtained by 
heap bioleaching [9]. Currently, processing of abundant yet 
refractory primary copper sulfide minerals, such as chalco-
pyrite and enargite is an area of active study [4, 10]. One 
major impediment for the application of bioleaching to pro-
cess primary copper sulfide minerals is its low bioleaching 
rate by mesophiles [9]. Extreme thermoacidophiles pro-
vide an important alternative to achieve this goal because 
their use avoids mineral passivation that is the formation of 
surficial jarosite and sulfur that limits copper dissolution 
[4]. Due to the exothermic nature of copper sulfide mineral 
biooxidation, the temperature inside large ore heaps can 
reach 60–80 °C [6, 48]. This temperature inhibits bioleach-
ing mesophiles and moderate thermoacidophiles but is 
suitable for extreme thermoacidophiles (optimal growth 
Tm ≥ 60 °C, pH ≤ 3).

The acidity of the leachate, an important physical 
parameter, affects the biodiversity of bioleaching microbial 
consortia and their biooxidation activities which in turn 
affects bioleaching rates and recovery of copper [25, 59, 
68]. The acidity of the leachate derived from a bioleach-
ing operation is determined by the following factors: (1) 
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Content of acid-consuming gangue minerals, such as car-
bonate; (2) Composition and mineralogy of the copper 
sulfide ores (e.g., the proportion of acid-generating min-
eral sulfide such as pyrite; and the acid-consuming mineral 
sulfide such as chalcopyrite and pyrrhotite); (3) Reduced-
sulfur-compounds oxidation activities of microbial consor-
tia; (4) Weather conditions that would condense or dilute 
the leachate by way of evaporation or rainfall; and (5) The 
formation of secondary mineral ore phases that generate 
protons during bioleaching [7, 50]. A high concentration 
of Fe3+ in the leachate can result in formation of jarosite 
that precipitates on the surface of copper sulfide minerals at 
pH values up to 2, a process called passivation. Passivation 
inhibits dissolution of copper sulfide minerals. It is well 
known that in order to obtain high copper recovery yield in 
the bioleaching industry, it is necessary to maintain a high 
concentration of Fe3+, the major bioleaching agent in the 
leachate, by reducing the pH of the leachate from pH 2 to 1 
or even lower [26, 51].

Regulation of the pH within large heaps is technically 
not possible precluding a homogeneous environment during 
bioleaching. Instead the pH fluctuates due to unbalanced 
penetration of the leachate inside the heap together with 
the factors mentioned above [15, 64, 65]. The microniches 
inside the heap are spatially and temporally heterogenous 
with regards to acidity. Therefore, extreme thermoacido-
philes that have a wider range of growth pH value, i.e., with 
higher acid resistance, should have a competitive advantage 
for bioleaching. Extreme thermoacidophiles belonging to 
the genera Acidianus, Metallosphaera and Sulfolobus were 
isolated originally from geothermal sites and have since 
achieved recognition for their utility in bioleaching [8, 13, 
21, 27–29, 31, 32, 35, 40, 46, 47, 49, 55, 57, 66, 67] (see 
supplementary table S1). However, as some of these organ-
isms grow poorly or not at all below pH 2.0, is it essen-
tial to improve this trait and assess its utility for potential 
application. As there are as yet no reports on the production 
and characterization of such organisms, it has been unclear 
whether increased acid resistance is a beneficial microbial 
trait in bioleaching. In this study, a more acid resistant 
derivative of wild type M. sedula named SARC-M1, was 
generated using adaptive laboratory evolution and used to 
test this possibility.

Materials and methods

Strains and cultivation

Strains used in this study included Metallosphaera sedula 
(DSM 5348T) (wild type) and the acid resistant deriva-
tive M. sedula SARC-M1. They were grown in basal salts 
medium (BSM) [2] as modified by Brock [11]. Complex 

medium (BSM) contained 0.2  % (w/v) tryptone adjusted 
to the indicated pH using sulfuric acid. The cultures were 
incubated at 75  °C in either glass screw-cap flasks with 
aeration in orbital baths or in glass screw-cap test tubes. 
Test tube cultures were placed in rotary drum agitators that 
were mounted in incubators with external DC motors [40]. 
Planktonic growth was monitored by light absorption at a 
wavelength of 540 nm using a Cary 50 spectrophotometer.

