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Abstract
The characteristics of residual errors in GNSS positioning are crucial for fault detection and integrity monitoring. Despite 
the wide use of the zero-mean Gaussian assumption in the navigation community, studies highlight non-Gaussian traits 
and heavy-tailed patterns in residual errors. The problem will be even more challenging for users in difficult environments 
where residual errors consist of a combination of multiple modes with high complexity and cannot be fitted with known 
distributions or empirical models. To address these issues, our work introduces a novel approach leveraging the Wasser-
stein distance for assessing the performance of error characterization and fault modeling. However, relying solely on the 
Wasserstein distance value for direct similarity assessment is hindered by its dependency on dimensionality. We propose a 
second-order Gaussian Wasserstein distance-based precision metric to offer a quantitative evaluation of GNSS error models 
in terms of both goodness-of-fit and underlying assumptions. We also establish a robust scoring criterion to distinguish 
between various GNSS error models, ensuring comprehensive evaluation. The proposed method is validated through a known 
high-dimensional Gaussian model, achieving a score of 99.95 over 100 with a sample size of 10,000. To demonstrate the 
capability in dealing with complexity, two multivariate complex GNSS models incorporating copula functions to capture 
intricate inter-dimensional correlations are established and assessed by our approach. Experimental results show that the 
method can effectively deliver the evaluation of goodness-of-fault models using the establishment of a universal criteria with 
different dimensions. It provides a quantitative measure on the goodness of fittings and enhances the modeling to reflect the 
reality, therefore solving the problems raised above. In addition, with this technique, the close-to-reality fault models can be 
chosen to generate simulated faulty datasets, thus benefiting algorithm testing and improvement. This is also beneficial to 
more accurate integrity risk assessment to avoid overbounding- or underbounding-resulted false or missed alert.
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Introduction

As a critical piece of contemporary infrastructure, Global 
Satellite Navigation Systems (GNSS) are experiencing rapid 
advancements to cater to the exponential growth of GNSS 
user groups. However, there are numerous factors that hinder 
the optimal performance of these satellite navigation sys-
tems, which can be typically divided into several categories: 
satellite and signal errors, atmospheric anomalies, product 
(correction) errors, operating environment anomalies, and 
user-end errors (Du et al. 2021). The portions of the above 
errors that have not been completely eliminated by data pro-
cessing collectively form the residual errors in the navigation 
system, named navigation residual estimation errors. Mag-
nificent errors can lead to navigation fault/failure, including 
range/positioning failure, integrity failure, overbounding 
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failure, and statistical failure (Milner et al. 2016). Range/
positioning failure happens when errors in range/position 
domain exceed a tolerable threshold. Integrity failure rep-
resents the event that the probability of positioning failure 
without timely alert exceeds the predefined integrity risk. 
Overbounding failure refers to the cumulative distribution 
function (CDF) curve of real data that lies outside the CDF 
of the assumed model. And statistical failure denotes the 
probability distribution function (PDF) of error distribution 
changes to a failure state by misdefined statistical param-
eters. Aiming at better navigation performance, a thorough 
comprehension of GNSS error characteristics is a foundation 
of handling all the above possible GNSS error sources and 
fault/failure modes.

