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Abstract A xylanase gene (thxyn11A) from the Thermo-

bifida halotolerans strain YIM 90462T was cloned and

expressed in Escherichia coli. The open reading frame (ORF)

of thxyn11A has 1,008 bp encoding a mature xylanase with a

high degree of similarity (80 %) to the xylanase from

Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111.

This enzyme (Thxyn11A) also possesses a glycosyl hydro-

lases family 11 (GH11) domain and a high isoelectric point

(pI = 9.1). However, Thxyn11A varies from most GH11

xylanases, due to its large molecular mass (34 kDa).

Recombinant Thxyn11A demonstrated a strong pH and

temperature tolerance with a maximum activity at pH 9.0 and

70 �C. Xylotriose, the end-product of xylan hydrolysis by

Thxyn11A, serves as a catalyst for hemicellulose pretreat-

ment in industrial applications and can also function as a food

source or supplement for enterobacteria. Due to its attractive

biochemical properties, Thxyn11A may have potential value

in many commercial applications.
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Introduction

The largest renewable carbon source on earth is the cell

wall of plants, which consist primarily of cellulose, hemi-

cellulose, pectin, and lignin [27]. Among these compo-

nents, hemicellulose is the second-most abundant fraction

after cellulose [2]. With the increasing awareness of the

environmental issues caused by fossil fuel use and deple-

tion, hemicellulose has been suggested to be a promising

source of renewable energy. However, capturing this vast

resource for energy, material, and chemicals presents a

formidable challenge, due to the recalcitrant structure of

hemicellulose. Xylan, the main component of hemicellu-

lose, is a heterogeneous polysaccharide composed of a

b-1,4-linked xylopyranose backbone with arabinofuranosyl,

acetyl, or methylglucuronosyl side chains. Because of this

complex structure, the complete degradation of xylan

requires the synergistic actions of several enzymes [3].

Among the various xylanolytic enzymes, xylanases

(1,4-b-D-xylan, EC 3.2.1.8) play a pivotal role in depoly-

merizing the xylan backbone. Based on the amino acid

sequence similarities of their catalytic domains, xylanases

are mainly classified into two glycoside hydrolases groups:

family 10 (GH10) and family 11 (GH11) [7, 29]. Xylanases

in the GH10 group have high molecular masses ([30 kDa)

and low isoelectric points (pI), whereas GH11 xylanases

have low molecular masses (\30 kDa) and high pIs.
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The major enzymes comprising the GH10 family are endo-

1,4-b-xylanases and a small number of endo-1,3-b-xylan-

ases (EC 3.2.1.32). By contrast, the GH11 family consists

solely of endo-1,4-b-xylanases and usually gives larger

end-products than the GH10 family members [5]. As a food

source, larger xylo-oligosaccharides not only increase the

populations of probiotics in the gut but also suppress the

activity of enteric putrefactive bacteria, prevent the pro-

liferation of pathogenic intestinal bacteria, facilitate

digestion, and aid in the absorption of nutrients [28].

Many xylanases belonging to the GH11 family have been

obtained from actinomycetes; however, few xylanases have

been reported to be active and stable at an alkaline pH and

elevated temperatures [24]. With the current methods of

manufacturing cellulosic feedstocks, which depend on alkali

and heat pretreatment, xylanases that are stably active at both

high temperatures and under alkaline conditions are of par-

ticular value [10]. The Thermobifida halotolerans strain YIM

90462T is an aerobic, thermophilic, and halotolerant actino-

mycete found in the Yunnan Province of southwest China [31],

which contains an alkaline thermostable GH9 endoglucanase

and a thermostable xylanase that have been described previ-

ously [32, 33]. However, the xylanase is purified from fer-

mentation broth of the native stain, and it is an acid-stable

xylanase. This study describes the cloning, heterologous

expression, and characterization of the alkaline thermostable

xylanase (Thxyn11A) from this bacterial strain. Based on its

distinctive features, Thxyn11A may be of potential use in

biofuel production and other commercial applications.

Materials and methods

Bacterial strains, growth conditions, and genomic DNA

isolation

Thermobifida halotolerans YIM 90462T was isolated from

a salt mine sample during a previous study [31]. The

bacteria were cultured for 1 week in Luria–Bertani med-

ium at 45 �C. DNA was subsequently isolated from the

mycelia using the method described by Li et al. [15].