Isolation and screening of acid resistant M. sedula 
SARC‑M1

Wild type M. sedula was inoculated from a frozen per-
manent into complex medium adjusted to a pH of 2.0 in a 
glass screw-cap test tube for heterotrophic growth. Mid-log 
phase cells (2 × 108) were sub-cultured into fresh complex 
medium adjusted to a pH of 1.50. This culture was pas-
saged into fresh medium of increasing acidity in a repeated 
manner until growth was achieved at pH 0.90 (126  mM 
H+). A clonal population was prepared using a solid com-
plex medium adjusted to a pH of 3.0 consisting of 0.6 % 
(w/v) phytagel (Sigma, MO) that was incubated at 75  °C 
for 5 days.

Cultivation of strains

Wild type M. sedula and M. sedula SARC-M1 were 
grown heterotrophically to mid-exponential phase in com-
plex medium adjusted to pH 2.0 and sub-cultured into 
media with different pH values ranging from 0. 92 to 3.0, 
respectively.

Mineral components

The composition of the enargite concentrate used in this 
study was enargite (60 %), pyrite (30 %), nowackiite (5 %) 
and quartz (5 %), as indicated by X-ray diffraction analy-
ses. The main chemical composition of the concentrate is 
(w/w): 27.66 % Cu, 9.59 % As, 14.01 % Fe, 39.75 % S and 
0.82 % Zn. The particle size of this concentrate was super-
fine and 84.1 % was less than 30 μm in diameter.

Bioleaching experiments

Enargite concentrate 0.5 % (w/v) was washed by incubat-
ing in 50  mL BSM medium at pH 2.0 and incubated at 
75 °C with shaking (175 rpm) for 24 h. The enargite resi-
due was then collected by centrifugation at 3,000 x g for 
5 min then re-suspended in 50 mL of fresh BSM medium. 
Flasks were adjusted to pH 2.0 or pH 1.2, and an identical 
amount of wild type M. sedula or M. sedula SARC-M1 was 
inoculated into each flask at each pH value, respectively. 
Cultures were incubated at 75 °C with shaking (175 rpm). 
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Abiotic controls were included that were adjusted to identi-
cal pH values. Bioleaching leachate samples were sampled 
at intervals of 3-day increments.

Analysis methods

Planktonic cell numbers were determined using a Thoma 
counting chamber. The pH of the leachate samples was 
measured using a pH meter (Fisher Scientific, Model 
AB30) and the Eh values were determined using a platinum 
electrode with an Ag/AgCl reference electrode (American 
Marine Pinpoint ORP Monitor). The concentration of Fe2+ 
and Fe3+ ions was determined using the Ferrozine assay 
[53]. The concentration of Cu2+ was measured spectropho-
tometrically using diethyldithiocarbamate (DDTC) as an 
indicator at 440 nm [60].

Genome sequencing and RNA sequencing

Genomic DNA was isolated from M. sedula SARC-M1 
as described previously [1]. RNA samples were extracted 
from mid-log phase wild type M. sedula grown at pH 2.00 
and 1.50, and M. sedula SARC-M1 grown at pH 0.95. 
The purity and integrity of the DNA and RNA samples 
were confirmed by spectroscopic measurements (the ratio 
of absorbance at 260 nm to absorbance at 280 nm and the 
ratio of absorbance at 260  nm to absorbance at 230  nm) 
and confirmed by agarose gel electrophoresis. DNA and 
RNA libraries were prepared using DOE-JGI’s automated 
process with a BioMek FX robot. The RNA samples were 
rRNA depleted using exonucleases (Epicenter mRNA-only 
prokaryotic RNA isolation kit) prior to the rest of the pro-
cess. DNA and RNA samples were sheared using a Covaris 
E210 sonicator, followed by end repair and phosphoryla-
tion. Fragments ranging from 100 to 500 bp were selected 
for sequencing using an automated solid phase reversible 
immobilization selection system. Addition of 3′terminal 
adenine was made to the fragments followed by adaptor 
sequence ligation. RNA libraries with adaptors added were 
converted into cDNA libraries by reverse transcription. 
Genome and transcriptome sequencing of the libraries was 
done using an Illumina Hiseq 2500.