A considerable amount of research has been devoted to 
the characterization of GNSS errors and faults (Anderson 
and Ellis 1971). Errors are approximated by simplified 
time-dependent mathematical functions, as demonstrated in 
Bhatti’s (Bhatti et al. 2007) work, including step error, ramp 
error, random noise, random walk, oscillation, and bias. It 
should be noted that these approximations aim to depict 
temporal trends rather than provide precise models. Vari-
ous common distributions are utilized to capture the CDF/
PDF of errors for simplicity and intuitiveness. And Gaussian 
assumption is the most widely adopted in navigation com-
munity. Navigation residual errors are usually assumed to be 
normally distributed, and the probabilities of false alert and 
missed detection in GNSS integrity monitoring are thereby 
assumed to follow Chi-squared distributions (Panagiotako-
poulos et al. 2014). However, the fact is error distributions 
are usually heavy-tailed in the presence of gross errors, blun-
ders, and faults (Hsu 1979). And the behavior of the tails is 
significant, especially in integrity risk assessment, so we 
must treat it in a more ‘pessimistic’ way. Better descriptions 
such as Exponential, Laplace (Shively and Braff 2000), and 
Generalized Extreme Value (GEV) distributions (Panagio-
takopoulos et al. 2008) have been suggested by researchers 
to deliver better descriptions to the heavy tails. To decide 
which is the best alternative to the Gaussian model, we need 
to estimate which distribution is the closest to the character-
istics of real data, so we require a technique to fully validate 
the goodness-of-fit of each Gaussian alternative for the tails 
of error distributions.

The ‘tails,’ in other words, the faults, are where the char-
acterization problem exactly lies in. The goodness-of-fit ver-
ification of GNSS fault modeling can be generally catego-
rized into two types: mathematical and positional. From the 
perspective of mathematics, for faults that can be fitted with 
known distributions, conventional statistical metrics like 
correlation coefficients, root mean square error, skewness, 
and excess kurtosis (Joanes and Gill 1998) are generally uti-
lized to gauge the similarity between fault models and actual 
data. Besides, several goodness-of-fit techniques (described 

in Methodology section) originating from the fields of math-
ematical statistics and machine learning are available. While 
from the positional perspective, modeling accuracy is evalu-
ated through positioning performance. For instance, when 
a machine learning technique is used to model multipath 
faults (Pan et al. 2023), any improvement in position accu-
racy is considered an indicator of the accuracy of GNSS 
fault modeling. However, there are several shortcomings in 
the current techniques for GNSS fault model evaluation. One 
problem stems from the limited evaluation capacity of the 
common statistical metrics. These metrics, on the one hand, 
often require parameter estimation and typically provide spe-
cific characteristics of a distribution and do not consider the 
overall similarity of distributions. On the Other hand, they 
are typically suitable for low-dimensional, single-factor fault 
situations with relatively simple mathematical distributions, 
but they are impractical for high-dimensional, multifactor 
fault types. Another issue arises with the growth of machine 
learning techniques is that there is an increasing number of 
novel fault models, particularly those generated by black box 
methods or those with extremely complex structures. There 
is a need for an evaluation method that can be applied to 
both new and established models, enabling us to determine 
which model is more suitable.

Brief reviews on the methods of goodness-of-fit and the 
details of the Wasserstein distance-based scoring method 
are presented first. This is followed by the method validation 
using simulation and demonstration using real data from 
correction services and road tests. The conclusions are given 
in the last section.

Methodology

This part initially provides a concise overview of existing 
goodness-of-fit methodologies, laying the groundwork for 
the selection of the Wasserstein distance as the fundamental 
element within the proposed algorithm. We introduce the 
primary implementation of the Wasserstein distance, outlin-
ing its strengths and limitations. Recognizing the inadequacy 
of the raw Wasserstein distance in effectively measuring 
the similarity between real and modeled data across var-
ied dimensions, we propose a novel Gaussian Wasserstein 
distance-based precision metric. This innovative metric aims 
to rectify evaluation disparities arising from diverse dimen-
sions. Additionally, we establish a model scoring criterion, 
enhancing the interpretability of model assessments.