Cloning the full sequence of the thxyn11a gene

By comparing ten amino-acid sequences of GH11 xylanases

from actinomycetes, two degenerate primers (DP1 and DP2)

(Table 1) were designed using the CODEHOP method

(http://bioinformatics.weizmann.ac.il/blocks/codehop.html).

The polymerase chain reaction (PCR) was performed using the

following parameters: one cycle at 94 �C for 5 min, 30 cycles

at 94 �C for 45 s, 64 �C for 45 s, and 72 �C for 1 min, and then

a final extension at 72 �C for 10 min. Similarly, a conserved

gene fragment of inositol monophosphatase, which is located

downstream of the xylanase gene, was amplified using two

additional degenerate primers (IMFP and IMRP) (Table 1)

employing the method described above. The amplified frag-

ments were purified and ligated into the pEASY-T1 vector

(TransGen, Beijing; China) for sequencing and BLAST anal-

ysis. After amplification, sequencing; and BLAST analysis, a

417-bp DNA fragment of the xylanase gene and a 589-bp DNA

fragment of the inositol monophosphatase gene were amplified

using the aforementioned primers. Based on these two DNA

fragments, a pair of specific primers (SPRP and SPFP)

(Table 1) were designed to amplify the C-terminal encoding

sequence of the xylanase gene. In order to amplify the N-ter-

minal encoding sequence of xylanase, the SiteFinding-PCR

method [25] was implemented using three nested primers

(SP1U, SP2U; and SP3U) (Table 1). Both amplified fragments

were purified and ligated into the pEASY-T1 vector for

sequencing and BLAST analysis, as described above.

Nucleotide sequence analysis and accession number

assignment

The sequenced DNAs were compared to available

sequences from GenBank using the BLASTX program

Table 1 Primers used in this

study

a Restriction sites are shown in

italics and bold

Sequences (50 ? 30)a Size (bp)

DP1 TGGCGCAACACCGGNAAYTKBGT 23

DP2 GGACTGGTAGCCYTCNGTNGC 21

IMFP GCGCCCGCATCCARGARGGNGT 22

IMRP GGAGTCCATGACGATGTAGGCNCCNCCRWA 30

SPRP GAAGTCGGTGAGGGCGGGCGAGTAG 25

SPFP CCGCCACGGAATGAACCTGGG 21

SP1U GAACCATAACCGCTGGAAACCACTT 25

SP2U CCGCCACGGAATGAACCTGGG 21

SP3U ATGAACCTGGGCAGCCATGACTAC 24

Thxyn11A-FP CTACATATGAACGACGCCCCCGCC 27

Thxyn11A-RP CAACTCGAGGTTCGCGCTGCAGGAG 28

1110 J Ind Microbiol Biotechnol (2012) 39:1109–1116

123

http://bioinformatics.weizmann.ac.il/blocks/codehop.html


(http://blast.ncbi.nlm.nih.gov/Blast/), and all gene frag-

ments were assembled using DNAstar software (DNAStar,

Madison, WI, USA). The primary structure of the amino acid

sequence was deduced and analyzed using EXPASY tools

(http://expasy.org/). The signal peptide sequence of the pro-

tein was predicted using SignalP 3.0 (http://www.

cbs.dtu.dk/services/SignalP/). The phylogenetic tree was

drawn with Mega 4.0, and a conserved domain analysis was

conducted using Pfam (http://pfam.wustl.edu/hmmsearch.

shtml). The sequence of the thxyn11A gene was submitted to

GenBank and assigned the accession number JN016522.

Expression vector construction

After the complete thxyn11A gene sequence was obtained,

two specific primers (Thxyn11A-FP and Thxyn11A-RP;

NdeI and XhoI sites shown in italics and bold) (Table 1)

were designed to amplify the gene. The PCR mixture

(50 ll) consisted of 29 PCR buffer, 0.4 mM of each

dNTP, 1.0 unit of KOD FX DNA polymerase (TOYOBO,

Osaka, Japan), 15 pmol of each primer, and 50 ng of the

template DNA. The PCR cycle conditions consisted of an

initial step of 5 min at 94 �C followed by 30 cycles of 10 s

at 98 �C and 1 min at 68 �C with a final extension at 68 �C

for 10 min. The PCR products were gel-purified, digested

with NdeI and XhoI (Fermentas, Maryland, USA), and

cloned into the pET28a vector (Novagen, Darmstadt,

Germany) to generate the recombinant plasmid pET28a-

thxyn11A. The construct was subsequently transformed

into Top10 competent cells (Invitrogen, Shanghai, China)

for sequencing and BLAST analysis.

