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Abstract
High-accuracy GNSS positioning in urban environments is important for applications like safe autonomous driving, how-
ever, dynamic errors in complex urban environments limit positioning performances. Recently, deep learning-based (DL) 
approaches can obtain better GNSS positioning solutions in complex urban environments than model-based ones. However, 
DL-based approaches simply concentrate one-view GNSS observations as inputs, which are insufficient to model vehicle 
states accurately, and temporally continuous observations are highly correlated, leading to inaccurate positioning correction 
results. To solve the challenge, we propose a Sparse Representation-based Multiview Deep Reinforcement Learning model 
for positioning correction, which employs attention-based multiview fusion to process multiview observations, and uses 
sparse representation to alleviate disturbances from highly correlated observations. To represent the vehicle state sufficiently, 
we build a multiview positioning correction environment, and develop an attention-weighted multiview fusion module to 
fuse temporal features as belief states based on adaptively learned attention weights. To effectively process redundant and 
correlated multiview features, we impose the ℓ1 norm regularizer to learn sparse hidden representations and improve the 
precision of value estimation. Finally, we construct a sparse representation-driven multiview actor-critic positioning cor-
rection model to achieve high-accuracy GNSS positioning in complex urban environments. We validate performances in 
both Google Smartphone Decimeter Challenge (GSDC) datasets and our collected GNSS datasets in the Guangzhou area 
(GZGNSS). Experimental results show that our algorithm can improve localization performances with 27% improvements 
from WLS+KF in GSDC trajectories, 16% from RTK, and 6% from DL-based methods in GZGNSS trajectories.

Keywords Deep Reinforcement Learning · Global Navigation Satellite Systems Positioning · Sparse representation · 
Multiview learning

Introduction

With the development of the Global Navigation Satellite 
Systems (GNSS) in both hardware and software, the posi-
tioning accuracy of a Global Positioning System (GPS) 
device can reach centimeter levels in open places (Teunissen 
and Khodabandeh 2015). However, the accuracy of GNSS 
positioning is affected by different factors, including sur-
rounding environments, devices, etc. Due to the interference 
of satellite signals by dynamic urban errors, e.g., multipath 
and Non-Line-Of-Sight (NLOS) errors, the positioning of 
the satellite navigation positioning system may reach tens of 
meters in different complex urban scenarios, such as urban 
canyons, overpasses, viaducts, urban forests, etc., which can-
not meet the basic needs of continuous lane-level positioning 
of autonomous vehicles. At present, the satellite navigation 
positioning technology for intelligent driving still relies on 
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model-based methods, and the high-precision positioning of 
satellite navigation in complex urban environments is still 
an open problem (Skog and Handel 2009).

Different from model-based methods, whose perfor-
mances are restricted by prior model assumptions, learn-
ing-based methods can model complex urban environmental 
errors by training using data. Existing deep learning-based 
(DL) approaches employ different neural network models, 
e.g., Transformer (Kanhere et al. 2022) and Graph Convolu-
tional Neural Networks (GCNN) (Mohanty and Gao 2022), 
to predict positioning correction values in complex urban 
environments for every time step. However, these works 
simply concentrate Pseudorange Residuals (PRR) and Line-
Of-Sight (LOS) vectors as one-view GNSS inputs, ignor-
ing relationships between different GNSS features, which 
are insufficient to model precise vehicle states, and these 
temporally continuous inputs are highly correlated, lead-
ing to disturbances in training and positioning correction. 
Moreover, DL models consider the localization problem of 
each position discretely, ignoring sequential relationships 
between positions. On the other hand, the Deep Reinforce-
ment Learning-based (DRL) method (Zhang and Masoud 
2020) uses highly correlated historically predicted positions 
as input to train a positioning correction policy based on 
rewards connecting adjacent states or observations, helping 
the agent consider temporal relationships. However, all these 
existing works suffered from insufficient and temporally con-
tinuous model inputs, leading to inaccurate vehicle modeling 
and interference in training.

Motivation

To address issues because of insufficient and temporally 
continuous model inputs in DRL methods, this paper pro-
poses a Sparse Representation-based Multiview Deep Rein-
forcement Learning model (MVDRL-SR) for positioning 
correction. To model the vehicle agent more accurately, we 
construct a multiview positioning correction reinforcement 
learning (RL) environment with measure residuals, LOS 

vectors, and sequential vehicle positions, and employ the 
Long Short-Term Memory (LSTM) module to extract his-
torical information from sequential observations of differ-
ent views. Then, we effectively fuse the belief state based 
on adaptively learned attention weights, which can help the 
agent decide which view is more informative and valuable 
during training. To effectively process highly correlated fea-
tures from temporally continuous multiview observations, 
we employ the ℓ1 norm regularizer in the critic to promote 
sparse hidden representation during network propagation, 
which can effectively reduce coherences of representations, 
increase the precision of value estimation, and thus improve 
the stability of the positioning correction policy. The dia-
gram of MVDRL-SR is summarized in Fig. 1, including 
attention-weighted multiview fused belief states, and sparse 
coding-based sparse critic representation learning. In the 
end, this paper validates the proposed method in different 
real-world GNSS datasets, e.g., open Google Smartphone 
Decimeter Challenge (GSDC) datasets and our collected 
GNSS datasets in the Guangzhou area (GZGNSS), where 
the proposed MVDRL-SR can outperform both model-
based methods with 27% from Kalman Filter (KF) processed 
Weight Least Squares (WLS) solutions (Verhagen and 
Teunissen 2017; Medina et al. 2019) in GSDC trajectories 
and 16% improvements from RTK in GZGNSS trajectories; 
and learning-based state-of-the-art methods with 6% from 
DL-based methods.

The main contributions of the paper are summarized as 
follows,

1. To effectively model the vehicle, we construct the mul-
tiview RL environment by complementing sequential 
position observations, which are exploited by LSTM 
modules for historical features and fused based on 
adaptively learned attention weights considering rela-
tionships between views.

2. To alleviate interference from redundant and corre-
lated multiview temporally continuous observations, 
we employ the ℓ1 norm regularizer and corresponding 

Fig. 1  A graphical architecture of the proposed MVDRL-SR algorithm for sequential positioning correction
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proximal operator in the critic to promote sparse hid-
den representation during network propagation and thus 
increase the precision of value estimation.

3. To achieve an accurate sequential positioning correc-
tion policy, we train the actor-critic DRL model with 
the cumulative value estimation and time-difference 
advantage estimation, whose performances are vali-
dated in both the open GSDC dataset, and our collected 
GZGNSS dataset.

To validate the performance of the proposed MVDRL-
SR, we compared it with different model-based and learn-
ing-based algorithms in the experimental section, including,

1. Model-based Algorithms: In the GSDC dataset, we use 
the Single Point Positioning (SPP) method WLS+KF 
(Verhagen and Teunissen 2017; Medina et al. 2019) 
which employ carrier-smoothed pseudorange1 and tem-
poral information to obtain solutions as the model-based 
baselines. In our collected GZGNSS dataset, we employ 
the carrier-phase differential RTK solutions (Shu et al. 
2017; Li et  al. 2022) as the model-based baselines, 
which use GNSS measurements from a base station to 
enhance the rover performances with a partial ambiguity 
resolution.

2. Deep Learning-based Algorithms: Two state-of-the-
art deep learning-based GNSS positioning correction 
methods are chosen for validation, i.e., SetTransformer 
(Kanhere et al. 2022) and GCNN (Mohanty and Gao 
2022), which employ different neural network modules 
to learn to correct model-based solutions. SetTrans-
former employs the attention-based transformer module 
to learn from only the GPS-L1C constellation, and we 
set the correction output in ECEF axes. On the other 
side, GCNN employs the GIN module to learn from 
three constellations of GNSS measurements, i.e., GPS, 
GLONASS, and GALILEO.