Goodness‑of‑fit

In scientific research, evaluating the compatibility between 
models and observed data, known as goodness-of-fit, is 
essential for validating a model’s applicability. Several 
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techniques are proposed to check the fitting goodness 
of data and known distribution candidates, each with its 
unique strengths and weaknesses. The Chi-Square Good-
ness-of-Fit Test (Pearson 1992), suited for discrete dis-
tributions, is straightforward but less effective for small 
samples and continuous distributions. The Kolmogo-
rov–Smirnov Test (Smirnov 1948) evaluates continuous 
distributions, especially normality, but loses accuracy with 
small samples. The Anderson–Darling Test (Anderson and 
Darling 1954), sensitive to tail fitting in continuous distri-
butions, is ideal for small samples but involves complex 
calculations. The Cramér–von Mises Test (Cramér, 1928) 
also assesses continuous distributions and tail fitting, suit-
able for small samples but might miss non-normal distri-
butions. The Lilliefors Test (Lilliefors 1967) checks good-
ness-of-fit to normal distributions, fitting small samples 
but limited to normality. Bayesian Goodness-of-Fit Tests 
(Rubin 1984) incorporate prior information, beneficial for 
low sample size or data-scarce cases but require careful 
prior selection and entail computational complexity.

The major limitation of traditional goodness-of-fit tests 
is that they often focus on specific distributional proper-
ties or assume parametric models, while they may provide 
misleading results if the data do not conform to known 
distributions. To tackle these, many sophisticated and flex-
ible statistical tools are developed with the advancements 
in machine learning, which offer a more comprehensive 
assessment of goodness-of-fit and provide more accu-
rate results. The popular methods are Kullback–Leibler 
(KL) divergence (Kullback and Leibler 1951; Dwass and 
Kullback 1960), Jensen–Shannon (JS) divergence (Jensen 
1906; Shannon 1948), and Wasserstein distance (Vaser-
stein 1969). These methods significantly outperform tra-
ditional statistical metrics and goodness-of-fit techniques 
in that 1) they offer global comparison measures that 
take into account not only the central tendency (mean) 
and dispersion (variance) of distributions but also capture 
differences in their shapes; 2) they do not require prior 
assumptions on the distributions; and 3) they can serve 
as distance metrics, whereas traditional methods may not 
possess metric properties. While KL divergence is prone to 
an asymmetry issue when measuring the similarity of two 
distributions, this issue can be rectified by JS divergence. 
However, both KL divergence and JS divergence are inef-
fective when the two distributions do not intersect.

Wasserstein distance addresses this problem by provid-
ing an effective distance metric and gradient information 
even for two non-overlapping distributions in a high-
dimensional space (Panaretos and Zemel 2019). Given 
these advantages, Wasserstein distance is employed here 
as a method of evaluating the precision of GNSS fault 
models.

Raw Wasserstein distance

Consider a fault type f  with a dimension of n(n ≥ 1) , with its 
true distribution denoted as Preal and its modeled distribution 
denoted as Psimu . Suppose that the sequence of k samples 
x1, x2,⋯ , xk is collected from the real datasets or sampled 
from Preal . Since each sample is n-dimensional, we denote 
the sequence of the sample points in ith dimension as X(i) 
and rewrite it as

where x(i)
k

 is the ith dimension of sample point k . Then the 
real sample points can be represented as

We denote the fault model of fault type f  as Mf  . A 
sequence of k samples y1, y2,⋯ , yk is collected from the fault 
model. Similarly, we denote the sequence of the simulated 
points in ith dimension as Y (i) and rewrite it as

where y(i)
k

 is the ith dimension of simulated point k . Then the 
simulated sample points can be represented as

Both X and Y  can be treated as a k × n matrix.
p-order Wasserstein distance W

(
Preal,Psimu

)p Preal and 
Psimu can be calculated by (Vaserstein 1969)

where Π
(
Preal,Psimu

)
 represents the collection of all possible 

joint distributions between Preal and Psimu for the fault type 
f  . � denotes a possible joint distribution belonging to this 
collection. d(X − Y) is the Euclidean distance between X and 
Y  . (x, y) ∼ � means sampling from the joint distribution � . 
E(x,y)∼� [d(X − Y)p] represents mathematical expectation of 
d(X − Y)p . And inf represents the infimum.

