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Abstract
Low-cost sensor navigation has risen in the past decade with the onset of many modern applications that demand decimeter-
level accuracy using mass-market sensors. The key advantage of the precise pointing positioning (PPP) technique over real-
time kinematic (RTK) is the non-requirement of local infrastructure and still being able to attain decimeter to sub-meter 
level accuracy while using mass-market low-cost sensors. Achieving decimeter to sub-meter-level accuracy is a challenge 
in urban environments. Therefore, adaptive filtering for low-cost sensors is necessary along with motion-based constraining 
and atmosphere constraints. The traditional robust adaptive Kalman filter (RAKF) uses empirical limits that are derived by 
analyzing the GNSS receiver data learning statistics based on confidence intervals beforehand to determine when the adaptive 
factor needs to be applied. In this research, a new technique is proposed to determine the adaptive factor computation based 
on the detection of an increase in the number of satellite signals after a partial outage. The proposed method provides 6–46% 
better accuracy than the traditional RAKF and 11–55% better accuracy performance when compared to a tightly coupled 
solution without enhancements when multiple datasets were tested. The results prove to be a significant improvement for 
the next generation of applications, such as low-autonomous and intelligent transportation systems.
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Introduction

The emergence of new applications such as autonomous 
vehicles, navigation using smart devices, intelligent trans-
portation systems and other modern applications, the 
demand for accurate and continuous navigation has sky-
rocketed. In urban areas, using high-quality global naviga-
tion satellite system (GNSS) and inertial measurement unit 
(IMU) sensors with the real-time kinematic (RTK) or pre-
cise point positioning (PPP) GNSS measurement processing 
techniques might be able to offer sub-meter to decimeter-
level accuracy. With the recent advancement in hardware 
technology and software, modern applications require deci-
meter to sub-meter level accuracy using low-cost sensors. 
Achieving decimeter-level accuracy using low-cost sensors 

is a greater challenge, as the quality of measurements is poor 
when the GNSS signal reception environment is obstructed 
(Vana 2023; Vana and Bisnath 2020).

The main advantages of the PPP technique when com-
pared to RTK technique are (Choy et al. 2016; Zumberge 
et al. 1997): 1. the non-requirement of local ground-based 
infrastructure and usage of the precise products to obtain a 
precise and accurate position solution; and 2. provision of 
point positioning information. These reasons make PPP a 
very desirable alternative to RTK/relative positioning. The 
disadvantage of using PPP is the long convergence time; it 
takes 10–15 min to achieve a cm level accuracy in stationary 
mode. Various techniques are used to decrease PPP con-
vergence time, such as adding more GNSS measurements, 
constraining the ionospheric delay’s estimation using global 
ionospheric maps (GIMs), ambiguity resolution, sensor inte-
gration, etc.

In a standard EKF, the assumption made is that the 
dynamic model constructed is ideal for the application’s 
environment (Brown and Hwang 1997). However, the 
application environment is a factor that cannot be held as 
a constant, given the type of applications targeted by this 
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work, which are low-cost autonomous and intelligent trans-
portation systems, virtual reality, etc. Adaptive filtering is 
mandatory to serve such requirements. Some of the common 
adaptive filters are innovation-based adaptive estimation 
(IAE) (Hide et al. 2003), multiple-model adaptive estimation 
(MMAE) (Magill 1965) and robust adaptive KF (RAKF) 
(Yang and Cui 2008; Zhou et al. 2009). IAE method that 
uses past information can introduce unnecessary large errors 
in the solution due to larger solution errors from past data. In 
the case of MMAE, running multiple parallel filters causes 
processing overhead to the system. Therefore, in this work, 
RAKF has been explored.

The adaptability in the RAKF algorithm comes in two 
stages. In the first phase, an equivalent measurement covari-
ance matrix is formed with the help of a standardized resid-
ual statistic. In the second phase, an adaptive factor is intro-
duced to balance the contributions of predicted states, in 
this case, the IMU-based prediction and new measurements 
from the current epoch are observed. The traditional RAKF 
uses empirical values derived from confidence intervals to 
compute the equivalent measurement covariance matrix and 
the adaptive factor. Only the adaptive factor portion for the 
dynamic model is explored in this research work.

