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Introduction

Filamentous fungi have played an important role in the 
history of drug discovery and development. The second-
ary metabolites (SMs) that these organisms produce have 
served as a source of low molecular weight molecules with 
a variety of biological activities. Examples of these are 
antibiotics such as penicillin, immunosuppressants such 
as cyclosporine, antifungals such as griseofulvin and the 
echinocandins, and antihypercholesterolemic drugs such as 
lovastatin [11, 24, 35]. Many of the bioactive SMs that are 
easily accessible under conventional laboratory conditions 
have already been isolated and patented for drug develop-
ment. However, advances in genome sequencing [23, 32, 
38, 40] revealed that fungal species harbor an abundance 
of SM gene clusters and these far exceed the number of 
known metabolites produced by the species [45]. This 
potential abundance of SMs may reflect their importance 
in nature as a chemical arsenal for niche security [41]. The 
carefully controlled growth conditions in laboratory culture 
settings prevent any competition or life-threatening circum-
stances that would trigger the production of SMs, thereby 
leaving many of the gene clusters dormant. Activating these 
silent gene clusters, revealing their biosynthetic pathways, 
and isolating the SMs produced by these pathways is a 
major challenge in the search for new SMs.

Various approaches have been taken in attempts to acti-
vate silent SM gene clusters [14], including fusing of regu-
latable promoters to a pathway-specific transcription fac-
tor [5, 17], removal of genes required for heterochromatin 
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formation [7], genome-wide analysis of mutants of LaeA, 
a global regulator of SM [8], co-incubation with microor-
ganisms to mimic conditions in nature [48], and the “one 
strain many compounds” (OSMAC) strategy [6]. Most of 
these approaches were developed in A. nidulans due to the 
availability of highly efficient gene-targeting systems in 
this model organism. The developed approaches are often 
subsequently applied to other filamentous fungi.

In this review, we focus on recent advances in genome 
mining of secondary metabolism genes in A. nidulans. We 
also describe the current status of the annotation of the 
products of secondary metabolism genes in A. nidulans. 
We would also like to direct readers to the accompanying 
review in this issue by our collaborators Nancy Keller and 
Philipp Wiemann on general strategies for mining fungal 
natural products and to other recent reviews on this subject 
[10, 28, 53, 56, 61].

The status of annotating secondary metabolite genes 
in A. nidulans

Among the Aspergillus species, A. nidulans has been used 
as a model organism, making it the most comprehensively 
studied and best-characterized species in the genus with the 
largest body of literature. Most studies of secondary metab-
olite biosynthesis in A. nidulans have used strains derived 
from a common reference strain, A. nidulans FGSC A4. 
A. nidulans FGSC A4 was initially sequenced by Cereon 
Genomics (Monsanto) in 1998 to three-fold genome equiv-
alent coverage and the sequence was publicly released in 
2003. Shortly thereafter, additional sequencing was com-
pleted at the Whitehead Institute/MIT Center for Genomic 
Research to give a total of 13 genome-equivalent coverage. 
The seminal paper describing the A. nidulans genome was 
published in 2005 [23]. Access to this sequenced genome 
has allowed investigators to use sequence similarity to 
known genes from other species to mine for core genes that 
are involved in secondary metabolism in A. nidulans. Algo-
rithms such as SMURF (Secondary Metabolite Unknown 
Regions Finder) [27] and antiSMASH (antibiotics and 
Secondary Metabolite Analysis Shell) [34] are extremely 
useful in predicting the core SM biosynthetic genes. Tak-
ing into consideration the most recent annotation and addi-
tional analysis of available genomic data, our group’s most 
recent estimate is that the A. nidulans genome contains 56 
putative secondary metabolism core genes including 27 
polyketide synthase genes (PKS), two polyketide synthase-
like genes (PKS-like), 11 nonribosomal peptide synthetase 
genes (NRPS), 15 NRPS-like genes, and one hybrid NRPS-
PKS gene. Table 1 and Fig. 1 show our current understand-
ing of the products of these genes and the products from 
the pathways.