The smaller the Wasserstein distance, the lower the cost 
required to move the modeled distribution to the true distri-
bution, indicating a higher similarity between the two dis-
tributions. This, in turn, demonstrates a higher accuracy of 
the established fault model.

Wasserstein distance exhibits many good properties 
which can be summarized as follows:

•	 The properties of the distributions are not tightly con-
strained. In other words, the fault model can be arbitrary 
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[
x
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k

]T
, i = 1, 2, … , n

(2)X =
{
X(1),X(2),… ,X(n)

}

(3)Y (i) =
[
y
(i)

1
, y

(i)

2
… , y

(i)

k

]T
, i = 1, 2,… , n

(4)Y =
{
Y (1), Y (2),… , Y (n)

}

(5)

W
(
Preal,Psimu

)p
=

(
inf

� ∼ Π
(
Preal, Psimu

) E(x,y)∼�

[
d (X − Y)p

])1∕p



	 GPS Solutions (2024) 28:9191  Page 4 of 11

finite-dimensional, discrete, or continuous, generated by 
known distributions or black box methods.

•	 Even though the real faulty data and its fault model do 
not overlap in high dimensions, Wasserstein distance is 
still able to measure their similarities.

•	 Although the solution of Wasserstein distance in high-
dimensional space can be very complex, a special case is 
second-order Gaussian Wasserstein distance, which has 
analytical solution, so we can take good advantage of it.

However, when utilizing Wasserstein distance for fault 
model evaluation, two problems need to be tackled:

•	 Models with different dimensions may have the same 
value of Wasserstein distance but different precision. The 
precision metric of models should be uncoupled with the 
dimensionality and more intuitive.

•	 Users cannot decide whether the model is good or not if 
merely given the numeric value of the Wasserstein dis-
tance.

Based on above discussions, an indicative criterion 
should be established for reference.

Gaussian Wasserstein distance‑based precision 
metric

For two n-dimensional Gaussian distributions (each 
dimension is independently and identically distributed), 
�1 ∼ N1(m1,C1),�2 ∼ N2(m2,C2) , the second-order Gauss-
ian Wasserstein distance, denoted as W2

(
�1,�2

)2 , has a 
closed-form solution, which is expressed as (Takatsu 2011)

where (| ⋅ |) denotes the Euclidean norm, Tr(⋅) is the trace of 
a matrix, and C1∕2

1
 represents the square root of the covari-

ance matrix C1.
More intuitively, assume �1 as a n-dimensional standard 

Gaussian distribution and �2 as a n-dimensional Gaussian 
distribution with a mean vector of zero and diagonal ele-
ments of the covariance matrix equal to �2 . In this case, (6) 
can be further simplified to

We denote the second-order Wasserstein distance 
between the true distribution and the generated distribution 
corresponding to the n-dimensional fault type f  as Wf

2 . For 
fault model Mf  , let Wf

2 be equal to W2

(
�1,�2

)2 and � ≥ 1 . 
Hence, � can be calculated by

(6)

W2

(
�1,�2

)2
= |m1 − m2|2 + Tr

(
C1 + C2 − 2

(
C
1∕2

1
C2C

1∕2

1

)1∕2
)

(7)W2

(
�1,�2

)2
= n ⋅ (� − 1)2

Since the dimension n is known to us, � can serve as the 
precision metric of the fault model. The smaller � is, the 
higher the accuracy of the model.

It can be derived from (8) that Wasserstein distance is 
related to the dimensionality of the model. Taking a 2D 
model and a 3D model as examples, even if both models 
have similar accuracy, the Wasserstein distance of the 2D 
model will be smaller than that of the 3D model due to 
the difference in dimensionality. By converting Wasser-
stein distance into the precision metric � , it eliminates the 
evaluation discrepancy caused by different dimensions and 
facilitates the establishment of a unified model scoring 
criterion.