Sequences were mapped to the wild type M. sedula ref-
erence genome (NC_009440) using BOWTIE2 (ver 2.1.0) 
and SAMTOOLS (ver 1.0). Genome sequence information 
is available on NCBI. Mutations in the genome sequences 
that were located within open reading frames and identi-
fied through sequence comparisons were analyzed in more 
detail determining their codon positions and the effects 
they would have on protein sequence. The coordinates of 
each mutation were also cross-referenced to locations of 
the known domains in each protein to verify whether or 
not any mutations occurred within important functional 

domains. RNAseq read depth was evaluated across ORFs 
to eliminate artifacts and identify antisense transcripts and 
counts for each ORF were normalized using the RPKM 
method [45].

Nucleotide sequence accession numbers

The nucleotide sequences of this project have been depos-
ited with GenBank under accession no. CP012176 for 
sequenced M. sedula SARC-M1; and RNA-Seq data are 
available in the Gene Expression Omnibus under the acces-
sion number GSE81414.

Results and discussion

Heterotrophic growth of wild type M. sedula and its 
SARC‑M1 derivative

M. sedula SARC-M1 was isolated by adaptive labora-
tory evolution modified for use with extremophiles [41]. 
Repeated passage in media of increasing acidity followed 
by clonal isolation yielded a derivative lineage that could 
be stored and recovered without loss of its modified traits. 
To assess these traits, SARC-M1 was transferred from pH 
0.92 to pH 2.0 and passaged twice. Wild type M. sedula 
was also passaged twice at pH 2.0. Both strains were then 
transferred to media at pH 2.0 and pH 0.92. Both strains 
exhibited similar patterns of growth at pH 2.0 (Fig. 1a). At 
pH 0.92 M. sedula SARC-M1 grew at a slow rate without 
a lag reaching stationary phase after prolonged incubation 
(207 h) (Fig. 1a). In contrast, no growth was observed for 
wild type M. sedula at this pH (Fig. 1a). To better assess the 
growth characteristics of these strains they were evaluated 
at pH values ranging from 0.92 to 3.0 (Fig. 1b). M. sedula 
SARC-M1 had a higher growth rate at pH values between 
0.92 and 1.40, and from 2.30 to 3.20. In contrast, wild type 
M. sedula had a slightly higher growth rate at intermedi-
ate pH values ranging from 1.40 to 2.30. This suggests that 
M. sedula SARC-M1 would have a competitive advantage 
under bioleaching conditions where pH values fluctuate.

Enargite bioleaching capacity of M. sedula SARC‑M1 
and wild type M. sedula

The enargite bioleaching capacities of M. sedula SARC-
M1 and wild type M. sedula were then compared at ini-
tial pH values of 2.0 and 1.2, respectively (Fig.  2). Only 
15.83 and 19.05  % of available copper was solubilized 
from enargite for abiotic leaching samples. After 21 days of 
incubation at pH 2.0, M. sedula SARC-M1 and wild type 
M. sedula solubilized similar amounts of copper, respec-
tively (60.63 and 64.07 %). Under more acidic conditions, 
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incompatible with the wild type strain, M. sedula SARC-
M1 solubilized 23.78 % more copper than the wild type M. 
sedula (85.75 vs 61.97 %). The variation in pH value, Eh 
and total iron concentration in the leachate during enargite 
bioleaching was also determined (Fig.  3). The pH value 
of the leachate decreased gradually for both strains dur-
ing incubation (Fig. 3a). At a starting medium pH of 2.0, 
the pH value of the wild type M. sedula culture was always 
lower than that of M. sedula SARC-M1 suggesting that its 
sulfur oxidation activity was greater. Conversely, at a start-
ing pH value of 1.20, the pH of the M. sedula SARC-M1 
culture was lower than that of wild type M. sedula again 
consistent with differences in sulfur oxidation activity. 
The abiotic control had a low Eh value of 340  mV (Ag/
AgCl) during the bioleaching process (Fig. 3b). The Eh of 
the leachate decreased slightly during bioleaching under 
the higher acidity. Only traces of total iron were present 

in the leachate of the abiotic control at either pH values 
(2.0 or 1.20) indicating that enargite pyrite was resistant 
to acid dissolution (Fig. 3c). The total iron in the leachate 
of wild type M. sedula was always higher than that of M. 
sedula SARC-M1 at an initial pH of 2.0. This corresponded 
to a higher degree of copper solubility (Fig.  2). The total 
iron concentration in the leachate of wild type M. sedula 
and M. sedula SARC-M1 were comparable during enar-
gite bioleaching at initial pH of 1. 20 (Fig. 3c), while the 
amount of solubilized copper by the wild type M. sedula 
was 23.78 % lower compared to that of M. sedula SARC-
M1 (Fig.  2). This might be due to the sulfur oxidation 
capacity of wild type M. sedula suffering from some degree 
of acid inhibition as the pH of its culture supernatant was 
higher than that of M. sedula SARC-M1 (Fig. 3a). Perhaps 
elemental sulfur together with other inhibitory precipitates 
accumulate on the surface of enargite and inhibit further 
dissolution [56].