Bioinformatic advances

Since the original publication of the genome sequence 
data [23], A. nidulans gene annotations have been refined 
repeatedly to correct incomplete or inaccurate content [3, 
4, 25, 39, 57]. The Aspergillus Genome Database (AspGD; 
http://www.aspgd.org/) provides gene and protein sequence 
data that are curated based on submitted information and 
published literature. Although the wealth of data and the 
availability of the algorithms mentioned previously have 
provided accurate predictions of core SM biosynthetic 
genes, it is still not possible to predict with accuracy the 
boundaries of secondary metabolite gene clusters or the 
functions of each member of the clusters based solely on 
genome sequence data. This is due to the fact that many 
of the genes surrounding the core SM biosynthetic genes 
often have unknown functions, making predictions of their 
involvement in the biosynthetic process of the SM almost 
impossible. Elucidation of biosynthetic gene clusters have 
thus been heavily dependent on experimental verification, a 
laborious process that involves single gene deletion of each 
gene with a suspected role in SM biosynthesis, followed by 
identification and characterization of SMs produced by the 
deletion strains. Improvements in “omics”-based methods 
for accurate prediction of SM gene cluster members and 
the availability of more precise annotations are desirable 
for a more rapid and efficient experimental verification of 
novel SM gene clusters.

Andersen et  al. [2] recently published a novel strategy 
for the accurate prediction of SM gene cluster bounda-
ries based on the fact that expression of genes of a given 
SM cluster is coordinately regulated. A DNA expression 
microarray was used to identify genes that were co-regu-
lated with SM gene cluster backbone enzymes. A variety 
of culture media were selected that, based on SM profiling 
experiments, would elicit expression of as many gene clus-
ters as possible. Samples were then taken from A. nidulans 
growing on the selected culture media for transcriptional 
profiling, and the generated data were combined with pre-
viously published data to form a superset of a total of 44 
expression conditions for analysis. Andersen et  al. devel-
oped clustering scores (CSs) that reflected the degree to 
which each gene was co-regulated with its neighbors. They 
developed statistical guidelines for identifying the extent of 
gene clusters, which were applied to the microarray data to 
generate cluster predictions. Comparisons with published 
data demonstrated that their algorithm predicted gene clus-
ters with high accuracy and can even predict gene clusters 
that are scattered across different chromosomes. Using 
this algorithm, a list of 58 predicted SM gene clusters was 
generated.

These data have been curated at AspGD and applied as 
a criterion for the manual annotation of computationally 

http://www.aspgd.org/
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Table 1   Secondary metabolism gene clusters in A. nidulans

No AspGD designation Core gene name Gene type Metabolites isolated from A. nidulansa References

1 AN0016 pes1 NRPS

2 AN0150 mdpG NR-PKS Emodin (1), emodin analogs (2–10), shamixanthone 
(11), epishamixanthone (12), variecoxanthone A 
(13), emericellin (14), atrochrysone carboxylic acid 
(15), 1-hydroxy-6-methyl-8-hydroxymethylxanthone 
(16), paeciloxanthone (17), monodictyphenone (18), 
3-(2,6-dihydroxyphenyl)-4-hydroxy-6-methyl-1(3H)-
isobenzofuranone (19), arugosin A, H (20,21)

[7, 16, 36, 44, 46, 51]

3 AN0523 pkdA NR-PKS 2-Ethyl-4,6-dihydroxy-3,5-dimethylbenzaldehyde (22) [1]

4 AN0607 sidC NRPS Ferricrocin [20]

5 AN1034 afoE NR-PKS (2Z,4Z)-4,6-Dimethylocta-2,4-dienoic acid (23), asperfura-
none (24), 6-[(3E,5E)-5,7-dimethyl-2-oxonona-3,5-die-
nyl-2,4-dihydroxy-3-methylbenzaldehyde (25)

[17, 49]

6 AN1036 afoG HR-PKS (2Z,4Z)-4,6-Dimethylocta-2,4-dienoic acid (23), asperfura-
none (24), 6-[(3E,5E)-5,7-dimethyl-2-oxonona-3,5-die-
nyl-2,4-dihydroxy-3-methylbenzaldehyde (25)

[17, 49]

7 AN1242 NRPS Nidulanin A (27) [2]

8 AN1680 NRPS-like

9 AN1784 pkjA HR-PKS

10 AN2032 pkhA NR-PKS 2,4-Dihydroxy-6-[(3E,5E,7E)-2-oxonona-3,5,7-trienyl]
benzaldehyde (26)

[1]

11 AN2035 pkhB HR-PKS 2,4-Dihydroxy-6-[(3E,5E,7E)-2-oxonona-3,5,7-trienyl]
benzaldehyde (26)

[1]