Model scoring criterion

For a given fault type f  , there is a full database gener-
ated from real world. Three datasets with the same sample 
size N  are built: two real datasets from the full database 
(denoted as set 1 and set 2) and one simulated dataset from 
the fault model (denoted as set 3). We suppose that one 
database exhibits the same characteristics.

The second-order Wasserstein distance W2

1,2
 between 

set 1 and set 2 is calculated by Eq. (5); let W2

1,2
 be equal 

to Wf
2 in Eq. (8), and we can derive σ between set 1 and 

set 2. Since set 1 and set 2 are real datasets from the same 
database, � is treated as the baseline � which serves as the 
benchmark value for model scoring, denoted as �f

baseline
 . 

Then, we sample N  points from set 1 and set 2 to gener-
ate set 0, and the � calculated between set 0 and set 3 is 
denoted as �f .

A scoring criterion is proposed to convert � to model 
score. The percentage changes from �f  to �f

baseline
 can be 

derived by

where abs(⋅) represents the absolute value. �inc is treated as 
the indicator of the loss of precision in the process of mod-
eling. And the scoring criterion is expressed as

Based on user requirements and model scores, we can 
decide whether to select a particular model. For example, if 
the user’s requirement is to select models with a score above 

(8)� =

√
W2

f

n
+ 1

(9)�inc = abs

(
�
f − �

f

baseline

)
∕�

f

baseline
(% )

(10)score =

{
100

(
1 − 𝜎inc

)
, 0 < 𝜎inc < 1

0, 𝜎inc ≥ 1
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80, then models with scores below 80 are considered to have 
insufficient accuracy and not recommended to use.

Experiments and analysis

To validate the performance of the proposed evaluation 
method, three experiments are conducted and analyzed sub-
sequently. Real-world samples of each fault type are col-
lected and divided into training set and testing set in a 4:1 
ratio. The evaluation process can be divided into four steps: 
1) datasets construction, 2) fault modeling, 3) fault simula-
tion, and 4) model evaluation. The first step is to extract 
required data from raw data and establish training and test-
ing datasets. The second step is to exploit training datasets 
to generate fault models. The third step is to simulate faults 
with the models built in step two. The final step is to evaluate 
the performance of fault models within the proposed evalu-
ation method on the testing set. A flowchart is demonstrated 
in Fig. 1 for better understanding.

Validation of the proposed method

In high-dimensional space, since analytical solutions are 
available only for second-order Gaussian Wasserstein dis-
tance, we have to calculate Wasserstein distance by numeri-
cal approximation techniques, and tolerable inaccuracy in 
final model score should be allowed. A numerical example 
is presented below to validate the proposed method.

Given that second-order n-dimensional Gaussian Was-
serstein distance has a closed-form formula, we assume that 
a Gaussian model is the fault model to be evaluated. Suppose 
that we have a fault model which follows a four-dimensional 
Gaussian distribution where each dimension has a mean of 
0 and a standard deviation of 1, and apparently theoretical 
precision metric σ will be 1. Since we are sampling from a 
known distribution, the ideal model score should be 100.

Then, we simulated data following the distribution with 
sizes of 100, 1000, 10,000, 50,000, and 100,000. Wasser-
stein distances are calculated through numerical approxima-
tion method (with a convergence of 10–12) between these 
datasets and four-dimensional standard Gaussian distri-
bution. Table 1 shows that the calculated values of σ are 
approximating to the theoretical value ‘1’ and the model 
scores progressively become more accurate as the sample 
size increases. And the relationship between sample size and 
model score is plotted in Fig. 2. We can conclude that when 
the sample size is relatively large (for example, ≥ 10,000 in 

Fig. 1   Flowchart of evaluation 
process

Table 1   The model scores corresponding to different sample sizes

Sample size Numeric value of precision 
metric

Model score

100 1.2335 76.65
1000 1.1128 88.72
10,000 1.0068 99.32
50,000 1.0044 99.56
100,000 0.9995 99.95
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this case), the precision loss is tolerable and can be ignored. 
Besides, even for the precise model, undersampling can 
introduce large inaccuracy in model scoring, which should 
be avoided in practical use.