In the past, Yang and Gao (2005) conducted a study com-
paring different types of adaptive factors with different seg-
ments such as 2- and 3-segment adaptive factor functions. 
In the experiments conducted by Yang and Gao (2005), a 
Trimble 4500 receiver was used in RTK mode and pro-
duced double-differenced carrier-phase measurements. The 
adaptive function used to compare the results was the state 
discrepancy-based method. The results from Yang and Gao 
(2005) claim 60% better horizontal accuracy performance 
when compared to traditional EKF.

Recent studies such as Elmezayen and El-Rabbany (2021) 
and Lotfy et al. (2022) working on RAKF focus on adaptive 
observation models for a specific set of observations, such 
as adaptiveness applied to observations from a particular 
frequency or constellation. The traditional RAKF model 
has been adapted by using a classification robust adaptive 
Kalman filter (CAKF). In a CAKF, an equivalent weight 
function model based on a t-test statistic is formed, and an 
equivalent weight matrix for different types of observations 
(e.g., P1, L1, P2, L2, etc.) is developed separately. Results 
from these studies claim accuracy improvement of about 
15–45%.

In Wu et al. (2022), both measurement adaptiveness and 
predicted state covariance adaptiveness are employed using 
GNSS and IMU tightly coupled (TC) integration with RAKF. 
For predicted state covariance adaptive factor calculation, the 
PDOP value is used as an indicator to apply the adaptation 
computation. The learning statistic used in this research is 
based on standardized residuals. The experiments were con-
ducted using a Leica GNSS Gx 1230 and CMIGITS-II IMU 

in an open-sky environment and areas covered with foliage. 
The authors summarized that when the proposed method was 
observed, the horizontal solution error was 31% superior when 
compared to the standard extended Kalman filter (EKF).

In the study conducted by Li and Shen (2011), TC inte-
gration of GPS and IMU measurements was performed using 
a trimble GPS and a tactical grade IMU for an aerial object 
using the double-differencing method by placing a refer-
ence station at a known location. As part of the case study, 
simulated noise was introduced on code measurements and 
the RAKF with measurement adaptiveness maintained an 
RMS of 70 cm, while the RAKF with both measurement 
and dynamic model adaptiveness achieved an RMS of 60 cm 
when compared to a standard EKF with an RMS of a couple 
of meters. In the latter part, abnormal noises were added to 
the IMU measurements and the RAKF with both measure-
ment as well as dynamic model adaptability remained at 
60 cm, while standard EKF and RAKF with just measure-
ment adaptability, had a poor performance with an RMS of 
10 m.

A modified-RAKF is proposed in this work by trying to 
detangle the dependence of the RAKF application using 
empirical cutoff values that are derived based on a hypoth-
esis test. The method relies on the fact that large errors in the 
estimation process occur when new satellites are acquired 
after a partial outage (i.e., in the urban area case). Therefore, 
the method works by detecting new satellites and then apply-
ing the RAKF, rather than applying various statistical Yang 
and Cui (2008) and Yang and Gao (2005). The objectives 
of this work are to 1. Evaluate the accuracy performance 
of low-cost navigation system by applying modified-RAKF 
adaptive factors in urban environments 2. Assess and com-
pare two different learning statistics. This section is followed 
by an introduction to GNSS-PPP and IMU integration and 
the existing adaptive filters, followed by modified-RAKF, 
field test results, and conclusions and recommendations.