12 AN2064 NRPS-like

13 AN2545 easA NRPS Emericellamides (28–32) [18]

14 AN2547 easB HR-PKS Emericellamides (28–32) [18]

15 AN2621 acvA NRPS Penicillin [31, 51]

16 AN2924 NRPS-like

17 AN3230 pkfA NR-PKS Orsellinaldehyde (33), 3-(2,4-dihydroxy-6-methylbenzyl)-
orsellinaldehyde (34), aspernidine A-E (37–41)

[1, 47, 58],

18 AN3386 pkiA NR-PKS 7-Methyl-3-nonylisoquinoline-6,8-diol (35), 6-hydroxy-
7-methyl-3-nonylisoquinoline-5,8-dione (36), 2,4-dihy-
droxy-3-methyl-6-(2-oxoundecyl)benzaldehyde (42), 
4-hydroxy-3-methyl-6-(2-oxoundecyl)-2-pyrone (43)

[1]

19 AN3396 micA NRPS-like Microperfuranone (44) [59]

20 AN3495 inpA NRPS-like

21 AN3496 inpB NRPS

22 AN3612 HR-PKS

23 AN4827 NRPS-like

24 AN5318 NRPS-like

25 AN6000 aptA NR-PKS Asperthecin (45), 2,3,6,8,9-pentahydroxy-1-oxo-3-(2-
oxopropyl)-1,2,3,4-tetrahydroanthracene-2-carboxylic 
acid (46)

[1, 29, 52]

26 AN6236 sidD NRPS

27 AN6431 HR-PKS

28 AN6444 NRPS-like

29 AN6448 pkbA NR-PKS 2,5-Dimethylresorcinol (47), 3-methylorsellinic acid (48), 
cichorine (49), nidulol (50),

[1, 43]

30 AN6791 HR-PKS

31 AN7071 pkgA NR-PKS Alternariol (51), citreoisocoumarin (52), analogs of citreoi-
socoumarin (53–56)

[1]

32 AN7084 PKS-like

33 AN7489 PKS-like



436	 J Ind Microbiol Biotechnol (2014) 41:433–442

1 3

predicted gene clusters as a part of a continued effort 
to improve and refine the prediction of SM gene clus-
ter boundaries [25]. This updated gene cluster boundary 
annotation also incorporates published experimental data, 
synteny between clustered genes among different species, 
functional annotation of putative gene cluster members, 
and increase in the distance between predicted bound-
ary genes and genes that are directly adjacent to it but not 
included in the cluster. This new and improved set of com-
prehensive SM gene cluster predictions will aid in facilitat-
ing the future investigation of novel Aspergillus SMs.

Genome‑wide kinase knock‑outs

The molecular genetic system of A. nidulans is power-
ful and technical advances in recent years have made 

genome-wide, systematic approaches more feasible. The 
Fungal Genetics Stock Center (FGSC) provides a system-
atic gene deletion construct collection, a valuable experi-
mental resource for the A. nidulans research community. 
De Souza et al. [19] have generated a set of gene deletion 
constructs for 9,851 genes, which represents 93.3 % of the 
encoding genome. Mutant strains generated with the cas-
settes are deposited with the FGSC after construction.

Using this deletion construct resource, a genome-wide 
kinase knock-out library consisting of deletion strains of 
most A. nidulans non-essential kinase genes was gener-
ated and deposited at the FGSC [19]. The kinase deletion 
strains were used for genome-wide functional analysis 
of kinases, resulting in identification of many previously 
unknown functions for kinases [19]. This kinase knock-out 
library was screened to test the hypothesis that manipu-
lation of kinase expression has the potential to activate 

Table 1   continued

No AspGD designation Core gene name Gene type Metabolites isolated from A. nidulansa References

34 AN7825 stcA (pksST) NR-PKS Norsolorinic acid (57), norsolorinic acid anthrone (58), 
sterigmatocystin (59)

[1, 12, 54, 62]

35 AN7837+ AN7838 HR-PKS

36 AN7884 NRPS

37 AN7903 pkeA NR-PKS 2,4-Dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde 
(60)

[1]

38 AN7909 orsA NR-PKS F9775A, B (61, 62), orsellinic acid (63), diorcinol (64), 
gerfelin (65), 10-deoxygerfelin (66)

[7, 42, 46, 48]

39 AN8105 NRPS-like

40 AN8209 wA NR-PKS 2-Acetoacetyl T4HN (67), naphthopyrone YWA1 (68) [1, 21, 55]

41 AN8383 ausA NR-PKS Isoaustinone (69), analogs of isoaustinone (70, 71), 
austinol (72), dehydroausitnol (73), protoaustinoid (74), 
preaustinoid A3-A5 (75–77), austinoneol A (78), neoaus-
tinone (79), austinolide (80)