Fault model evaluation using the proposed method

Sklar’s theorem (Sklar 1959) states that a n-dimensional 
multivariate probability distribution can be decomposed 
into two parts: n univariate marginal distributions and a 
copula (Oh 2014) which is solely a function of the depend-
ence structure to capture the inter-correlations between the 
n dimensions. To validate the method’s ability for complex 
model evaluation, two copula-based multivariate models 
with correlated variables are built and scored in this part.

GNSS correction product fault model evaluation

GNSS correction product fault is one of fault sources in 
GNSS positioning. In this part, a Slant Troposphere Delay 
(STD) correction fault model is established and evaluated. 
In general circumstances, the precision of STD correction 

products degrades under extreme troposphere conditions 
such as typhoon and heavy rain.

The real-world STD correction faults are generated from 
the grid STD correction products broadcast by Qianxun Spa-
tial Intelligence (QXSI) company. With the hydrostatic com-
ponents corrected by Saastamoinen model (Saastamoinen 
1972), the generation is based on the difference between 
STDwet,real(true values of wet components of STD) obtained 
by monitoring stations and STDwet,est (estimated values of 
wet components of STD) obtained with troposphere correc-
tion, denoted as dSTD , as follows:

where dSTDs
i
 represents the correction error on grid i of 

satellite s.
With STD correction data of six months broadcast in 

Shanghai, China, dSTDs
i
 sequences are collected for faulty 

data extraction. With time series anomaly detection meth-
ods applied to detect STD correction faults, faulty dSTDs

i
 

sequences are generated and added to training and testing 
datasets. Two examples of real faults detected in the dSTD 
sequences are demonstrated in Fig. 3, showing that STD 
correction temporal anomalies undergo a sudden rise–sus-
tained–fall in value.

Based on the observations and analysis of faulty samples, 
STD correction faults can be abstracted as a trapezoid-like 
model, as depicted in Fig. 4. This ‘trapezoid’ is character-
ized by four parameters: (a) rising slope (unit: m/s) denoted 
as k1 ; (b) descending slope (unit: m/s) denoted as k2 ; (c) 
ramp duration (unit: s) denoted as Δt1 ; and (d) step dura-
tion (unit: s) denoted as Δt2 . Since rainfall events typically 
include several features with correlation such as the inten-
sity, precipitation, and duration, it is straightforward that the 
model is multivariate, multidimensional model (Balistrocchi 
and Bacchi 2011). It is verified by Kendall coefficients that 
the aforementioned four parameters have rank corrections. A 
multivariate, four-dimensional trapezoid-like model is estab-
lished by four marginal functions and one copula function 

(11)dSTDs
i
= STDs

wet,real i
− STDs

wet, est i

Fig. 2   Relationship between sample size and model score

Fig. 3   Real faults (outlined with 
red dashed lines) detected in the 
dSTD sequences on grid 188 of 
Sat C03 (left) and on grid 84, 
85 of Sat E19 (right) during 
July 1–8, 2023
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for STD correction faults characterization. The joint distri-
bution F

(
k1, k2,Δt1,Δt2

)
 is expressed as

where C(⋅) is the copula function, and F∗(⋅) denotes each 
marginal function. The distribution fittings of four marginal 
functions are shown in Fig. 5.

In the previous step, STD correction fault model is built 
on the training set. And the testing set is equally divided 
in two, named set 1 and set 2, and the count of the sample 

(12)
F
(
k1, k2,Δt1,Δt2

)
= C

(
F1

(
k1
)
,F2

(
k2
)
,F3

(
Δt1

)
,F4

(
Δt2

))

points in each set is denoted as N. Then, we generate N 
points with four dimensions from the established STD cor-
rection fault model to build set 3. Thereby, we have three 
datasets with equal count of samples for model evaluation.