GNSS‑PPP and IMU integration

In this research, triple-frequency (TF) GNSS measure-
ments are processed in uncombined mode. When all three 
frequency measurements are available for a satellite, the 
measurements are processed in TF mode and when only two 
frequency measurements are available, the measurements are 
processed in dual-frequency (DF) mode. The code and car-
rier-phase measurements can be expressed as shown below 
(Hofmann-Wellenhof et al. 2007; Naciri and Bisnath 2021).
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In (1) and (2), s represents a satellite, i = 1, 2 and 5 repre-
sent the first, second and third signal frequencies, � is the 
geometric range between a satellite and the user position, dtr 
is the receiver clock errors, dts is the satellite clock error, T  
is the troposphere delay, �i =

f 2
i

f 2
1

 is the ratio of frequencies 
applied to the first frequency ionosphere delay Is

i
 at fre-

quency i, Br
p
 and Bs

p
 are the receiver and satellite hardware 

biases, respectively, Br
�
 and Bs

�
 are the receiver and satellite 

phase biases, respectively, and eP and e� represent the 
receiver noise and multipath, respectively. The ionosphere 
state per satellite is estimated as white noise and constrained 
using GIM. �s

i
=c/ fi is the signal wavelength per satellite and 

Ni is the integer ambiguity on each frequency (Vana 2023). 
The details of ionospheric constraining can be found in 
Aggrey (2018), Cai et al. (2017), Vana (2023) and Yi et al. 
(2021).

An elevation-based weighting scheme is used for the 
measurements which is improvised from Eueler and Goad 
(1991). Further system and measurement modeling details 
can be found in Vana (2023).

Figure 1 is a representation of TC integration block dia-
gram of GNSS-PPP and MEMS-IMU measurements. The 
TF-GNSS measurements are corrected for the orbit, clock 
and biases using the precise corrections obtained from anal-
ysis centers. Further, the measurements are corrected for the 
earth rotation, atmosphere, relativistic and phase wind-up 
corrections as well. The corrected code and phase measure-
ments are represented by �GNSS and �GNSS , respectively.

fb and wb are the specific force and turn rates, respec-
tively, measured by the MEMS-IMU which are converted 
into position 

(
PIMU

)
 , velocity 

(
VIMU

)
 and attitude 

(
AIMU

)
 

by using inertial mechanization. The details of inertial 

mechanization can be found in references such as Farrell 
(2008) and Groves (2013). Using the satellite positions and 
position PIMU , predicted code and phase observations are 
obtained which are represented by (�IMU and �IMU) . The 
input to the EKF is the residuals between the GNSS meas-
urements and the predicted IMU measurements. Integer 
ambiguities are not resolved and estimated as float since the 
applications targeted by this research do not require centim-
eter level accuracy. The error states �P, �v, ��, �ba and �bg 
are fed back to inertial mechanization. Pe

IMU
, Ve

IMU
and Ae

IMU
 

are the corrected IMU position, velocity and attitude. Motion 
constraining or non-holonomic constraining (NHC) is 
applied to the IMU measurements based on vehicle dynam-
ics. The details of the vehicle dynamics applied can be found 
in Vana (2023) and Vana et al. (2020).

Robust adaptive Kalman filter

A robust adaptive Kalman filter (RAKF) was developed by 
combining adaptive filtering and robust estimation theory. 
RAKF is adopted to avoid abnormal measurements in dif-
ficult environments for measurement collection (Yang et al. 
2001; Yang and Cui 2008; Yang and Gao 2006). For exam-
ple, while using GNSS in difficult environments such as an 
urban area, the system model may vary with time (Niehsen 
2004). To balance the contributions of observations and 
predicted states to estimated state parameters, the robust 
adaptive factor � is set as a piecewise decreasing function. 
The adaptive factor is computed based on learning statis-
tics. Therefore, the function used for computing the adap-
tive factor needs to be chosen such that the abnormality in 
the observations is flagged using the learning statistic. In 

Fig. 1   GNSS-PPP MEMS-IMU 
TC integration diagram (Vana 
2023)
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this case, the adaptive factor is adjusted to trust more in the 
predicted states and vice versa.

The adaptive factor � is applied to the Kalman gain by 
scaling the predicted state covariance as shown below.