3. RL-based Algorithms: Two state-of-the-art RL algo-
rithms for positioning correction tasks are selected for 
comparison, i.e., A3C (Zhang and Masoud 2020) and 
Multi-LSTMPPO (Zhao et al. 2023). A3C only employs 
the vehicle trajectories as observations and simply 
resizes them into one vector to form the belief states. 
Moreover, this method uses a complex discrete action 
space that estimates values for 441 actions. Because the 
MSE reward setting used in this work is not functional 
in experiments, we use the correction advantage error 
proposed in this paper for this algorithm. Multi-LST-
MPPO employs multi-inputs as observations, but simply 

concentrates different GNSS measurements and vehicle 
trajectories as model inputs, and does not consider the 
influence of temporally continuous correlated observa-
tions.

Related work

Recently, there have emerged different model-based 
approaches to enhance positioning accuracy in urban areas 
(Wen et al. 2020; Zhu et al. 2018). However, conventional 
model-based methods are limited by rigid prior assumptions 
on sensors, model parameters, etc., and can hardly adapt 
to dynamically changing multipath error models in urban 
scenes. Using high-precision maps and inertial navigation 
can help improve urban localization performances, but can 
also hardly match the requirements of continuous high-preci-
sion absolute positioning for autonomous driving in complex 
urban environments. Nevertheless, high production costs, 
strong hardware restrictions, and poor scene generalization 
make high-precision map-based approaches face limitations 
in applicable scenarios (Wang et al. 2021; Cai et al. 2018). 
Moreover, some works employ LiDAR measurement-based 
3D model mapping to predict NLOS signals for enhanc-
ing positioning accuracy in urban navigation (Groves and 
Adjrad 2017; Xin et al. 2022; Liu et al. 2022), but also are 
limited by the high cost of LiDAR sensors and precision of 
3D model dataset.

On the contrary, learning-based approaches developed 
in recent years require fewer assumptions about the GNSS 
positioning problem, can provide solutions to mitigate 
dynamic urban errors, and achieve good positioning perfor-
mances in complex urban environments. For example, the 
work in Siemuri et al. (2021) proposed to train a weighted 
combination of Linear Regression, Bayesian Ridge Regres-
sion, and Neural Network to predict the GNSS positioning 
correction. DL models are also effective for GNSS position-
ing correction, e.g., using Transformer (Kanhere et al. 2022) 
to consider attention weights between satellites and using 
Graph Convolutional Neural Networks (GCNN) (Mohanty 
and Gao 2022) to exploit topological information from con-
stellation observations, which predict positioning correction 
values in complex urban environments for every time step 
by using reference points as supervision. However, these 
works simply concentrate PRR and LOS vectors as one-
view GNSS inputs, ignoring relationships between differ-
ent GNSS features, which are insufficient to model precise 
vehicle states, and these temporally continuous inputs are 
highly correlated, leading to disturbances in training and 
positioning correction. Moreover, DL models consider the 
localization problem of each position discretely, ignoring 
sequential relationships between positions.1 https:// gssc. esa. int/ navip edia/ index. php/ Carri er- smoot hing_ of_ 

code_ pseud orang es.

https://gssc.esa.int/navipedia/index.php/Carrier-smoothing_of_code_pseudoranges
https://gssc.esa.int/navipedia/index.php/Carrier-smoothing_of_code_pseudoranges
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Additionally, DRL models are usually trained with tem-
poral differences of values estimated from adjacent observa-
tions, helping the DRL agent to understand the surrounding 
environment temporally. For example, Zhang and Masoud 
(2020) proposed to employ a DRL algorithm, Asynchro-
nous Advantage Actor-Critic (A3C) for the positioning 
correction task, which only uses historically predicted lati-
tude and longitude to estimate belief states, and predicts 
horizontal positioning correction continuously. Moreover, a 
DRL framework was developed by Zhao et al. (2023), which 
utilized LSTM block to integrate the multi-input time series 
observations to resolve the long-term localization problem, 
but it also simply concatenate representations of different 
inputs to estimate belief states without considering rela-
tionships. In summary, the existing learning-based methods 
still have limits, including ineffective belief state estimation 
because of insufficient observations and simple state fusion, 
and have not considered interference from highly correlated 
observations.

Multiview deep reinforcement learning 
GNSS positioning correction with sparse 
representation

In this section, we first describe the details of the designed 
multiview RL environment for GNSS positioning correction. 
We then detail how to develop the DRL model for GNSS 
positioning correction, which can effectively process the 
multiview observations based on attention-weighted mul-
tiview fusion, and use sparse coding to alleviate interfer-
ence from highly correlated temporally continuous observa-
tions. Finally, the MVDRL-SR model is summarized as an 
algorithm.

Multiview positioning correction environment

The RL environment for the GNSS positioning correction 
task consists of three parts, (1) comprehensive multiview 
observations, (2) continuous action space, and (3) effective 
reward setting.

Observation setting: To model the vehicle agent in the 
GNSS positioning correction environment, we employ dif-
ferent observations to represent the state considering differ-
ent views. In detail, we consider employing different features 
derived from GNSS measurements of a GNSS device in a 
certain frequency, and same-frequency sequential historical 
vehicle positions to form the multiview observations, i.e., 
� =

{
�pos, �los, �res

}
.

1. Sequential position view �pos : we first employ model-
based methods to obtain initial positions ���init

t
 , e.g., 

Earth-Centered, Earth-Fixed (ECEF) solutions 

[
xinit
t
, yinit

t
, zinit

t

]
 from SPP method WLS, KF when there 

are only rover GNSS measurements, which function as 
coarse estimations of the receiver's position to correct. 
Moreover, sequential historically predicted positions {
���

pred

t−i

}k−1

i=1
 are employed to help the RL model under-

stand the moving status of the vehicle, which are the 
corrected outputs of the RL model in the past time steps. 
The POS view observations at time t are then,

where k is the sequence length of position view observation.

2. Line-of-sight view �los : Similar to the conventional 
GNSS positioning model, which uses the estimated sat-
ellite positions 

�
�
⟨i⟩
t

�nt

i=1
 on the pre-determined orbits 

based on timing for localization, we employ the normal-
ized Line-Of-Sight (LOS) vector ��� referring to each 
satellite's relative position, to help model the correction 
direction in the positioning correction task. Moreover, 
the LOS view is also related to the elevation angle, and 
low elevation angles may also reflect invisible satellites 
in complex urban environments. The LOS vector is 
defined as follows,

Then, we can define the LOS view observations at time 
t  as follows,

where nmax is the maximum visible satellite number in the 
vehicle trajectory. Because the number of visible satellites 
is usually not consistent in different vehicle trajectories, the 
values for non-visible satellites are filled with zero vectors 
0 during processing.

3. Measure residual view �res : another important feature in 
the conventional GNSS pseudorange positioning model 
is the pseudorange, referring to the distances between 
the rover and different satellites. Correspondingly, we 
employ the pseudorange residual as one view, which is 
the difference between excepted pseudorange and meas-
ured pseudorange, and can help estimate the correction 
distances in the positioning correction model. The pseu-
dorange residual res⟨i⟩t  is defined as follows,

(1)�
pos
t ∶=

[
���init

t
, ���

pred

t−1
,… , ���

pred

t−k+1

]
∈ ℝ

3k,

(2)���
⟨i⟩
t =

�
⟨i⟩
t − ���init

t

∥ �
⟨i⟩
t − ���initt ∥2

,∀t,∀i.

(3)�los
t

∶=
�
���

⟨1⟩
t , ���

⟨2⟩
t ,… , ���

⟨nmax⟩
t

�
∈ ℝ

3nmax ,

(4)res
⟨i⟩
t = �

⟨i⟩
t − ∥ �

⟨i⟩
t − ���init

t
∥2,∀t,∀i.
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Therefore, the RES view observation at time t  includes 
all visible satellite pseudorange residuals, defined as follows,

Similarly, nmax is the maximum visible satellite number 
in the vehicle trajectory, and the values for non-visible satel-
lites are filled with zeros during processing.

Action space setting: The action is defined as a position 
correction operation. To avoid complex discrete action space 
with many actions, which leads to learning difficulties in 
value estimation for each action (Lillicrap et al. 2016), we 
employ the continuous action setting which is sampled from 
the Gaussian distribution determined by the output of the 
actor, described as follows,

1. Define correction operations on initial positions, denoted 
as Δpost =

[
Δxt,Δyt,Δzt

]
 , and thus the corrected posi-

tions from this model are,

2. Correction operations on each axis are, respectively, 
sampled from different  distr ibutions,  i .e . , 
Δxt = N

(
�xt

, �2
xt

)
 , Δy ∼ N

(
�yt

, �2
yt

)
 , Δzt ∼ N

(
�zt

, �2
zt

)
 , 

where all sampling is further restricted by a maximum 

absolute value m , i.e., Δxt =
{

Δxt, Δxt < m

sign
(
Δxt

)
m, otherwise

.