Genome sequencing of M. sedula SARC‑M1

The basis for acid adaptation of SARC-M1 could be caused 
by mutations arising during successive passage and their 
identity might provide insight into the mechanism of acid 
resistance. To assess this possibility, the genome of the 
M. sedula SARC-M1 was determined and compared to 
the recently determined genome sequence of wild type M. 
sedula [40]. Based on this comparison, the genome of M. 
sedula SARC-M1 contained a total of four mutations in 
open reading frames and intergenic regions (Table  1). A 
tabulated summary of these mutations is presented with 
detailed information including mutation position in the 
genome, gene annotation, mutation type, gene/protein 
length and its proximity to identified domains (Table  2). 
Msed_0408 is annotated as an amino acid/polyamine/
organocation transporter. A nonsynonymous mutation, 
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Ser318 to Pro318, was mapped to its Pot E domain. Pre-
vious studies in E. coli demonstrated that Pot E was a 
putrescine-ornithine antiporter that modulated intracellular 
pH homeostasis by consuming cytoplasmic protons under 
acidic stress [58]. Bioinformatic analysis indicated that this 
mutated site was located in a transmembrane helix result-
ing in its distortion; therefore, the function of Msed_0408 

should be affected. A one nucleotide deletion also was 
found at position 812 in Msed_1517, previously annotated 
as a pseudogene but subsequently confirmed as the first 
archaeal PitA ortholog that regained function by insertion 
mutation [40]. The mutation at position 812 was unlikely to 
alter protein function because of the presence of several in 
frame stop codons in a promoter proximal location.
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Table 1   Summary of sequencing coverage and mutations

* No overlap with mutations detected in wild type M. sedula

Strain name Depth of coverage by Illumina reads Substitutions in ORFs Substitutions in intergenic regions Reference

Wild type M. sedula DSM5348 1050-fold 24 3 [40]

M. sedula SARC-M1 143-fold 2* 2 This study

Table 2   Mutation in acid-adapted M. sedula SARC-M 1

Genome coordinate Substitution and description Msed ORF Gene function Mutation location Domain affected

360, 678 A → G, nonsynonymous
(Ser → Pro)

0408 Amino acid/polyamine/organocation 
transporter

nt 952/1233;
aa 318/410

Pot E

1,480,412 1 nt deletion 1517 Pseudogene nt 812/854
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Transcriptomic response of M. sedula SARC‑M1 
and wild type M. sedula to acid stress

RNA-seq analysis with a read depth of 29 million to 32 
million raw reads per transcriptome was conducted to 
examine changes in gene expression, with 98.86, 98.79, 
and 98.60  % of the raw reads for the transcriptome of 
wild type M. sedula grown at pH 2.00 and 1.50, and M. 
sedula SARC-M1 grown at pH 0.95, uniquely mapped to 
the genome. Compared to the transcriptome of wild type 
M. sedula grown at pH 2.0, 281 and 260 genes, respec-
tively, with greater than twofold changes were identified 
in the transcriptome of wild type M. sedula grown at 1.50 
and M. sedula SARC-M1 grown at pH 0.95 (supplemen-
tary table S2). Many of the ORFs that had expression 
changes in SARC M-1 (acid-adapted) grown at pH 0.95 
also showed altered expression in wild type M. sedula 
grown at pH 1.5 (acid stress conditions). One hundred and 
fifty-three of those altered genes were up-regulated in both 
wild type M. sedula and M. sedula SARC-M1 (Fig.  4a), 
while only 30 genes were down-regulated in both transcrip-
tomes (Fig. 4b). Ninety-one of the changes were ORFs for 