Xylanase gene expression and purification

The pET28a-thxyn11A plasmid was extracted from positive

Top10 cells according to the manufacturer’s protocol (Tian-

gen, Beijing, China) and transformed into the E.coli BL21

(DE3) strain for protein expression. The transformants were

grown in LB medium with 50 lg/ml kanamycin (Sigma, St.

Louis, MO, USA) at 37 �C overnight. Three milliliters of a

saturated culture were inoculated into 300 ml of Terrific

broth [23] and incubated at 37 �C with shaking until the cell

density reached an absorbance of 0.6 at 600 nm. To induce

protein expression, 300 ll IPTG (100 mM) was added into

the culture and incubated for approximately 24 h at 37 �C on

a rotary shaker (200 rpm). The culture supernatant, which

contained the recombinant Thxyn11A, was obtained by

centrifugation at 12,0009 g for 20 min at 4 �C. Next, the

supernatant was loaded onto a Ni–NTA column (Merck,

Darmstadt, Germany). After allowing binding to proceed for

30 min, the resin was washed with five column volumes of

buffer A (50 mM Tris pH 8.0, 300 mM NaCl, and 20 mM

imidazole) and eluted with five column volumes of buffer B

(50 mM Tris pH 8.0, 300 mM NaCl, and 500 mM of imid-

azole). The eluted protein was concentrated at 4 �C with an

Amicon centrifugal filter unit (MWCO 10,000, Millipore,

Massachusetts, USA). The homogeneity of 10 ll concen-

trated protein was monitored by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using a

12 % (w/v) acrylamide gel. The proteins were visualized by

Coomassie Brilliant Blue R-250 or Congo Red staining [17].

Enzyme and protein assays

The purified, concentrated protein fraction containing 3 lg

Thxyn11A was used for enzyme characterization. The

protein concentration was determined by the Sangon pro-

tein assay kit (Sangon, Shanghai, China) using bovine

serum albumin as a standard. The xylanase activity was

determined by measuring the amount of reducing sugars

released from birch wood xylan using the 3,5-dinitrosali-

cylic acid (DNS) reagent according to the method descri-

bed by Miller [20]. The reaction mixture, which contained

80 ll of 1.0 % (w/v) birch wood xylan and 20 ll of suit-

ably diluted enzyme, was incubated in 0.05 M Glycine-

NaOH buffer (pH 9.0) at 70 �C for 10 min. The reaction

was terminated by the addition of 150 ll of 1.0 % (w/v)

DNS. The mixture was subsequently boiled for 5 min and

cooled, and the optical density was measured at 540 nm.

All experiments were performed in triplicate, and the sta-

tistical analyses were performed using SigmaPlot 12.0.

The effect of pH and the pH stability of purified

Thxyn11A

The effect of pH on the enzymatic activity of Thxyn11A was

assessed by measuring the relative activity using 20 ll of a

xylanase solution incubated with 80 ll of 1 % birch wood

xylan in buffers of varying pH [0.05 M McIlvaine buffer (pH

4.0–7.5), 0.05 M Tris–HCl buffer (pH 7.5–9.0) and 0.05 M

Glycine-NaOH buffer (pH 9.0–10.5)]. All of the experiments

were performed at 70 �C for 10 min, and the maximum

activity was set as 100 %. To determine the pH stability, the

enzyme was exposed to four buffers with different pH values,

6.0, 7.0, 8.0, and 9.0, and incubated at 70 �C for 240 min. An

aliquot of xylanase was removed and assayed every 30 min

for enzymatic activity, as described above.

The effect of temperature and the thermostability

of purified Thxyn11A

The effect of temperature on the enzymatic activity of

Thxyn11A was determined by measuring the relative

activity using the reaction system described above with

temperatures ranging between 30 and 90 �C. All experi-

ments were performed in 0.05 M Glycine-NaOH buffer
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(pH 9.0) for 10 min. The thermal stability of the enzyme

was measured as the residual enzyme activity after the

incubation of the enzyme at 70, 80, or 90 �C for 240 min.

An aliquot of xylanase was removed every 30 min to

measure the enzymatic activity, as described above.