3. The action from the actor output is then defined as 
� =

(
�xt

, �xt ,�yt
, �yt ,�zt

, �zt

)
 , from which the RL model 

can obtain continuous correction operations on model-
based position estimations.

One reason to set the action distribution in Gaussian 
distribution is that dynamic noise errors because of many 
different and independent factors can usually be modeled 
by multiple Gaussian distributions based on statistics. We 
further show the error distribution of different ECEF axes in 
the GSDC dataset used in the experiment section in Fig. 2. 

(5)�res
t

∶=
�
res

⟨1⟩
t , res

⟨2⟩
t ,… , res

⟨nmax⟩
t

�
∈ ℝ

nmax .

(6)pos
pred
t = posinit

t
+ Δpost.

We can see that the overall error distributions consist of 
different and multiple Gaussian distributions in different 
trajectories, where the learning models need to learn the 
specific distribution outputs based on observations in dif-
ferent trajectories.

Reward setting: To ensure the reward can guide the 
correction policy learning effectively, we use a correction 
advantage error instead of simple positioning accuracy mean 
squared error (MSE) (Zhang and Masoud 2020). The correc-
tion advantage error for time t is defined as:

where ��������� is the distance formula to calculate hor-
izontal errors. �1 and �2 are two parameters to adjust the 
effect of geodetic correction and elevation correction. Dif-
ferent from the MSE setting where rewards are all nega-
tive and better positioning leads rewards closer to 0, the 
advantage reward setting provides positive rewards when 
corrections are effective, making it easier for the agent to 
understand effective policy during learning. The Geodetic 
coordinates (GEO) are transformed from ECEF coordi-
nates, i.e., ���t = TECEF→GEO

(
���t

)
=
(
𝖫𝖺𝗍t,𝖫𝗈𝗇t, Altt

)
 , 

obtaining latitude, longitude, and altitude. Moreover, 
���ref

t
= TECEF→GEO

(
���ref

t

)
 is the reference position for the 

model to learn, which can be obtained by map-matching 
algorithms (Quddus et al. 2007), or accurate centimeter-level 
positioning systems using a GNSS-INS integrated NovAtel 
SPAN system (Fu et al. 2020). In this reward setting, we can 
set different scaling parameters for horizontal and altitude 
errors in case of different value scales in geodetic surface 
and elevation errors.

Therefore, an appropriate multiview positioning correc-
tion environment is defined with corresponding comprehen-
sive multiview observations, continuous action space, and an 
effective reward setting. An appropriate learned policy that 

(7)

rt ∶ = �1
(
���������

((
���init

t
,���init

t

)
,
(
���ref

t
,���ref

t

))

−���������
((

���
pred
t ,���

pred
t

)
,
(
���ref

t
,���ref

t

)))

+ �2

(|||���
init
t

− ���ref
t
|−|���predt − ���ref

t

|||
)
∈ ℝ,

Fig. 2  Error distributions of different ECEF axes in the GSDC dataset. The left panel shows distributions in GSDC urban trajectories. The right 
panel shows distributions in GSDC semi-urban trajectories
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can obtain high rewards in this environment can lead to good 
positioning correction performances in vehicle trajectories.

Multiview actor‑critic learning with sparse 
representations

Because real-world GNSS positioning consists of complex 
dynamic errors, the observations cannot fully describe the 
agent states, we model the sequential positioning correction 
problem by Partially Observable Markov Decision Process 
(POMDP) (Hausknecht and Stone 2015; Singh et al. 2021) and 
employ actor-critic learning to model the complex environ-
ment errors, which can choose appropriate position correction 
actions by actor output for each time step. By interacting with 
the proposed environment with a certain policy, we can collect 
a sequence of observations, actions, and rewards of different 
time t from the proposed environment defined in the previ-
ous subsection, i.e., {

(
�t, �t, rt,�t+1

)
}T
t=1

 , where the sequence 
length is T  . The target of the proposed model is to learn a 
policy ��(�|�) , which can give the probability of choosing 
action � given observation � , consisting of a parameter set 
� , to maximize the cumulative reward which indicates the 
sequential correction accuracy. To this end, we need to solve 
mainly three problems:

1. build a belief state estimator to obtain representations 
from multiview sequential observations to reflect the 
states of the vehicle agent better.

2. develop an actor-critic network to estimate values accu-
rately by mitigating interference from highly correlated 
observations based on sparse coding.

3. Optimize the parameter set � in the actor-critic POMDP 
model and output actions for continuous positioning cor-
rection.

Attention Weighted Multiview State Estimator: Considering 
we have a  M  v iew sequential  observat ions 
{�t}

T
t=1

=
�
�
⟨m⟩
t ∈ ℝ

n⟨m⟩ ∶ m = 1,… ,M
�

 , where M = 3 in 
the previous environment setting. To effectively extract fea-
tures from the M view sequential observations, we employ M 
LSTM modules to separately process different view observa-
tions. Denoting the parameter set for m-th view as �⟨m⟩ , and 
outputs of m-th LSTM module as �⟨m⟩t ∈ ℝ

nM , the forward 
propagation for m-th observation is then as follows, including 
block input, input gate, forget gate, cell and hidden output gate,

(8)�
⟨m⟩
t = �

�
�⟨m⟩

z
�
⟨m⟩
t + �⟨m⟩

z
�
⟨m⟩
t−1

+ �z

�
,

(9)�
⟨m⟩
t = �

�
�

⟨m⟩
i

�
⟨m⟩
t + �

⟨m⟩
i

�
⟨m⟩
t−1

+ �
⟨m⟩
i

⋅ �
⟨m⟩
t−1

+ �i

�
,

where � denotes the nonlinear activation, the m-th view 
parameter set �⟨m⟩ includes input observation weight set �
�⟨m⟩ ∈ ℝ

nM×n
⟨m⟩
�

 ,  r ecur ren t  s t a te  we igh t  se t 
�
�⟨m⟩ ∈ ℝ

nM×n
⟨m⟩
�

 , peephole weight set 
�
�⟨m⟩ ∈ ℝ

nM
�
 , and 

bias set 
�
�⟨m⟩ ∈ ℝ

nM
�
.

After obtaining representations for different view obser-
vations, we employ the attention modules to process each 
view and effectively fuse multiview representations with 
attention weights.

where the learnable attention parameter �⟨m⟩ ∈ ℝ
1×n⟨m⟩ , 

which is also in the m-th view parameter set �⟨m⟩ , decides 
the value scale of attention weights att⟨m⟩t  for m-th view rep-
resentations, and the sigmoid function ensures the atten-
tion weights are in [0, 1] . The belief state is then formed by 
concatenating M view representations to describe better the 
state of the vehicle agent in the RL environment, i.e.,

where attention weights can adjust value scales of different 
view representations, to help the agent decide which view 
needs more attention during learning. Therefore, the RL 
policy inputs are then changed from partial observations to 
belief states which are supposed to be closer to fully observ-
able environment states.

.Actor Network and Critic Network: After obtaining belief 
states �t , we can use the MDP-based actor-critic learning to 
process and learn from the belief state trajectories 
{
(
�t, �t, �t, rt,�t+1

)
}T
t=1

 . We use two DNN modules to form 
actor and critic, respectively, consisting of La and Lc layer 
neural networks, i.e., we have the actor parameter set 
�a =

{
�(1)

a
,… ,�

(La)
a ;�(1)

a
,… , �

(La)
a ,�a

}
 and the critic 

parameter sets �c =
{
�(1)

c
,… ,�(La);�(1)

c
,… , �

(Lc)
c ,�c

}
 . 