We obtained three sets of n-dimensional STD correction 
fault samples in fault simulation: Set 1 and set 2 are the 
real data testing sets, and set 3 is the simulated dataset. The 
sample size of each set is 10,000. Then, we use set 1 and 
set 2 to calculate baseline result and testing set and set 3 to 
calculate model result. The result is summarized in Table 2. 
Values of raw Wasserstein distance are derived by numerical 
approximation techniques, and numeric values of precision 
metric are calculated by (8). The model score of baseline 
result is set as 100. And the model score of the established 
model, computed by (9) and (10), yields a result of 96.80.

Multipath fault model evaluation

Multipath is a typical unmodeled fault source which dramat-
ically deteriorates GNSS positioning performance. It arises 

Fig. 4   Abstract trapezoidal model for STD correction faults

Fig. 5   Distribution fittings of 
the four parameters k1 (top left), 
k2 (top right), Δt1 (bottom left), 
and Δt2 (bottom right) of STD 
correction fault model

Table 2   The precision metric and model scores of STD correction 
fault model

Numeric value of 
raw Wasserstein 
distance

Numeric value 
of precision 
metric

Model score

Baseline result 56.674 29.337 100
Model result 58.55 30.275 96.80
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when the satellite signals received by GNSS receivers travel 
not only directly but also indirectly via reflections of nearby 
surfaces such as skyscrapers and terrain. A double-frequency 
code multipath fault model is constructed and estimated in 
this section.

Real-world multipath faults are generated from drive test 
data collected by QXSI in March 2022. And undifferenced 
and uncombined precise point positioning model is used to 
extract code multipath, which can be expressed as

 where s, r, i denote the satellite, receiver, and frequency 
index, respectively; c represents the velocity of light in vac-
uum; Ps

i,r
 is the pseudorange measurement from satellite s to 

receiver r on frequency i ; �s
r
 is the receiver-to-satellite geo-

metric distance; dtr and dts denote the clock error of receiver 
r and satellite s , respectively; Ts

r
 is the tropospheric delay, 

and Is
i,r

 is the ionospheric delay.
Since the receivers’ accurate coordinates can be derived 

by map-matching technique, satellite-end and atmosphere-
end errors can be corrected by QXSI correction products, 
and code multipath datasets are thereby established based 
on drive test datasets.

Temporal code multipath faults on frequency i can be 
characterized as a triangle-like model, abstracted in Fig. 6, 
where the ‘base’ represents fault duration, and ‘height’ 
represents the peak value of faults. Besides, as is shown in 
Fig. 7, SNR (signal–noise ratio) measured by receivers usu-
ally descends when the magnitude of code multipath faults 
grows.

A double-frequency code multipath fault is described by 
four parameters: (a) fault duration (unit: s) denoted as Δt ; (b) 
the peak value of multipath on the first frequency denoted 

(13)
vpi = MPpi

+ �pi
= Ps

i,r
− �

s
r
− c

(
dtr − dts

)
− Ts

r
− Is

i,r

as MPL1; (c) the peak value of multipath on the second fre-
quency denoted as MPL2; and (d) delta SNR value denoted 
as ΔSNR . It is verified by Kendall coefficients that the four 
parameters are correlated. Hence, A four-dimensional dou-
ble-frequency code multipath model is established by four 
marginal functions (the distribution fittings are shown in 
Fig. 8) and one copula function, and the joint distribution 
F
(
Δt,MPL1,MPL2,ΔSNR

)
 is written as

where ℂ(⋅) is the copula function, and M∗(⋅) denotes each 
marginal function.

The procedure of fault simulation is the same as the simu-
lation of STD product fault model. We obtained three sets 
of n-dimensional double-frequency code multipath fault 
samples in fault simulation: Set 1 and set 2 are the real data 
testing sets, and set 3 is the simulated dataset. The sample 
size of each set is 10,000. As is shown in Table 3, the model 
score of baseline result is set as 100. And the model score 
of the established model, computed by Eq. (9) and Eq. (10), 
yields a result of 97.15.