hypothetical proteins and proteins of unknown function in 
SARC M-1 gown at pH 0.95 (Fig. 4c). The remaining 169 
affected ORFs that had annotated functions were sorted 
into 9 categories. These included cellular metabolism (66 
ORFs), transporters (27 ORFs), electron transfer chain 
(ETC) (18 ORFs), DNA and RNA metabolism (18 ORFs), 
amino acid metabolism (11 ORFs), signal transduction (15 
ORFs), protein modification (7 ORFs), fatty acid synthe-
sis extracellular proteins (3 ORFs), and antioxidant system 
(4 ORFs) (Fig.  4c). The majority of ORFs with >twofold 
changes of expression in both transcriptomes included the 
genes for signal transduction and transcriptional regula-
tion, antioxidant system, electron transfer chains, protein 
modification, cellular metabolism and hypothetical protein. 
This was consistent with the idea that grown at a lower pH 
imposed a common stress evident in both transcriptomes. 
In many cases, the changes in pH 1.50-grown wild type 
were of a lesser magnitude. This could indicate that the 
enhanced expression of these genes was essential for M. 
sedula SARC-M1 to survive in a more acidic environment.

Most of the differentially expressed genes that encoded 
proteins involved in signal transduction and transcriptional 

Fig. 4   Venn diagram of the up-regulated (a) and down-regulated (b) 
gene numbers (with >twofold changes) between pH 1.5-grown wild 
type M. sedula and pH 0.95-grown M. sedula SARC-M1. Transcrip-

tomic profiles of pH 1.5-grown wild type M. sedula (c) and pH 0.95-
grown M. sedula SARC-M1 (D) of genes with >twofold changes. 
Fold changes are relative to pH 2.00-grown wild type M. sedula
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regulation, were commonly observed in both transcrip-
tomes with similar expression patterns (either up- or 
down-regulated). This pattern could represent induction of 
a genome-wide transcriptional response to extreme acid-
ity and thereby constitute an acid stress-response regulon. 
In addition, this could partially explain why the majority 
of these genes with altered expression levels were shared 
in both transcriptomes. Msed_0486, Msed_0970 and 
Msed_1251 encode putative signal transduction proteins 
with CBS (cystathionine β-synthase) domains (Pfam: 
PF00571) and these may sense cell energy levels and other 
physiological pathways [5]. Msed_0715 encodes a PadR 
family (accession no. PfamPF03551) transcriptional repres-
sor that might involve in regulating multi-drug resistance 
and detoxification [12]. Previous studies showed that the 
PadR family repressors LadR and LmrR, negatively regu-
lated the expression the genes encoding the ABC-type 
multidrug resistance transporters in Listeria monocytogen-
esis and Lactococcus lactis, respectively [30, 69]. There-
fore, the upregulated expression of Msed_0715 might lead 
to the downregulation of genes encoding the transporters. 
In addition, the regulatory protein ArsR, Msed_0717, was 
significantly up-regulated under acid stress (>fivefold). 
Msed_0717 might be involved in the regulation of genes 
encoding proteins relevant to acid stress responses since 
genes belonging to the ArsR family regulate genes with a 
diversity of physiological functions including regulation 
of heavy metal resistance genes/operons [44]. Msed_0892 
and Msed_1126 encode a GntR family transcriptional 
regulator, which typically repress their target genes in the 
absence of their ligand [20]. Therefore, the up-regulation 
of Msed_1126 under acid stress could be responsible for 
the down-regulation of other genes, while the down-reg-
ulation of Msed_0892 could lead to the up-regulation of 
other genes. Msed_2209 encodes a transcription initiation 
factor IIB, which plays an essential role in pre-initiation 
complex assembly and transcription initiation by recruiting 
RNA polymerase II to the promoter [14]. The upregulated 
expression of this gene would lead to the upregulation of 
various genes across the genome.

Four genes encoding proteins belonging to protein 
integrity systems were upregulated in both transcriptomes. 
Msed_0242 encoding a membrane-bound heat-shock pro-
tein HtpX that probably participated in the proteolysis of 
misassembled and misfolded membrane proteins pro-
duced under extreme low pH. Previous study showed that 
the homolog of Msed_0242 in E. coli was involved in the 
proteolytic quality control of membrane proteins [52]. 
Msed_0640 encoded the heat-shock protein, Hsp20, and 
could protect the cell by preventing irreversible protein 
aggregation induced by the stress [34, 54]. Msed_1264 
and Msed_1889 encoded ferritin and superoxide dis-
mutase, respectively. Their upregulation could indicate they 

probably played an essential role in mitigating the toxicity 
of reactive oxygen species to cellular DNA and proteins 
under oxidative stress [19, 42, 62].