Denoting the l-th layer network outputs are, respectively 
�(l)
a
∈ ℝ

n
(l)
a  and �(l)

c
∈ ℝ

n
(l)
c  , in time step t , we can obtain hid-

den representations of actor and critic, respectively,

(10)�
⟨m⟩
t = �

�
�

⟨m⟩
f

�
⟨m⟩
t + �

⟨m⟩
f

�
⟨m⟩
t−1

+ �
⟨m⟩
f

⋅ �
⟨m⟩
t−1

+ �f

�
,

(11)�
⟨m⟩
t = �

⟨m⟩
t ⋅ �

⟨m⟩
t + �

⟨m⟩
t−1

⋅ �
⟨m⟩
t ,

(12)
�
⟨m⟩
t = tanh

�
�
⟨m⟩
t

�
⋅ �

�
�

⟨m⟩
h

�
⟨m⟩
t + �

⟨m⟩
h

�
⟨m⟩
t−1

+ �
⟨m⟩
h

⋅ �
⟨m⟩
t + �h

�
,

(13)att
⟨m⟩
t = sigmoid

�
�⟨m⟩�

⟨m⟩
t

�
∈ R,

(14)�t =
�
att

⟨1⟩
t �

⟨1⟩
t ,… , att

⟨M⟩
t �

⟨M⟩
t

�
∈ ℝ

MnM ,
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where � denotes the nonlinear activation. The output layer of 
the actor network needs to be the same as the action space 
in the environment setting, i.e., for a continuous positioning 
correction space defined in the previous subsection,

where �a ∈ ℝ
6×na(La) , � and � are means and deviations of 

each dimension. For the continuous positioning correction 
environments, the actor network outputs action distributions 
for multiview observations, and decides actions from the 
continuous action space by sampling the distribution.

On the other hand, the critic network predicts values 
for different multiview observations to guide the training 
of the actor network. To alleviate interference in value 
estimation from highly correlated observations, we enforce 
sparsity in representations of the critic by employing the 
�1 norm function as the sparsity regularizer, which can 
induce sparsity effectively beyond the other convex func-
tions like �2 norm (Zhao et al. 2022),

(15)
�
(La)
a = �

(La)
a �

(
… �

(
�(1)

a
�t + �(1)

a

)
…
)
+ �

(La)
a ∈ ℝ

na(La),

(16)
�
(Lc)
c = �

(Lc)
c �

(
… �

(
�(1)

c
�t + �(1)

c

)
…

)
+ �

(Lc)
c ∈ ℝ

nc(Lc),

(17)�t = �a�
(La)
a =

[
�xt

, �xt ,�yt
, �yt ,�zt

, �zt

]
,

(18)s
(
�
(Lc)
c

)
=
‖‖‖‖
�
(Lc)
c

‖‖‖‖
=
∑

j

||||
(h
(Lc)
c )j

||||
.

Denoting the output after previous network propagation 
as �̂(Lc)c  , the sparse coding problem is then formed as,

By calculating the differential of L̂ respect to �̂(Lc)c  , i.e.,

Consequently, we can use the soft thresholding function 
to obtain the nonconvex sparse coding solutions as sparse 
representations of the critic,

Therefore, we can estimate the multiview observation 
values by the output sparse representations of the critic 
network, i.e.,

where �c ∈ ℝ
nc(Lc) , and sparse representations �(Lc)c  . can 

help mitigate interference and reduce coherence from cor-
related sequential observations.

In summary, we present the detailed architectures of the 
proposed multiview actor-critic learning model in Fig. 3, 

(19)min
𝐡c

L̂
(
𝐡c
)
=

1

2

‖‖‖‖
𝐡c − �̂�

(Lc)
c

‖‖‖‖

2

F

+ 𝜆s
(
𝐡c
)

(20)∇�c
L̂
(
�c
)
= �c − �̂

(Lc)
c + 𝜆sign

(
�̂
(Lc)
c

)
,

(21)

�
(Lc)
c = Prox𝜆

(
�̂
(Lc)
c

)
= sign

(
�̂
(Lc)
c

)
max

(||||
�̂
(Lc)
c

||||
− 𝜆, 0

)
.

(22)V𝜋
(
�t

)
∶= V�

(
�t

)
= V�c

(
�t
)
= �⊤

c
�
(Lc)
c ,

Fig. 3  Detailed architecture of the multiview actor-critic learning components in the proposed MVDRL-SR model for sequential positioning 
correction
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including the main components, i.e., multiview state esti-
mator, actor network, and critic network.

Positioning correction algorithm

To ensure the multiview actor-critic learning functions effi-
ciently, we employ the benchmark policy gradient method 
Proximal Policy Optimization (PPO) (Schulman et al. 2017) 
for actor-critic training, which ensures the trust region 
update with an advantage clipping strategy and is efficient 
in continuous-action environments. In the POMDP model 
with belief states, we employ the generalized advantage 
estimation (Schulman et al. 2015) to reduce variance from 
the noisy A� is then Â in time t and guide the actor training, 
defined as follows,

where �t = rt + �V�c

(
�t+1

)
− V�c

(
�t
)
 is a time-difference 

reward residual considering the from the critic in adja-
cent time steps, helping the agent to consider temporally 
connections.

Then, the loss function for the actor network La is defined 
by the clipping PPO objective function as follows,

where ri
(
�a
)
= ��a(�i|�i)∕��olda

(�i|�i) is the probability ratio.
On the other hand, to achieve accurate value estimation 

and long-term positioning accuracy, the critic loss function 
Lc is defined by the Mean-Squared Return Error (MSRE) 
(Le et al. 2017), which considers the accumulated expected 
return reward, detailed as follows,

(23)Ât =

T−1∑

i=t

(𝛾𝜌)i−t𝛿i,

(24)La =
1

N

N∑

i

min
(
ri
(
�a
)
Ât, ����

(
ri
(
�a
)
, 1 ± 𝜖

))
Ât,

where gt+1 =
∑t+T

i=t
� i−tri+1 is the accumulated discount 

reward considering the T  steps vehicle trajectory. Different 
from common single-step errors used in most learning-based 
methods, MSRE helps the agent consider correction accu-
racy temporally.

Furthermore, the entropy loss function Le is applied to 
guarantee that the agent is sufficiently exploratory in its 
interaction with the environment,

Finally, we obtain the total objective function:

where �1 , �2 , and � are coefficients. By interacting with 
the positioning correction environment, the agent can 
collect experiences for training the overall parameter set 
� =

�
�⟨1⟩,… , �⟨M⟩, �a, �c

�
 with stochastic gradient descent 

(SGD)-based backpropagation, since all loss components 
are differentiable. For the nonconvex sparsity regularizer, we 
further employ the proximal operator in Eq. (21) to calculate 
thresholding sparse solutions.

In the end, the MVDRL-SR algorithm for GNSS posi-
tioning correction is formed, which can learn a stable policy, 
and output actions for GNSS positioning correction. the 
training procedure of the MVDRL-SR algorithm is sum-
marized in Algorithm 1.

Algorithm 1  MVDRL-SR algorithm for multiview con-
tinuous positioning correction

(25)Lc =

N∑

i

1

2

‖‖‖‖
gi+1 − w⊤

c
h
(Lc)
c

‖‖‖‖
2
2

(26)Le = −
∑
�t∈A

�
�
�t��t;�a

�
⋅ ln�(�t��t;�a).

(27)L = �

[
−L

a
+ �

1
L
c
+ �

2
L
e
+ �s

(
�
(Lc)
c

)]
,
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Input: exploration step number , batch size , discount rate , step number for reward 

accumulation , sparsity parameter , and learning rate .

Initialization: the multiview state estimator parameter sets ⟨ ⟩, . . . , ⟨ ⟩ , the critic 

parameter set , the actor parameter set , and initial epoch number = 0.

Main iterations:
1: Repeat
2: = + 1;

3: Collect trajectories {( , , , , )} with the multiview state estimator and the 

actor policy with parameters ⟨ ⟩, . . . , ⟨ ⟩ and from the environment;
4:  Compute the accumulated discount rewards for collected trajectories,

=

5:  Compute observation values ( ) with critic parameters and

proximal operator in Eq. 26;

6:  Compute the generalized advantage estimation based on temporal

differences of estimated observation values;

7: Draw t tuples {( , , , , )} from the dataset randomly;

8:  Update all parameters ⟨ ⟩, . . . , ⟨ ⟩, , and based on an SGD method by

calculating gradients from the total loss function ℒ in Eq. 32;

9:  Until stopping criterion is met.