The effect of different metal ions and other compounds

on Thxyn11A activity

Purified Thxyn11A was incubated with 1 % birch wood

xylan in 0.05 M Glycine-NaOH buffer (pH 9.0) containing

1 mM MgCl2, PbAc2, BaCl2, LiCl, KCl, CaCl2, NaCl, CuCl2,

MnCl2, AlCl3, FeCl3, NiSO4, ZnCl2, CoCl2, BiCl2, CdSO4,

EDTA, DTT, PMSF, or 1 % SDS for 10 min at 70 �C.

The relativity activity of the enzyme was measured, and

the activity of the enzyme in buffer alone was defined as

100 %.

Analysis of the hydrolysis products

To obtain the hydrolysis products, 20 ll of purified xy-

lanase (15.6 lg/ml) was incubated with 2 % birch wood

xylan in 0.05 M Glycine-NaOH buffer (pH 9.0) at 70 �C.

An aliquot of the reaction mixture was withdrawn after

12 h, and the reaction was stopped by boiling the solution

for 5 min. The reaction mixture was subsequently centri-

fuged, and the supernatant was subjected to thin layer

chromatography (TLC) using TLC plates (silica gel 60

F254, Jingdao, China). Xylobiose, xylotriose, xylotetraose,

and xylopentaose were used as standards (Megazyme,

Wicklow, Ireland). The TLC plates were developed with

chloroform–acetic acid–H2O (6:7:1, v/v/v), sprayed with a

methanol–sulfuric acid mixture (95:5, v/v), and heated at

150 �C in an oven until spots appeared.

The substrate specificity and kinetic parameters

of Thxyn11A

Xylanase was incubated with 1 % (w/v) Avicel, beech wood

xylan, birch wood xylan, Carboxyl Methyl Cellulose (CMC),

b-glucan, Lichenan, or oat spelt xylan (Sigma, St. Louis,

Missouri, USA) in 0.05 M Glycine-NaOH buffer (pH 9.0) at

70 �C for 10 min to test for substrate specificity. The reaction

was stopped, and the relative activity of the enzyme was

measured and compared to the enzymatic activity using a

standard substrate, which was defined as 100 %. The Km and

Vmax values for the purified recombinant enzyme were

determined using the standard reaction conditions with

2–12 mg/ml birch wood xylan as a substrate. The data were

plotted according to the Lineweaver–Burk method [16].

Results and discussion

Gene cloning

A 417-bp gene fragment was amplified by the CODEHOP

method. The nucleotide sequence of this fragment shared

87 % identity with the xylanase gene from Streptomyces sp.

S9, indicating that it was a partial xylanase gene. After two

PCR products from the 50 and 30 flanking regions were iso-

lated, sequenced, and assembled with the core gene region,

the resulting DNA sequence was 1,185 bp, which contained a

1,008-bp ORF. The resulting protein sequence showed a high

degree of similarity to several known xylanases including

Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111

xylanase (80 %; gi|9246561), T. fusca YX (78 %;

gi|3580704), S. sp. S9 (75 %; gb|ACF57947.1), and S. viri-

dosporus (74 %; gb|AAF09501.1) (Fig. 1). To date,

many xylanase genes have been cloned from varying micro-

organisms, including Aspergillus versicolor MKU3 [12],

Nesterenkonia xinjiangensis CCTCC AA001025 [9], Actino-

madura sp. S14 [26], Fusarium oxysporum [6], Phanerochaete

chrysosporium [8], Chaetomium thermophilum [1], Paeniba-

cillus sp. 12–11 [34] and S. sp. S27 [14]. However, this study is

the first to clone a xylanase gene from T. halotolerans YIM

90462T.

Sequence analysis

A conserved domain search using Pfam confirmed the

presence of a GH11 xylanase catalytic domain and two

putative catalytic glutamate residues (E128 and E217).

Therefore, the cloned xylanase was designated Thxyn11A.

Using the neural networks of SignalP, a potential signal

peptide was predicted within amino acids 1–12. The mature

protein consists of 323 amino acids with a calculated

molecular weight of 34 kDa and an isoelectric point of 9.1.