[1, 30, 36]

42 AN8412 apdA Hybrid Aspyridone A, B (81, 82) [5]

43 AN8513 tdiA NRPS-like Terrequinone A (83) [9, 51]

44 AN8910 HR-PKS

45 AN9005 HR-PKS

46 AN9129 NRPS-like

47 AN9226 nrpA NRPS

48 AN9243 NRPS-like

49 AN9244 NRPS

50 AN9291 NRPS-like

51 AN10297 NRPS-like

52 AN10430 HR-PKS

53 AN10486 NRPS-like

54 AN10576 ivoA NRPS

55 AN11191 pkkA HR-PKS

56 AN12440 NR-PKS

PKS polyketide synthase, NRPS nonribosomal peptide synthetase, Hybrid hybrid PKS-NRPS, NR-PKS nonreduced polyketide synthase, HR-
PKS highly reduced polyketide synthase
a  Bold numbers correspond to chemical structures shown in Fig. 1
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silent SM gene clusters [58]. This led to the discovery of 
an mpkA knock-out strain that produced aspernidine A, a 
compound that had been discovered previously in A. nidu-
lans [47] but the biosynthetic pathway remained unknown. 
The mpkA knock-out strain produced a sufficient amount 
of aspernidine A to allow the identification and analysis 
of the gene cluster involved in its biosynthesis. From the 
chemical structure of aspernidine A combined with previ-
ous data [1], it was predicted that a nonreducing polyketide 
synthase (NR-PKS) gene, pkfA (AN3230) is involved in the 
biosynthesis of aspernidine A. Deletion of pkfA confirmed 
this, and the boundary of the gene cluster was identified 
through a series of gene deletions of the surrounding genes 
of pkfA. Analysis of the SMs produced by mpkA deletion 
strains resulted in isolation and characterization of novel 
intermediates that aided in generating a proposed pathway 
for aspernidine A.

A similar deletion set of 28 protein phosphatase genes 
was generated and used to identify four essential phos-
phatases and four required for normal growth [50]. The 
deposited deletion constructs were also used in a study that 
identified multiple kinases and phosphatases involved in 
the sensing of carbon and energetic status, and also con-
tributed to the understanding of the signaling cascades that 
result in regulation of CreA derepression and hydrolytic 
enzyme production [13].

Genome‑wide analysis of all non‑reduced polyketide 
synthases and NRPS‑like enzymes in A. nidulans

Despite the success of various strategies to activate silent 
gene clusters, a large number of potential SM gene clusters 
remain untapped. To analyze clusters resistant to activation 
through existing approaches, a strategy was developed that 
completely bypasses normal regulation [1]. It takes advan-
tage of recent advances in the construction of transform-
ing fragments by fusion PCR and effective gene targeting 
to replace promoters of SM genes with the regulatable alcA 
promoter. It was applied to obtain a comprehensive under-
standing of the products of nonreducing polyketide synthase 
(NR-PKS) genes, a class of key genes of SM biosynthetic 
pathways [1]. The A. nidulans genome harbors 14 NR-PKS 
genes, and combined efforts by several groups over the 
years led to the identification of the chemical products of 
six of them [7, 12, 16, 17, 29, 42, 48, 52, 55, 62]. To deter-
mine the products of the remaining eight NR-PKS genes, 
the native promoters for each NR-PKS and other genes nec-
essary for product formation or release were replaced with 
the alcA promoter. Induction of expression resulted in the 
production and release of compounds from each of the NR-
PKS and allowed the completion of the determination of the 
products of NR-PKS genes of A. nidulans.

This approach can be applied to the discovery of other 
classes of SM biosynthetic gene clusters. This was demon-
strated by systematically targeting nonribosomal peptide 
synthetase (NRPS)-like genes for promoter replacement, 
resulting in the discovery that one of the NRPS-like genes, 
micA, is the sole gene responsible for the biosynthesis of 
the metabolite microperfuranone [59].

In another strategy carried out by Nielsen et al. [36], a 
genome-wide PKS deletion library was constructed by sys-
tematically deleting all 32 putative PKS genes. A reference 
strain was cultured on an array of culture media to find con-
ditions that would induce production of SMs that were not 
previously linked to a gene cluster, and this was followed 
by screening of the genome-wide PKS deletion library to 
establish the genetic link to the SMs. This approach pro-
vided novel links between PKS genes and SMs, demon-
strating its strength and the potential usefulness of the dele-
tion library as a resource for further PKS studies.