Output: = { ⟨ ⟩, . . . , ⟨ ⟩, , }

Experimental validation

In this section, we validate the proposed approach using two 
real-world GNSS datasets. Firstly, we detail the validation 
setup for the two datasets. Secondly, we introduce compared 
model-based and state-of-the-art learning-based methods 
and then analyze the performances in terms of positioning 
error. All experiments in this section were performed via 
PyTorch 1.8, and run on a CPU with 2.6 GHz AMD cores 
and 256G RAM. All average positioning performances in the 
experiment section use Root Mean Square Errors (RMSE) 
as the metric.

Dataset and initialization

One of the two real-world GNSS datasets is formed from the 
Android Raw GNSS Measurements Dataset which was used 
in the Google Smartphone Decimeter Challenge (GSDC) 
2022 (Fu et al. 2020). Another one is formed by our col-
lected rover and base GNSS dataset in Guangzhou, China 
(GZGNSS). For both two GNSS datasets, we randomly 
select half of the trajectories for training DRL algorithms, 
and present correction tests comparison on the left unseen 
trajectories in different times and routes after training. The 
training and testing separation are the same for all compared 

algorithms. Moreover, satellite positions 
�
�
⟨i⟩
t

�nt

i=1
 are all 

estimated by GNSS broadcast measurements. All compared 
algorithms are implemented by the authors through turning 
corresponding parameters and employing the same ECEF 
correction labels as the proposed model to obtain their opti-
mal performances for comparison.

GSDC Dataset: The GSDC dataset consists of GNSS 
measurements collected by different Android smartphones 
from various driving trajectories in the San Francisco Bay 
Area and Los Angeles, in which the high-accuracy posi-
tions posref

t
 are obtained by a centimeter-level GNSS-INS 

integrated NovAtel SPAN system (Fu et al. 2020). Because 
the number of visible satellites continuously changes dur-
ing each trajectory, we exclude trajectories with zero visible 
satellites in certain time steps, and use the left 79 trajecto-
ries with full reference positions as the dataset. We separate 
these trajectories into two settings for validation, i.e., (1) the 
GSDC urban trajectory dataset includes 32 trajectories with 
many buildings next.to roads or overpasses during the trajec-
tory, resulting in relatively higher distance errors, and (2) the 
GSDC semi-urban trajectory dataset includes 47 trajectories 
with few buildings by the road and fewer distance errors. An 
urban area example trajectory near Los Angeles and a semi-
urban example trajectory near Stanford are, respectively, 
shown in the left and right panels in Fig. 4.
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As the GSDC dataset only has the smartphone rover 
GNSS measurements, we employ the model-based SPP 
method WLS+KF to obtain the initial solutions pinit

t
 at dif-

ferent times t , which function as the baseline for positioning 
correction. For GNSS features, we only choose L1C fre-
quency signals of GPS to form LOS vectors and pseudor-
ange residuals in consideration of simplifying processing 
since it is most consistent during all trajectories. Since then, 
we have nmax = 32 for both different views.

GZGNSS Dataset: The GNSS measure.ents are collected 
by multiple N307-5D GNSS receivers in different trajec-
tories in Guangzhou areas, where one static receiver is 
regarded as the base and another dynamic rover receiver is 

placed on the moving vehicle. Similarly, the high-accuracy.
positions ���ref

t
 , which are regarded as the ground truth posi-

tions, are obtained by a centimeter-level GNSS-INS inte-
grated NovAtel SPAN system. Moreover, we also separate 
collected trajectories into two settings for validation, i.e., 
(1) the GZGNSS urban trajectory dataset including 54 tra-
jectories with 400–2600 time steps, and (2) the GZGNSS 
semi-urban trajectory dataset including 62 trajectories with 
300–3400 time steps. An urban example in the central areas 
of Guangzhou and a semi-urban example on the semi-urban 
highway of Guangzhou are, respectively, shown in the left 
and right panels in Fig. 5.

Fig. 4  Vehicle trajectory examples in the GSDC 2022 dataset. The left panel shows an urban area example in the northwest of Los Angeles. The 
right panel shows a semi-urban example near Stanford

Fig. 5  Vehicle trajectory examples in the GZGNSS dataset. The red 
line indicates the rover positioning trajectory on the moving vehicle, 
and the blue circle is the location of the base receiver. The left panel 

shows an urban area example in the central areas of Guangzhou. The 
right panel shows a semi-urban example on the highway of Guang-
zhou
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Since we have both base and rover GNSS measurements 
in our collected GZGNSS dataset, we employ the carrier-
phase differential Real-Time Kinematic positioning (RTK) 
solutions to obtain initial solutions pinit

t
 as the baseline of the 

proposed MVDRL-SR model. The measure residual view 

observations �res use carrier-phase residuals in this dataset. 
Moreover, we select two frequencies of three constellations 
to form the GNSS observation in our GZGNSS dataset, i.e., 
BDS-L2I, BDS-L5Q, GPS-L1C, GPS-L5Q, GAL-L1C, and 
GAL-L5Q.

Fig. 6  Performances of the pro-
posed MVDRL-SR algorithm 
with a range of learning rates in 
different positioning correction 
environments. The left panel 
shows performances in GSDC 
urban trajectories. The right 
panel shows performances in 
GSDC semi-urban trajectories

Fig. 7  Performances of the 
proposed MVDRL algorithm 
with different k in sequential 
position observations in differ-
ent positioning correction envi-
ronments. The left panel shows 
performances in GSDC urban 
trajectories. The right panel 
shows performances in GSDC 
semi-urban trajectories

Fig. 8  Performances of the pro-
posed MVDRL-SR algorithm 
with a range of �

1
 . and �

2
 . The 

left panel shows performances 
in GSDC urban trajectories. The 
right panel shows performances 
in GSDC semi-urban trajecto-
ries

Fig. 9  Performances of the pro-
posed MVDRL-SR algorithm 
with a range of � in different 
positioning correction environ-
ments. The left panel shows 
performances in GSDC urban 
trajectories. The right panel 
shows performances in GSDC 
semi-urban trajectories
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Parameter selection

In this subsection, we validate how parameters affect the 
performances of the proposed MVDRL-SR. We first present 
the performances of the proposed model by tuning the learn-
ing rates in Fig. 6. Overall, the proposed MVDRL-SR can 
obtain optimal localization performances with learning rates 
around 10−4 . In detail, the optimal learning rates in GSDC 
semi-urban are slightly smaller than those in GSDC urban.

One tunable parameter in the multiview environment 
is the number of sequential positions k , which affects the 
sequence length and ratio of POS observation in the obser-
vations, we then present how it affects the localization 
performances in Fig. 7. Overall, we can see that different k 
may affect the localization performances in different envi-
ronments. Moreover, an appropriate k value around 10 can 

help the MVDRL model, which is a trimmed version of 
the proposed MVDRL-SR without the sparse coding part, 
to obtain better final positioning correction performances. 
Furthermore, we can also see that too large k . may affect 
the overall performances in different datasets.

In the loss function Eq. (27), we first tune the �1 for 
critic loss and �2 for entropy loss of the proposed model, 
shown in Fig. 8. Based on the grid search results, we 
select �1 = 0.5 and �2 = 10−3 in the following experiments. 
Then, λ, which affects the sparsity of representations in 
the critic, is crucial to the performance of the proposed 
model. As presented in Fig. 9 with a range of λ, overall, an 
appropriate λ around  10−2 can help enhance the localiza-
tion performances in both GSDC urban and semi-urban. 
However, larger λ than  10−1 may cause some reduction in 

Fig. 10  Performances of 
the proposed MVDRL-SR 
algorithm with a range of �

1
 

and �
2
 . The left panel shows 

performances in GSDC urban 
trajectories. The right panel 
shows performances in GSDC 
semi-urban trajectories

Fig. 11  Convergence curves of 
control and training perfor-
mances for different DRL 
algorithms with correspond-
ing optimal parameters in the 
GSDC trajectory dataset. The 
top two panels show perfor-
mances in GSDC urban trajec-
tories. The bottom two panels 
show performances in GSDC 
semi-urban trajectories
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localization performances, which can be because too high 
sparsity causes information losses in representations.