Nine genes encoding electron transfer chain components 
were commonly upregulated in both transcriptomes. Four 
genes (Msed_0321 to Msed_0324) encoding subunits of 
the membrane-bound SoxEFGHIM terminal oxidase com-
plex [3] and 3 were genes (Msed_1428, Msed_1895 and 
Msed_1896) encoding subunit of NADH-ubiquinone oxi-
doreductase were upregulated. Their upregulation might 
indicate more energy was generated for energy-consum-
ing metabolic processes. Two genes (Msed_1018 and 
Msed_1369) encoding peptidases were upregulated impli-
cating a role in protein processing [18]. Msed_0593 and 
Msed_0820 encoding mechanosensitive ion channel pro-
teins were upregulate and could alleviate excessive turgor 
pressure induced by extreme acidity. Their homolog in E. 
coli was activated by tension in the membrane and opened 
to relieve excess turgor generated under hypoosmotic shock 
[33, 37]. Most of the genes (65 ORFs) encoding hypo-
thetical protein (or protein with function unknown) were 
also commonly expressed with >twofold changes in both 
transcriptomes.

Additional transcriptomic differences between tran-
scriptomes included the following categories: DNA and 
RNA metabolism, transporter and electron transfer chain 
(Fig.  4c, d). These transcriptomic differences between 
SARC M-1 and wild type M. sedula provided insights into 
mechanisms required for the survival of SARC M-1 under 
extreme acidity. Fifteen ORFs involved in DNA and RNA 
metabolism were down-regulated in this strain. While only 
three of these ORFs were downregulated in the transcrip-
tome of wild type M. sedula grown at pH 1.50. This could 
indicate modulation of nucleic acid metabolism under 
extreme acidity. There were nine transporters that were 
down-regulated in the acid-adapted strain SARC M-1 at 
pH 0.95 but not the acid-stressed wild type M. sedula at pH 
1.50. These might improve acid adaptation if excess pro-
tons enter the cell through these. Seven more ORFs encod-
ing electron transfer chain components were only upregu-
lated in the transcriptome of M. sedula SARC-M1 grown 
at pH 0.95 and could indicate a requirement for increased 
energy required for proton extrusion under acid stress.

Difference in the expression of genes encoding pro-
teins involved in signal transduction and transcriptional 
activation/repression were also observed in the two tran-
scriptomes. Two transcriptional regulators, Msed_1209 
and Msed_1351 were downregulated preferentially 5.00-
fold and 3.32-fold, respectively, in the acid-stressed wild 
type at pH 1.50. However, four transcriptional regulators; 
Msed_0373, Msed_0832, Msed_1397 and Msed_1733, 
were only upregulated in the in acid-adapted SARC M-1 
grown at pH 0.95.
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Previous studies have shown that low pH stress pro-
moted H+ consumption and or extrusion thereby alleviat-
ing cytoplasmic proton excess in E. coli, B. subtilis and an 
acidophile PW2 [23, 38, 39, 63]. A similar pattern was also 
observed in the transcriptomes of both M. sedula strains 
grown at suboptimal pH, especially in the transcriptome 
of M. sedula SARC-M1 grown at pH 0.95 (Supplementary 
table S3). Genes encoding the electron transfer chains and 
membrane-bound enzymes or complexes that extrude H+ 
out of the cytoplasm were upregulated. Some other genes 
encoding enzymes catalyzing H+ consuming reactions in 
cytoplasm were also upregulated at low pH. While, genes 
encoding enzymes that catalyze H+ generating reactions 
were down-regulated. The four genes (Msed_0321 to 
Msed_0324) encoding subunits of the membrane-bound 
SoxEFGHIM terminal oxidase complex [3] that involved 
in energy generation and H+ extrusion were up-regulated 
under acid stress. The genes (Msed_1428 to Msed_1431 
and Msed_1895 to Msed_1897) encoding subunits of 
NADH-ubiquinone oxidoreductase (complex I) were also 
up-regulated. This complex could absorb electrons from 
NAD (P)H, a by-product of acid-consuming reactions, and 
extrude H+ out cytoplasm [16, 17]. Most of the down-reg-
ulated genes encoded enzymes that catalyze acid-generat-
ing reactions that employ ATP (with 4 ionizable protons) 
as a substrate and consequently generate ADP and Pi, both 
of which contain 3 ionizable H+. The expression level of 
genes (Msed_1914 to Msed_1920) encoding the subunits 
of ATP synthase that couple ATP biosynthesis with the 
influx of H+ remained constant under acid stress [24]. 