Conclusions

GNSS errors often exhibit heavy tails, non-Gaussian behav-
ior, and are nearly impossible to completely eliminate. 
Gaussian assumption, although widely applied in the field 
of GNSS, fails to capture the heaviness of tails which are 
typically attributed to the projection of measurement faults 
to position domain. Error tails and faults should be more 
precisely modeled to deliver improved navigation per-
formance. Researchers not only need precise models but 
also want to quantify how ‘precise’ the model is. And it 

(14)
(

Δt,MPL1,MPL2,ΔSNR
)

= ℂ
(

M1(Δt), M2
(

MPL1
)

, M3
(

MPL2
)

, M4(ΔSNR)
)

Fig. 6   Abstract triangle model for code multipath faults on frequency 
i

Fig. 7   Relationship between code multipath on frequency L1 and 
SNR value
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is straightforward that universal goodness-of-fit evaluation 
criteria are required.

This study has focused on the goodness-of-fit evaluation 
of GNSS fault characteristics and models, by exploiting 
Wasserstein distance, a machine learning method to meas-
ure the similarities between the two distributions. Consider-
ing that numeric values of raw Wasserstein distance cannot 
reflect model precision intuitively (models with different 
dimensions may have the same value of Wasserstein dis-
tance but different precision), a second-order Gaussian Was-
serstein distance-based precision metric σ is presented to 
convert the cost between n-dimensional real distribution and 
fault model to the cost between two n-dimensional Gauss-
ian distributions. A scoring criterion is thereby established 
based on σ to provide reference opinions to users. The con-
tributions of the proposed method can be summarized as 
follows:

(1)	 The method inherits the good properties of Wasserstein 
distance, without imposing any constraints on the mod-
els’ dimensionality or specific distribution, so we can 
evaluate fault models as long as we can sample from 
them.

(2)	 The precision metric proposed uncoupled dimensional-
ity with modeling precision, thus unifying the evalu-
ation criteria among different models with different 
dimensions.

(3)	 The scoring criterion further provides a more humane 
way for GNSS practitioners to select fault models 
according to their individual needs and contributes to 
the validation of the ubiquitous non-Gaussian prob-
lems.

From the experimental results, the proposed method is 
first validated though known n-dimensional Gaussian dis-
tributions, indicating that adequate sampling should be con-
ducted to maintain the model scoring inaccuracy resulting 
from undersampling within an acceptable range. A STD 
product fault model and a double-frequency code multipath 
model are given as examples to apply the proposed method 
to fault model evaluation. Detailed implementation pro-
cesses have been presented to show that this method is able 
to evaluate and score GNSS fault models. In future work, 
fault models can be scored, compared, and selected more 
conveniently within the method introduced in this study. 

Fig. 8   Distribution fittings of 
the four parameters Δt (top left), 
MP

L1 (top right), MP
L2 (bottom 

left), and ΔSNR (bottom right) 
of the double-frequency code 
multipath fault model

Table 3   The precision metric and model scores of double-frequency 
code multipath fault model

Numeric value of 
raw Wasserstein 
distance

Numeric value 
of precision 
metric

Model score

Baseline result 27.716 14.858 100
Model result 28.564 15.282 97.15



	 GPS Solutions (2024) 28:9191  Page 10 of 11

The computed model score can be used as the indicator of 
model iteration. Advanced fault models can provide suffi-
cient faulty simulated measurements for large-scale system 
robustness testing and positioning algorithm refinement, as 
well as significantly reducing the cost of data acquisition. 
Furthermore, the proposed technique is expected to have 
broader applications such as assisting in the validation of 
non-Gaussian phenomena and identification of Gaussian 
alternatives, incorporating in novel integrity algorithms 
and helping derive tighter protection levels to improve 
availability.
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