Furthermore, we have grid-searched the parameter for 
the proposed reward setting in Eq. (7), i.e., �1 for hori-
zontal advantage errors and �2 for altitude advantage 
errors, shown in Fig. 10. Overall, when selecting �1 = 1 
and �2 = 1 in the GSDC datasets, the proposed MVDRL-
SR can obtain optimal correction performances in both 
urban and semi-urban trajectories. One reason for this is 
the horizontal and altitude error distributions are similar 
in the GSDC dataset, with a horizontal/altitude error ratio 

from 0.71 to 1.33, and thus an equal parameter setting can 
help the agent learn an effective correction policy.

Performance comparison in the GSDC dataset

After validating optimal parameters for MVDRL-SR in 
the previous subsection, we compare the performances 
with state-of-the-art positioning correction algorithms in 
the GSDC dataset. We first present the convergence per-
formance of the proposed algorithm MVDRL-SR and the 
other DRL-based positioning correction methods in Fig. 11.

Fig. 12  Learned attention 
weights of different views of the 
proposed MVDRL-SR in the 
GSDC trajectory dataset. The 
top panel shows performances 
in GSDC urban trajectories. The 
bottom panel shows perfor-
mances in GSDC semi-urban 
trajectories

Fig. 13  Representation sparsity 
in terms of the �

1
 norm of the 

proposed MVDRL-SR with or 
without sparse coding in the 
GSDC trajectory dataset. The 
left panel shows performances 
in GSDC urban trajectories. The 
right panel shows performances 
in GSDC semi-urban trajecto-
ries
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Fig. 14  Coherence distribution 
of the proposed MVDRL-SR 
with or without sparse cod-
ing in the GSDC trajectory 
dataset. The top panel shows 
performances in GSDC urban 
trajectories. The bottom panel 
shows performances in GSDC 
semi-urban trajectories

Table 1  Average testing positioning performances (meters) of different methods with corresponding optimal parameters in GSDC urban and 
semi-urban trajectory datasets

Method X
ECEF

Y
ECEF

Z
ECEF

Distance error Horizontal error Altitude error

(a) GSDC urban trajectories
WLS+KF 2.33 ± 1.25 3.23 ± 1.57 2.79 ± 1.38 5.39 ± 1.43 3.06 ± 1.00 3.81 ± 1.49
A3C MSE 2.38 ± 1.41 2.24 ± 1.51 2.81 ± 1.37 4.89 ± 1.46 3.66 ± 1.21 2.75 ± 1.51
A3C 2.33 ± 1.24 2.21 ± 1.37 2.81 ± 1.37 4.77 ± 1.38 3.06 ± 1.01 3.10 ± 1.49
SetTransformer 2.24 ± 1.39 2.07 ± 1.39 2.33 ± 1.43 4.41 ± 1.47 2.98 ± 0.97 2.76 ± 1.57
GCNN 2.10 ± 1.41 2.02 ± 1.38 2.24 ± 1.45 4.20 ± 1.57 2.85 ± 1.10 2.61 ± 1.62
Multi-LSTMPPO 2.06 ± 1.26 2.04 ± 1.29 2.28 ± 1.42 4.18 ± 1.50 2.77 ± 1.00 2.69 ± 1.54
MVDRL 1.91 ± 1.16 2.11 ± 1.35 2.08 ± 1.27 4.00 ± 1.42 2.67 ± 0.98 2.56 ± 1.48
MVDRL-SR MSE 2.02 ± 1.25 2.05 ± 1.34 2.17 ± 1.41 4.12 ± 1.49 2.72 ± 1.01 2.59 ± 1.52
MVDRL-SR 1.94 ± 1.06 2.02 ± 1.28 2.05 ± 1.25 3.94 ± 1.30 2.64 ± 0.93 2.48 ± 1.45

Method X
ECEF

Y
ECEF

Z
ECEF

Distance error Horizontal error Altitude error

(b) GZGNSS semi-urban trajectories
WLS+KF 1.53 ± 1.07 2.12 ± 1.34 1.80 ± 1.14 3.57 ± 1.65 1.95 ± 1.03 2.69 ± 1.65
A3C MSE 1.70 ± 1.05 2.01 ± 1.35 1.97 ± 1.19 3.70 ± 1.65 2.00 ± 1.02 2.83 ± 1.67
A3C 1.45 ± 1.04 2.12 ± 1.40 1.78 ± 1.11 3.52 ± 1.66 1.92 ± 1.01 2.66 ± 1.63
SetTransformer 1.48 ± 1.09 2.02 ± 1.39 1.80 ± 1.14 3.48 ± 1.71 1.88 ± 1.03 2.64 ± 1.68
GCNN 1.46 ± 1.11 1.99 ± 1.43 1.81 ± 1.20 3.44 ± 1.77 1.81 ± 1.06 2.68 ± 1.75
Multi-LSTMPPO 1.36 ± 1.01 1.88 ± 1.36 1.80 ± 1.15 3.14 ± 1.58 1.79 ± 0.97 2.32 ± 1.61
MVDRL 1.36 ± 0.98 1.80 ± 1.19 1.67 ± 1.07 3.08 ± 1.49 1.77 ± 1.05 2.27 ± 1.50
MVDRL-SR MSE 1.36 ± 0.98 1.76 ± 1.21 1.64 ± 1.06 3.12 ± 1.49 1.76 ± 0.92 2.31 ± 1.51
MVDRL-SR 1.36 ± 0.95 1.72 ± 1.17 1.62 ± 1.05 3.01 ± 1.40 1.72 ± 0.88 2.21 ± 1.44



GPS Solutions (2024) 28:98 Page 15 of 22 98

Overall, all algorithms can converge in reasonable num-
bers of time steps within 3 × 106 in both GSDC urban and 
semi-urban. The training convergence curves of all three 
algorithms are not smooth with some oscillation, suggest-
ing that the distributions of trajectories are varied from each 
other. In detail, A3C can converge faster than the other two 
algorithms, but the cumulative rewards, which refer to con-
trol and localization performances, are much lower. Moreo-
ver, although the reward convergence curves of MVDRL-
SR are similar to those of Multi-LSTMPPO in both GSDC 
urban and semi-urban datasets, MVDRL-SR can obtain 
smaller value losses than Multi-LSTMPPO in both cases, 
suggesting that sparse representations can help MVDRL-
SR to predict state values more accurately. Furthermore, we 
have shown two algorithms with the MSE reward setting 
(Zhang and Masoud 2020) as ablation tests. Overall, the two 
algorithms with the advantage error setting can converge 
faster with lower value losses than corresponding algorithms 
with the MSE reward setting, suggesting that the critic can 
learn the state value distribution faster and better with the 
advantage error reward setting.

In Fig. 12, we then illustrate how the learned attention 
weights are distributed, which can help the agent understand 
relationships between different views, and fuse the multi-
view information more effectively. As the x-axis is the time 
step, the attention module processes observations of differ-
ent time steps and learns relatively stable scaling attentions 
for different views during training. In general, the attention 
module can effectively analyze relationships between differ-
ent views and output attention weights, where the attention 
weights of POS-view representations can generally converge 
after 106 time step-training, while weights of the LOS view 
need about half of 106 steps, and the RES view needs smaller 
than 50,000 steps. Moreover, the learned attention weights 
of LOS-view and RES-view representations are much larger 
than those of POS-view representations which are constantly 
below 0.2, suggesting that LOS-view and RES-view repre-
sentations are considered more informative than POS-view 
by the attention module. Furthermore, after the fast conver-
gence of the RES view, the attention weight value is then 
constantly at 0.5 for RES representations, two possible rea-
sons are: (1) the information of RES observations in differ-
ent trajectories is considered similar, (2) there returns little 
gradient in neurons relating to RES observations, suggesting 
they are not very helpful in positioning correction.