In (3) and (4), P−
k
 is the predicted state covariance, Hk is 

the design matrix, and Rk is the measurement covariance.
Different methods can be used to compute the adaptive 

factor � , centered on the learning statistic. The learning sta-
tistic can be computed using various statistical data that are 
available during the estimation process. Yang & Gao (2005) 
list various methods from the literature. The parameters used 
in this work are enlisted in Table 1.
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Modified robust adaptive Kalman filter

The drawbacks of the traditional RAKF are: 1) the detection 
of the time period when the RAKF should be applied, 2) the 
computation of the adaptive factor depends on empirical val-
ues, and 3) the computation of correct measurement covari-
ance adaptiveness in difficult environments. Using empirical 
values derived from hypothesis testing makes the technique 
more dependent on the measurement quality and the types of 
sensors used. The empirical values are typically derived by 
assessing multiple datasets for a particular sensor. This work 
aims to detach the dependence on empirical values that are 
derived using confidence intervals of the learning statistics 
while using the RAKF and make the computation process 
more independent of the measurement quality analysis for 
each sensor.

Before explaining the modified-RAKF (MRAKF), the 
accuracy performance of single point positioning (SPP), 
GNSS-PPP and GNSS-PPP + IMU is compared to under-
stand when and how using RAKF can help in improving the 
navigation solution accuracy. Data collected on August 10, 

Table 1   Learning statistics used 
in this work (Yang and Cui 
2008; Yang and Gao 2006)

Learning statistic Equation Explanation of terms
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2022 including open-sky and urban areas at York University, 
Toronto, Canada, have been considered for the analysis. Sep-
tentrio Mosaic  ×5 multi-frequency and multi-constellation 
GNSS receiver was used. The IMU used is the XSens MTi7, 
an industrial-grade MEMS-IMU. To compute the reference 
solution, a pair of NovAtel PwrPak 7 receivers and geodetic 
antennas (NOV-850) were set up, one as base and the other 
as rover. The experimental setup is as depicted in Fig. 2. The 
box with equipment was placed on car roof and driven. Data 
from the PwrPak7 receivers were post-processed using the 
Inertial Explorer software tool in smoothed RTK-TC mode.

Figure 3 represents the horizontal solution accuracy of 
SPP, GNSS-PPP only and PPP + IMU mode of process-
ing the data. SPP solution accuracy also is presented in 
this comparison as some applications, such as many in the 

automotive industry, use the SPP solution as a standard. The 
SPP solution is produced by post-processing the Mosaic- ×5 
data in the RTKlib processing tool. As seen in Fig. 3, the 
noisy nature of the SPP solution comes from the epoch-by-
epoch least squares that do not carry the information from 
the past epochs to the current epoch. Also, the SPP solution 
uses single-frequency measurements and cannot accurately 
estimate the ionospheric refraction. GNSS-PPP and GNSS-
PPP + IMU solutions are smoother than those from SPP 
because they are processed in a sequential least-squares filter 
and EKF, respectively. The GNSS-PPP and IMU measure-
ments are fused in TC mode. As multi-frequency measure-
ments are used, mitigation of ionosphere refraction is pos-
sible. The GNSS-PPP and GNSS-PPP + IMU solutions were 
processed using the York-PPP software in TF mode. The 
GNSS-PPP solution jumps whenever there is a drop in the 
number of satellites, causing an about 8 m level maximum 
spike in the position solution.

Fig. 2   Experimental setup and environment (Vana 2023)

Fig. 3   Horizontal error plot of SPP-RTKLib, York-PPP and York-
PPP + IMU

Table 2   Error statistics of the horizontal error of SPP-RTKLib, York-
PPP and York-PPP + IMU

SPP—RTKLib PPP only PPP + IMU

Horizontal RMS [m] 18 0.85 0.77
Horizontal RMS 95th 

percentile [m]
14.7 1.5 1.1

Maximum error [m] 37.2 8.2 2.1
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Table 2 is a representation of the overall horizontal error 
RMS, horizontal RMS error 95th percentile and maximum 
error for all three processing techniques. The maximum hor-
izontal error in the position solution progressively decreases, 
starting with SPP at 37 m to PPP + IMU at 2 m. The maxi-
mum position error for each of the three position solutions 
are also indicated in Table 2 to show the degree to which a 
solution can diverge during poor DOP or partial outages. 
These statistics indicate that integrating an IMU helps to 
minimize horizontal error in an urban environment.