Use of A. nidulans as a host for heterologous expression 
of SM genes from other Aspergillus species

The highly advanced and established molecular genetic 
system of A. nidulans can be applied to the study of SM 
production of other fungal species that have poor or non-
existent molecular genetic systems [60]. Heterologous 
expression of fungal genes in other fungi has been used and 
with some success, but this approach is not without limi-
tations including finding a suitable host and the difficulty 
of handling large genes and gene clusters. An advantage 
of fungal systems over bacterial for expressing fungal sec-
ondary metabolism genes is that fungi can correctly splice 
introns of secondary metabolism genes from other fungi 
resulting in successful expression [15, 22, 26]. Since many 
fungal SM genes are quite large and contain introns (often 
several introns) this is of considerable benefit.

Major advances have recently been made in establishing 
A. nidulans as a host for heterologous expression of fun-
gal SMs. First, entire SM gene clusters have been deleted 
to eliminate production of unwanted A. nidulans SMs, 
resulting in reduced SM background and facilitating detec-
tion and isolation of compounds produced by the heterolo-
gously expressed genes [15].

Second, a system for transferring SM genes from other 
fungi while placing them under control of the alcA pro-
moter has been developed [15, 33]. This system uses a 
strategy that involves (1) PCR amplification of each gene, 
(2) the use of fusion PCR to place each gene under con-
trol of the alcA promoter and to construct a transforming 
fragment, and (3) integration of the fragment into a target 
A. nidulans locus. For larger clusters several genes must 
be transferred into A. nidulans and, to avoid running out of 
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selectable markers for transformation, a marker recycling 
strategy was developed [15]. Each time a new gene is intro-
duced into A. nidulans a selectable marker is evicted and 
this marker can be used in the subsequent transformation. 
This strategy allows an unlimited number of genes to be 
transferred into and expressed in A. nidulans. The use of 
this approach resulted in the successful expression of all 
six genes of the gene cluster that encodes the production of 
asperfuranone, a cryptic gene cluster from A. terreus. Fur-
thermore, various combinations of expression genes were 
tested, leading to clarification of the asperfuranone biosyn-
thetic pathway.

Another recent approach to transfer members of entire 
SM gene clusters is to assemble the PCR amplified indi-
vidual cluster fragments into a single large transforming 
fragment using USER fusion, followed by insertion into the 
integration vector by USER cloning [37]. Using this tech-
nique, a total of 13 genes of a putative gene cluster respon-
sible for geodin biosynthesis from A. terreus were trans-
ferred into A. nidulans in a two step process, successfully 
enabling geodin biosynthesis in A. nidulans.

Conclusions

Advances in genome sequencing in fungi have provided us 
with a wealth of information that suggests that the num-
ber of SM gene clusters far exceeds the number of dis-
covered compounds. A combination of bioinformatics and 
experimental verification is fundamental to elucidating 
the SM biosynthetic pathways that these SM gene clusters 
encode. Among the many species of Aspergillus, A. nidu-
lans is used as a model organism and it is the species with 
the most abundant literature by far and the most advanced, 
highly efficient molecular genetic system. Recent advances 
in development of prediction algorithms in A. nidulans 
and updated curation by AspGD have given us access to 
improved SM gene cluster predictions, which we can use as 
a basis for subsequent experimental verification. Advances 
in transforming fragment construction techniques and effec-
tive gene targeting expedite the experimental verification 
process. These advances, in combination, have enabled 
quick and systematic approaches to uncover the potential 
of SM production by A. nidulans. The application of these 
advances is not limited to the SMs of A. nidulans. Com-
bined efforts such as the “1,000 Fungal Genomes Project 
(http://1000.fungalgenomes.org/home/)” by the DOE Joint 
Genome Institute (JGI) are dedicated to sequencing numer-
ous different species of fungi and providing a database for 
the research community. Many of these fungi do not have 
good molecular genetic systems, which makes experimen-
tal verification a big challenge. Heterologous expression 
of fungal genes in other host fungi is one approach that is 

being used, and major advances have been made to estab-
lish A. nidulans as a host. Newly developed methods in con-
structing transforming fragments and improved transforma-
tion strategies have made it possible for large or multiple 
genes to be transformed into A. nidulans. These approaches 
will contribute greatly to uncovering the untapped resources 
of SMs that the fungal genomes encode.
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