We then show how sparse representations are learned 
during training, in terms of �1 norm sparsity of repre-
sentations in Fig. 9, and the coherence distribution of 
representations in Fig. 10. The �1 norm, which is the sum 
of absolute values of representations, is both an intui-
tive sparsity measurement and also the regularization in 
the proposed MVDRL-SR model. Overall, the �1 norm 
values of MVDRL-SR with sparse coding can generally 

converge at 7000 within 106 . time steps, and are much 
smaller than those without sparse coding, suggesting the 
effectiveness of obtaining sparse representations using 
the proposed model in both GSDC urban and semi-urban 
trajectories. Benefiting from the sparsity in representa-
tions, one effect is lower coherence distributions shown 
in Fig. 10. Besides the RES view, the other two views 
of temporally and spatially continuous observations, i.e., 
vehicle positions POS and relatively satellite positions 
LOS, are highly correlated in both GSDC urban and semi-
urban datasets. Moreover, the learned representations of 
MVDRL-SR can effectively reduce coherence in both two 
GSDC datasets, while representations without sparse cod-
ing are still highly correlated (Figs. 13 and 14).

In Table 1, we summarize the testing performances 
of different positioning algorithms in GSDC urban and 
semi-urban datasets. Overall, the proposed MVDRL-
SR can obtain better testing localization performances 
in terms of average RMSE in different coordinates in 
both two datasets than the others, including model-based 
WLS+KF; Deep learning-based SetTransformer, GCNN; 
RL-based A3C, Multi-LSTMPPO. In detail, compared 
with the model-based SPP baseline, MVDRL-SR can 
improve about 27% in GSDC urban trajectories, and about 
16% in GSDC semi-urban trajectories. Moreover, the two 
RL-based methods, MVDRL-SR and Multi-LSTMPOP 
can outperform the two deep learning-based methods, 
one reason is that the two RL-based methods consider 
relationships of observations in temporal. Meanwhile, we 
can see that the positioning correction performances in 
GSDC urban trajectories are generally better than those in 
GSDC semi-urban trajectories, which corresponds to the 
convergence reward values of the two datasets in Fig. 11, 
indicating training in GSDC semi-urban trajectories is 
more difficult.

For the ablation test, we present the results of the 
trimmed version of MVDRL-SR, i.e., MVDRL as a com-
parison in Table 1. Considering the two main components 
of the proposed methods, the improvements of MVDRL 
from Multi-LSTMPPO, which simply concentrates obser-
vations of different views, can support the effects of atten-
tion-weighted multiview fusion. Moreover, MVDRL-
SR can obtain smaller average and deviation values of 
distance errors than MVDRL in both GSDC urban and 
semi-urban trajectories, supporting the effectiveness of 
the sparse coding-based critic network. Finally, ben-
efiting from attention-weighted multi-view fusion and 
sparse representations, MVDRL-SR can improve about 
6% positioning accuracy from Multi-LSTMPPO in the 
GSDC urban dataset, and about 4% in the GSDC semi-
urban dataset. Moreover, we present the two algorithms 
with the MSE reward setting as ablation tests. Generally, 
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the two algorithms with the MSE setting obtain higher 
localization errors than corresponding algorithms with 
the advantage error setting, supporting the effectiveness 
of the proposed reward setting.

Intuitive comparisons of the positioning performances 
of different algorithms are shown in Figs. 15 and 16, about 
positioning accuracy in two example trajectories in the 
GSDC dataset. Overall, the proposed MVDRL-SR can out-
perform the other algorithms in most time steps, achieving 
smaller distance errors in the two GSDC urban and semi-
urban trajectories. Moreover, the distance error oscillation of 
MVDRL-SR is also smaller than the other two algorithms, 
suggesting better stability of the proposed model. In the bot-
tom panel of Figs. 15 and 16, we present how different algo-
rithms perform positioning corrections on horizontal maps. 
Overall, the blue circles referring to the proposed MVDRL-
SR are closer to the center of the red circles which are the 

reference points obtained by the NovAtel SPAN system 
(Figs. 15 and 16).

Performance comparison in the GZGNSS dataset

In this subsection, we present and analyze the perfor-
mances of different algorithms in our collected GZGNSS 
datasets. Different from the GSDC dataset, we employ the 
carrier phase differential RTK solutions as the baseline to 
validate the proposed MVDRL-SR model.

In Table 2, we detail the average performances of differ-
ent algorithms in GZGNSS urban and semi-urban trajec-
tories. Overall, the proposed MVDRL-SR can effectively 
improve the localization performances and outperform 
the other algorithms in terms of distance errors, horizon-
tal errors, and altitude errors in the two GZGNSS data-
sets. Different from the SPP method WLS+KF, the alti-
tude errors in the baseline RTK are much higher than the 

Fig. 15  Vehicle positioning 
correction performances of 
different algorithms in a GSDC 
urban trajectory. The top panel 
shows the overall performance 
throughout the trajectory. The 
bottom panel shows the detailed 
performances on the map
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horizontal errors, so we employ the reward function in 
Eq. (7) by setting �1 = 1 and �2 = 0.1 for all learning-based 
methods. In detail, MVDRL-SR can obtain about 16% bet-
ter horizontal accuracy than the RTK baseline in GZGNSS 
urban trajectories, and about 13% better horizontal accu-
racy in GZGNSS semi-urban trajectories, supporting the 
effectiveness of the proposed model. Moreover, we can 
see that the horizontal accuracy of A3C is the same as the 
RTK baseline in GZGNSS semi-urban trajectories, which 
can be also seen in Fig. 17 and is mainly related to its com-
plex discrete action space setting. Furthermore, the large 
altitude error in the baseline RTK can also be effectively 
mitigated by the proposed MVDRL-SR model, with about 
45% improvement in GZGNSS urban trajectories and 77% 
improvement in GZGNSS semiurban trajectories (Fig. 18).

We then present the intuitive performance comparison 
in GZGNSS urban and semi-urban example trajectories in 
Figs. 17 and 18. Overall, the proposed MVDRL-SR can 

obtain lower horizontal errors and altitude errors than the 
RTK baseline, RL-based A3C, and DL-based GCNN in 
most time steps. Although the RTK solutions may have 
even higher altitude errors than WLS+KF, MVDRL-SR 
can effectively correct the error and obtain better average 
performance. Moreover, the example semi-urban trajec-
tory is with a smaller number of high buildings, leading 
to fewer multipath effects and more steady RTK solutions 
than the urban one. Nevertheless, the average horizontal 
improvements from RTK in GZGNSS semi-urban tra-
jectories are smaller than those in GZGNSS urban. One 
reason can be that oscillations and high errors occupy a 
small proportion in semi-urban trajectories, and these sud-
den changes in surrounding environments have not been 
well learned. Furthermore, the proposed MVDRL-SR can 
effectively correct the errors to reach closer to the centers 
of the red reference circles, supporting the good generali-
zation ability of the proposed model (Fig. 17).

Fig. 16  Vehicle positioning cor-
rection performances of differ-
ent algorithms in a GSDC semi-
urban trajectory. The top panel 
shows the overall performance 
throughout the trajectory. The 
bottom panel shows the detailed 
performances on the map
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Discussion

In the experimental validation, we have presented the per-
formances of the proposed MVDRL-SR in different real-
world GNSS datasets, and compared it with state-of-the-art 
approaches for GNSS positioning correction in complex 
urban environments. Moreover, we have also validated the 
effectiveness of the two main modules in MVDRL-SR, i.e., 
the attention-weighted multiview fusion and the sparse cod-
ing-based critic network.

1. For the attention-weighted multiview fusion, we first 
tuned the sequence length k of the POS view in Fig. 7, 
and an appropriate sequence length of 10 can achieve 
better positioning performance in both GSDC urban and 
GSDC semi-urban trajectories. For observations of dif-
ferent views, the attention weights can be learned adap-
tively and effectively, as shown in Fig. 12, all weights 
can converge in 106 time steps and help the agent to 
understand which view is more informative and needs 
more attention. Table 1 shows that the average perfor-
mances of MVDRL can outperform Multi-LSTMPPO, 
which only concentrates multiview observations, sup-
porting the effectiveness of the attention-weighted mul-
tiview fusion.