As a typical GH11 xylanase, Thxyn11A contains an

N-terminal GH11 catalytic domain and two highly con-

served Glu residues, which are important for the hydrolytic

activity. However, the molecular weight of Thxyn11A is

larger than the majority of xylanases, which usually are

less than 30 kDa, as mentioned above [5]. Nonetheless, the

molecular weight of Thxyn11A is notably similar to those

of Cfl Xyn11A [18] and XynB119 [35]. The reason of this

phenomenon is an extra cellulose-binding module (CBM)

appended the C-terminals of them, and this accessory

structure can potentiate the activity of enzymes that attack

the plant cell wall by proximity effects [4]. In addition,

there is a report that C-terminal region plays an important

role in thermostability of GH11 Xylanase from S. lividans

[30].
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Gene expression and protein purification

The intact coding region of the thxyn11A gene within the

pET28a-thxyn11A vector was introduced into E. coli BL21

(DE3) cells. After inducing the cells with 1 mM IPTG, the

C-terminal His6-tagged xylanase was produced intracellu-

larly and was also partially secreted into the culture

supernatant. No xylanase was detected in the non-induced

cells harboring the pET28a-thxyn11A construct (Fig. 2). In

order to rapidly purify the protein, only the xylanase from

the supernatant was collected and purified by Ni2? affinity

chromatography (Fig. 2). SDS-PAGE analysis of the eluted

fraction revealed a band of approximately 34 kDa (Fig. 2,

lane 4, 5), which corresponded to the theoretical molecular

weight of the mature xylanase protein (34,112 Da). A

similar-weight xylanase, XynB119, has also been shown to

be secreted when recombinantly expressed [35]; however,

the signal peptide of XynB119 was artificially introduced

from the pET-22b (?) vector. In contrast, Thxyn11A has a

secretion signal peptide inherently within the gene and

therefore is more likely to keep its native structure and

activity upon secretion [13].

Temperature and pH optimization and stability

The purified xylanase exhibited a high activity at temper-

atures ranging between 40 and 90 �C (Fig. 3a) with a

maximum activity at 70 �C. More than 90 % of its maxi-

mal activity was retained at 70 �C for 30 min at pH 9.0

(Fig. 3b). Although Thxyn11A cannot maintain its maxi-

mal activity for longer than 30 min at 80 or 90 �C, it dis-

played greater than 50 % of its maximal activity at 70 �C

for up to 90 min, thereby indicating that it is a thermostable

enzyme. The influence of pH on the xylan hydrolytic

activity of the recombinant xylanase is presented in

Fig. 3c. We found the enzyme displayed more than 70 %

of its maximal activity between pH 6.0 and 10.0 with an

optimal activity at pH 9.0. Although the purified

Thxyn11A retained more than 70 % of its initial activity
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Fig. 2 SDS-PAGE analysis of the expression and purification of

recombinant Thxyn11A. Lane 1 contains protein markers. Lane 2
contains the total cell extract of E. coli BL21 (DE) expressing the

pET28a-thxyn11A plasmid induced by IPTG. Lane 3 contains the

total cell extract of E. coli BL21 (DE) expressing the pET28a-

thxyn11A plasmid without induction. Lane 4 contains Ni–NTA

purified recombinant Thxyn11A. Lane 5 contains a zymogram of the

purified Thxyn11A
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after incubation at pH 7.0 for 150 min, its alkaline stability

dramatically decreased after incubation at pH 8.0 for

120 min or pH 9.0 for 30 min (Fig. 3d). Interestingly,

Thxyn11A could maintain its activity at pH 6.0 longer than

at pH 7.0 (data not shown). To our knowledge, three GH11

xylanases have been cloned from the genus Thermobifida

[26]. The optimum catalysis temperature for the Thermo-

bifida sp. xylanase is the highest known of the xylanases

(80 �C), but it is an acid-stable xylanase. The xylanase

from Thermobifida fusca NTU22 has the same optimum

catalysis temperature as Thxyn11A but exhibits its maxi-

mal activity at a neutral pH, which limits its application for

hemicellulose bioprocessing.

The effect of various chemicals on Thxyn11A activity

The xylanase activity of Thxyn11A in the presence of dif-

ferent metal ions or chemical reagents was determined with

CMC as a substrate. Among the metal ions tested, 1 mM

Co2?or Mn2? enhanced enzymatic activity approximately

1.2-fold, while Fe3? and Pb2? inhibited the xylanase activity.