This indicated that ATP synthase did not induce extra pro-
ton load in the cytoplasm at the transcriptional level under 
extreme acidity. Therefore, down-regulation of these genes 
encoding these enzymes involved in catalyzing acid-gen-
erating reactions would decrease the proton load further 
in the cytoplasm of M. sedula SARC-M1 under extreme 
acidity. Twenty-six genes encoding electron transfer chain 
components as well as membrane-bound enzymes/com-
plexes that extrude H+ out of cytoplasm or encoding cyto-
plasm enzymes catalyzing H+ generation/consumption 
reactions, were observed to be up- or downregulated in the 
transcriptome of wild type M. sedula grown at pH 1.50. In 
addition an additional 17 genes encoding proteins involved 
in H+ homeostasis with >twofold expression changes were 
found exclusively in the transcriptome of acid-adapted 
M. sedula SARC-M1 grown at pH 0.95 (Supplementary 
table S3). This indicated that M. sedula SARC-M1 had a 
higher capacity to maintain H+ homeostasis in the cyto-
plasm under extreme acidity. This could explain why M. 
sedula SARC-M1 grew at pH 0.92 while the wild type 
M. sedula could not (Fig.  1A). Genes (Msed_0289 to 
Msed_0291) encoding the subunits of the SoxABCL com-
plex which translocates H+ out of cytoplasm and simulta-
neously converting H+ and oxygen to water in the cyto-
plasm were uniquely upregulated in the acid-adapted M. 
sedula SARC-M1 grown at pH 0.95 [22, 36]. More genes 
(Msed_1429 to Msed_1431, and Msed_1897) encod-
ing the subunits of the complex I were upregulated in the 
transcriptome of M. sedula SARC-M1. Msed_1432 and 
Msed_1433 encode the membrane-bound homologous 

Fig. 5   A schematic model for 
the resistance of H+ for M. 
sedula SARC-M 1. ETC: elec-
tron transfer chain; C1, C2 the 
substrates of acid-consuming 
reaction, C3, C4 the products 
of acid-consuming reaction, 
R1, R2 the substrates of acid-
generating reaction, R3, R4 the 
products of acid-generating 
reaction
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subunits of the bacterial formate hydrogenlyase com-
plex that involved in the depletion of formate in the cyto-
plasm of E. coli were also upregulated [43]. The six genes 
(Msed_1979 to Msed_1984) encoding enzymes involved 
in purine biosynthesis and Msed_1763 that encodes an 
enzyme for pyrimidine metabolism were all only down-
regulated in pH 0.95 grown M. sedula SARC-M 1 not in 
the pH 1.50-grown wild type M. sedula. All of these cata-
lyze acid-generating reactions. To summarize the overall 
effect of these reactions, a schematic model for acid resist-
ance of M. sedula SARC-M 1 was proposed here based on 
the differential gene expression pattern under acid stress 
(Fig. 5). A high concentration of extracellular H+ altered 
the expression pattern of transcriptional regulators that 
would trigger genome-wide transcriptional responses to 
acid stress. This would occur by; (1) enhancing expression 
of genes encoding outer membrane proteins, and mem-
brane complexes/facilitators that extrude H+, or enzymes 
that catalyzing H+-consuming reaction, and (2) reducing 
the expression of genes encoding enzymes that catalyze 
H+-generating reactions and transporters or amino per-
meases that promote the uptake of H+.

Conclusion

This study reports the isolation and characterization of an 
acid-adapted derivative of M. sedula produced using adap-
tive evolution. M. sedula SARC-M1 exhibited more rapid 
heterotrophic growth and increased enargite bioleaching 
capacity as compared to its parental strain under extreme 
acidity. Mutations occurring in the genome of M. sedula 
SARC-M 1 and its altered transcriptome accounted for its 
acid resistance phenotype. The altered transcriptome was 
likely a stress response supported by mutation. The over-
all effect of the altered transcriptome was to enhance H+ 
extrusion and to reduce both H+ uptake and intracellular 
H+ generation as an adaptive response to increased external 
acidity.
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