In this research, an alternative method of using a RAKF 
is proposed by using the re-acquisition of satellite informa-
tion to make the algorithm more independent of conducting 
a hypothetical test. The overview of the proposed MRAKF 
algorithm is shown in Fig. 4.

The step-by-step description and explanation of the pro-
posed algorithm is as given below.

1.	 The correlation between the position error and the trend 
of satellites appearing and disappearing in an urban area 
was studied. When the number of satellites decreases, 
sub-meter or better accuracy is maintained by IMU 
mechanization. However, an increase in the position 
error typically occurs when satellites are re-acquired 
after traversing an underpass or between buildings. 
These new satellite signals acquired may be prone to 
multipath error, signal acquisition noise or a combi-
nation of both multipath and signal noise. Along with 

multipath affected measurements, the PPP algorithm 
takes time to converge causing spikes in the position 
solution. Another common problem is that when the 
vehicle passes multiple buildings in an urban area, DOP 
changes frequently. Therefore, to tackle this behavior/
problem, the slope of the number of available satellites 
is recorded. The idea behind computing the slope of sat-
ellites being tracked is to detect the increasing satellite 
count, which will result in a positive slope. One sec-
ond of data is used for estimating/detecting the slope, 
as the current data collection uses 5 Hz GNSS data and 
five samples/sec give a fair estimate of appearing and 
disappearing satellites. Also, less than one second may 
not give the true indication of satellites increasing or 
decreasing in an urban environment. Conversely, more 
than one second of data may delay the detection of post-
outage situations. y = mx + b represented in Fig. 4 is 
intercept-form of a straight line, where m is the slope 
of the line and b is the y-intercept. In this context, x 
vector represents time samples and y vector represents 
the number of satellites for the one second long data. 
To determine the slope, a linear regression is applied 
to the number of satellite information to estimate the 
slope parameters. If the slope is positive and if there are 
more states to be estimated than measurements, then the 
MRAKF algorithm is invoked. Figure 5 is a plot of the 
number of satellites in an urban area where the satellite 
count changes rapidly.

Fig. 4   Step-by step illustration 
of proposed modified-RAKF
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2.	 Once the RAKF algorithm is invoked, the learning sta-
tistic is computed. As part of this research, two learning 
statistics were computed to compare performance: (1) 
variance component ratio and (2) system innovation. 
Table 1 describes the details of the two methods.

3.	 The next step is to compute the adaptive factor based 
on the learning statistic. In this research work, a two-
segment adaptive factor was adopted. As the objective 
of this research is to apply the adaptive factor when the 
positive slope is detected, 2-segment adaptive factor 
function is suitable.

Equation (5) shows the formula used for computing the 
adaptive factor � . |||ΔVk

||| is the learning statistic (computed 
using variance component ratio method or the system 
innovation learning statistic method). In Fig. 4, C1, C2 and 
C3 represent the L1, L2 and L5 frequency pseudorange 
measurements, respectively.

The final two-segment adaptive factor method used 
can be represented by (6). It is important to note that (6) 
does not use any empirical values. In (6), Sl is the slope 
of the number of satellites for 1 s of data and DOF is 

(5)� = exp
(
−1 ∗

|||ΔVk

|||
)

(6)𝛼 =

{
1 if Sl ≤ 0 or DOF > 0

exp
(
−1 ∗

|||ΔVk

|||
)

if Sl > 0

degrees-of-freedom. Adaptive factor � is applied to the 
KF equations as shown in (3) and (4).

Field tests and results

Field tests were conducted to evaluate the positioning per-
formance of the proposed MRAKF method. The sensors 
used and experimental setup are as described in Fig. 2.

Data collected on August 10, 2022 are discussed in this 
section followed by multiple datasets. York-PPP and IMU 
TC solutions were processed in simulated real-time mode 
with the same data to assess positioning performance. IMU 
motion constraining and ionosphere constraining for GNSS 
measurements were applied (Vana et al. 2020).