Incubation with other cations only induced a partial stimu-

lation or inhibition of the enzyme (80 %\ activity remain-

ing \110%). Although one fungal GH11 xylanase has been

shown to be inhibited by Co2? [21], other reports have

demonstrated that Co2? can increase the activity of xylanase,

even in 5 mM to 10 mM Co2? [13, 19].

Interestingly, as a heavy-metal ion, the inhibition of

Thxyn11A by Pb2? was not as high as expected (only

approximately 20 %), which implies that Thxyn11A could

have great potential for wastewater-treatment applications.

Among the chemical reagent tested, the activity of

Thxyn11A was enhanced to 118 % by DTT, inhibited by

EDTA (59 % remaining) and SDS (60 %), and caused no

measurable effect by PMSF treatment. The enhanced

activity in the presence of DTT suggests a potentially

reactive thiol group may be found in the enzyme [19].

Contrarily, the lack of change with PMSF treatment sug-

gests the absence of a potentially cleavable serine group in

the enzyme active site. Additionally, the decreased activity

of the xylanase in the presence of EDTA indicates that a

metal-ion-binding site may be found within the enzyme

active site, and the inhibition of xylanase in the presence of

SDS may be due to the denaturation of the enzyme from its

native conformation.

Analysis of the hydrolysis products

Birchwood xylan was hydrolyzed with purified Thxyn11A,

and the resulting products were analyzed by TLC (Fig. 4).

The reaction produced xylotriose as the end-product when

the reaction was allowed to proceed for 12 h. In addition,

larger xylooligomers, like xylotetroase and xylopentaose,

were also detected. The observed product profile demon-

strates Thxyn11A is a xylan endo-acting enzyme that

belongs to the GH11 family. Although this hydrolysis

pattern is consistent with a GH11 xylanase from Bacillus

licheniformis [13], other GH11 xylanases produce a
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mixture of xylose and xylooligosaccharide from the hydro-

lysis of xylan [14, 20, 22]. The reason Thxyn11A fails to

produce smaller sugar units remains unclear; however, this

enzymatic property will make Thxyn11A more appealing for

use in bioconversion and the food industry, due to its larger

end-products, which protect probiotics from pathogenic

microorganisms.

The substrate specificity and kinetic parameters

of purified Thxyn11A

The purified xylanase activities for various substrates are

assayed under a standard condition. The enzyme had a rela-

tively narrow substrate preference, exhibiting 100 % relative

activity for birch wood xylan, 92 % for beech wood xylan,

and 89 % for oat spelt xylan, but only 6 % of its maximal

activity was detected when Avicel was used as a substrate.

Additionally, almost no activity (lower than 1 % remaining)

was detected when CMC, barley glucan, or lichenan were

used in the reaction. These data indicate that Thxyn11A

shows high activity for the less branched and more homo-

geneous xylans (birch and beech wood), which consist pri-

marily of xylose units (90 %). In contrast, Thxyn11A shows

reduced activity for oat-spelt xylan, which contains 10 %

arabinose units and 15% glucose units. Contrarily, a GH11

xylanase from A. fumigatus MKU1 exhibited its highest

activity towards oat spelt xylan, but showed only 66 and 77 %

of its relative activity when birch and beech wood xylans

were used as the substrates, respectively [11]. Moreover, the

low activity of Thxyn11A towards Avicel, CMC and barley

glucan demonstrates the xylanase does not exhibit cellulase

activity, which is in agreement with previous findings [35].

Using a Lineweaver–Burk plot, the Km, and Vmax values of

Thxyn11A were calculated to be 3.5 mg/ml and 470.7 lmol

mg-1 min-1, respectively, with birch wood xylan as the

substrate. Although the Vmax of Thxyn11A was lower than

that of a GH11 xylanase from another actinomycete, the Km

value indicated that Thxyn11A has a higher affinity for birch

wood xylan [26].

Conclusions

In this study, a new xylanase gene, thxyn11A, was cloned

from the actinomycete strain T. halotolerans YIM 90462T. A

sequence analysis of the gene showed that it belongs to the

GH11 xylanase family and has an extra CBM. The recombi-

nant xylanase demonstrated broad pH stability, a strong tol-

erance to high temperatures, and unusual hydrolysis products.

These properties make Thxyn11A a promising enzyme for

industrial applications in the food and feed industries, as well

as for the pre-treatment of the lignocellulosic biomass

required to improve the yields of fermentable sugars in bio-

ethanol production.
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