2. For the sparse coding-based critic network, we first 
tuned the regularizer parameter λ in Fig. 9, in which 
an appropriate λ around 10−2 can obtain lower distance 
errors in both GSDC urban and semi-urban trajectories. 
We then present the representation sparsity during train-
ing in Fig. 13, showing that the imposed ℓ1 norm can 
effectively reduce the sparsity of representations during 
training. Moreover, Fig. 14 shows that sparse coding can 
also effectively reduce the coherence of representations 
from highly correlated multiview observations. The 
effectiveness of the sparse coding-based critic module 
is also validated in Table 1 by comparing MVDRL-SR 
to MVDRL.

3. For the GSDC dataset, we first present the convergence 
of environment returns and value losses in Fig.  11, 
where MVDRL-SR can obtain similar converged 
rewards but smaller value losses than Multi-LSTMPPO. 
We then present performance comparisons with state-of-
the-art approaches in terms of three ECEF axes errors 
and distance errors, shown in Table 1. The proposed 
MVDRL-SR can outperform the model-based baseline 
WLS+KF with 27% improvement in GSDC urban and 
16% improvement in GSDC semi-urban. Moreover, 
MVDRL-SR can obtain about 6% improvement from 
DL-based GCNN and DRL-based Multi-LSTMPPO. In 
the GZGNSS dataset, we employ the carrier-differential 

Fig. 17  Vehicle positioning 
correction performances of dif-
ferent algorithms in a GZGNSS 
semi-urban trajectory. The top 
two panels show the overall 
performance throughout the tra-
jectory. The bottom panel shows 
the detailed performances on 
the map
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RTK solutions as the initial position baseline. RTK can 
reach centimeter-level accuracy in open environments, 
however, the trajectories are collected in complex urban 
areas in Guangzhou with a highly active ionosphere, 
leading to meter-level performances which are affected 
by ionosphere effects and inaccurate double-differenced 
ambiguity fixing. Again, MVDRL-SR can obtain better 

localization performances than the other approaches, 
with 16% horizontal and 45% altitude improvement from 
the baseline RTK, 13% horizontal improvement from 
the DL-based GCNN. Furthermore, we present intuitive 
trajectory examples of the two datasets, respectively, in 
Figs. 15, 16, 17 and 18.

Table 2  Average positioning performances (meters) of different methods with corresponding optimal parameters in GZGNSS urban and semi-
urban trajectory datasets

Method X
ECEF

Y
ECEF

Z
ECEF

Distance error Horizontal error Altitude error

(a) GZGNSS urban trajectories
WLS+KF 4.34 ± 2.96 5.76 ± 4.83 5.54 ± 2.87 9.99 ± 5.38 5.19 ± 2.12 7.66 ± 5.91
RTK 2.41 ± 1.77 4.92 ± 3.45 3.18 ± 1.96 6.68 ± 3.89 2.14 ± 1.96 5.98 ± 3.85
A3C 1.69 ± 1.83 3.37 ± 3.40 1.78 ± 1.90 4.56 ± 4.00 2.01 ± 1.84 3.77 ± 3.82
GCNN 1.64 ± 1.80 3.06 ± 3.52 1.73 ± 2.00 4.28 ± 4.11 2.05 ± 1.97 3.40 ± 3.91
MVDRL-SR 1.48 ± 1.70 2.94 ± 3.42 1.60 ± 1.88 4.01 ± 3.99 1.79 ± 1.80 3.27 ± 3.80

Method X
ECEF

Y
ECEF

Z
ECEF

Distance error Horizontal error Altitude error

(b) GZGNSS semi-urban trajectories
WLS+KF 2.65 ± 1.70 4.20 ± 2.49 3.79 ± 1.56 7.14 ± 2.56 4.55 ± 1.21 4.71 ± 3.06
RTK 2.37 ± 0.81 5.11 ± 1.41 2.61 ± 0.73 6.33 ± 1.55 0.89 ± 0.77 6.13 ± 1.59
A3C 1.33 ± 0.81 2.56 ± 1.38 1.23 ± 0.70 3.29 ± 1.57 0.89 ± 0.77 3.05 ± 1.53
GCNN 0.75 ± 0.83 1.33 ± 1.49 0.64 ± 0.75 1.81 ± 1.76 0.81 ± 0.80 1.49 ± 1.66
MVDRL-SR 0.74 ± 0.73 1.23 ± 1.38 0.67 ± 0.67 1.75 ± 1.59 0.77 ± 0.70 1.43 ± 1.53

Fig. 18  Vehicle positioning 
correction performances of dif-
ferent algorithms in a GZGNSS 
urban trajectory. The top two 
panels show the overall perfor-
mance throughout the trajectory. 
The bottom panel shows the 
detailed performances on the 
map
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Overall, the proposed method MVDRL-SR can employ 
different model-based methods as initial position baseline, 
e.g., WLS, KF, and RTK, to learn a correction policy for 
better localization performances than model-based baseline, 
existing DL-based, and RL-based methods in real-world 
GNSS datasets in different areas. However, we should note 
that these learning methods are based on GNSS measure-
ments and model-based initial positions, which means 
they cannot function well when there is no visible satellite. 
Moreover, when the data distribution in training data are 
varied too large, the convergence can slow down, and the 
model may only learn the distribution of the main parts in 
the dataset, where we need to learn specific models for dif-
ferent datasets and distributions. Furthermore, to validate 
the effectiveness of the proposed model in positioning after 
training, we show the running time costs of different meth-
ods for each time step in Table 3, noting that time costs 
of learning-based methods are counted when they receive 
model-based inputs, so the overall time costs of learning-
based methods used in practice should add the time cost of 
employed model-based baseline. Overall, after training, all 
learning-based methods can output correction results within 
reasonable time costs from 10−3 to 5 × 10−3 seconds, making 
them possible to achieve a 50 Hz positioning.

Conclusion and future work

In conclusion, we develop a DRL framework for GNSS 
positioning correction in complex urban environments, i.e., 
MVDRL-SR, which uses attention-weighted multiview 
fusion to process multiview observations to represent the 
vehicle states sufficiently and employ the �1 norm sparse 
coding to promote sparse hidden representations in critic 
to alleviate interference from highly correlated temporally 
continuous observations. To effectively model the vehicle 
state, we construct the positioning correction RL environ-
ment with multiview observations, and develop an attention-
weighted multiview fusion framework to exploit historical 
features from different views separately based on LSTM 
modules, and fuse belief states based on adaptively learned 
attention weights considering relationships between views. 
To alleviate interference from redundant and correlated 
multiview temporally continuous observations, we employ 
the �1 norm regularizer and corresponding proximal opera-
tor in the critic to promote sparse hidden representation 
during network propagation and effectively reduce coher-
ence in representations to enhance the precision of value 

estimation. Finally, we construct the learning model based 
on sparse representation-driven actor-critic DRL structure 
and multiview fusion estimated POMDP belief states, with 
the cumulative value estimation and temporal difference 
advantage setting to help the agent consider positioning 
correction in temporal. In the experimental validation, we 
perform results in the open GSDC dataset, and our collected 
GZGNSS dataset, both datasets are separated as urban and 
semi-urban trajectories. Overall, the proposed MVDRL-SR 
can outperform both model-based baseline and state-of-the-
art learning-based methods in different real-world GNSS 
datasets. For example, MVDRL-SR can obtain about 27% 
positioning accuracy improvement from the WLS+KF 
baseline in GSDC urban trajectories, about 16% horizontal 
accuracy improvement, and 45% altitude accuracy improve-
ment from RTK in GZGNSS urban trajectories. Moreo-
ver, MVDRL-SR can obtain 6% lower distance errors in 
GSDC urban trajectories, and 13% lower horizontal errors 
in GZGNSS urban trajectories than DL-based GCNN. Fur-
thermore, the ablation tests support the effectiveness of the 
two main modules, i.e., the attention-weighted multiview 
fusion can effectively learn attention weights for different 
views and help reduce about 4% distance errors. Besides, the 
sparse coding-based critic network can effectively reduce the 
sparsity of representations during training, reduce about 30% 
coherence of representations, and further improve localiza-
tion performances. In future works, we will consider add-
ing more GNSS features and inertial measurements to form 
more comprehensive observations in the RL environment to 
improve the vehicle state estimation accuracy and improve 
positioning correction performances.
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