In order to study the observation errors in the collected 
Mosaic x5 data, double-differenced measurements were 
formed with the collocated geodetic-grade receiver (SPAN 
receiver with NovAtel NOV-850 antenna) as a reference. 
The range errors were derived by applying the double-dif-
ferenced method as discussed in Hu et al., (2023) and pre-
measured lever arm. Figure 6 gives L1, L2 and L3 frequency 
code range temporal error characterization of Mosaic ×5 
measurements. It can be noted that from 16:05 to 16:30, 
the measurement errors are noisy, indicating poor quality 
measurements in the urban environment. The statistics of 
the computed range errors for L1, L2 and L3 frequencies 
are represented in.

Table 3 L1 pseudorange errors standard deviation is the 
highest at 2.7 m as the signals on the L1 frequency are more 
susceptible to multipath.

The MRAKF results are compared with the existing 
method Yang and Gao (2006) which uses thresholds to apply 
the two-segment adaptive factor. The adaptive factor for the 
RAKF using thresholds is computed as shown in below.

In (7), ||ri|| is the learning statistic and c0 is a constant 
derived by using the 95-percentile value from the distribu-
tion of innovation residuals. The learning statistic for the 
RAKF with thresholds used in this work for evaluation is 
standardized residuals. From here onwards, Yang (2010) and 
Yang and Gao (2006) method used for comparison will be 
referred to as RAKF method with thresholds.

Figure 7 describes the horizontal position error of the 
integrated solution with and without MRAKF enhance-
ments and the RAKF method with thresholds. Hereafter, 
the variance component ratio-based MRAKF is referred to 
as method 1 and system innovations residual-based MRAKF 
is known as method 2 in all figures and discussions.

(7)𝛼 =

{
1 if ||ri|| ≤ c0

e−(|ri|−c0) if ||ri|| > c0

Fig. 5   Plot indicating positive slopes of satellites during signal re-
acquisition post-outage (August 10, 2022)
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In Fig. 7, there are two underpasses that the car passes; 
one is at 15:50 h and the other at 16:30 h. The data between 
time 16:05 h and 16:20 h were collected in an urban area. 
Figure 8 is a plot of the number of tracked satellites and 
PDOP. In the urban area, there is a drop in satellite count 
and an increase in PDOP corresponding to passage through 
the underpass and urban area. PDOP shoots up to as much 
as 20 when the number of measurements is insufficient to 
estimate all states.

In Fig. 7, when the car traverses the underpass at 15:50 h, 
the solution without enhancements and RAKF with thresh-
olds diverge and the horizontal positioning error increases to 
one meter. Once satellites are tracked again after exiting the 
underpass, the PPP solution takes a few minutes to re-con-
verge. A similar trend of the solution divergence is noticed 
when the car is traversing through the downtown area from 
16:05 to 16:30 h. The solutions with enhancements, both 

methods 1 and 2, impressively remain below 25 cm posi-
tion accuracy even after passing the underpass at 15:30 h as 
MRAKF is applied at this time. The position accuracy below 

Fig. 6   Temporal range error 
characterization of Mosaic ×5 
measurements (August 10, 
2022) compared to the reference 
(SPAN) data for L1, L2 and L5 
measurements

Table 3   Statistic for the temporal range errors of Mosaic ×5 data, 
August 10, 2022

Measurement type Mean [m] Standard 
deviation 
[m]

L1 pseudorange 0.01 2.7
L2 pseudorange 0.01 1.0
L5 pseudorange 0.1 1.0

Fig. 7   Horizontal solution plot of August 10, 2022, data without 
enhancements and both the MRAKF methods
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25 cm is maintained after the car travels through the under-
pass. In the case of the second underpass at 16:30 h, the 
position solution with MRAKF remains below the sub-meter 
positioning error. Method 2 performs better than method 
1 in the urban area (16:05–16:20 h), as method 2 operates 
in the observation space and the indication of epochs with 
noisy and multipath prone measurements are flagged better 
than method 1, which operates in estimation space. When 
an outlier is detected in the observation space, the exclu-
sion or deweighting of the measurement is easier. In case of 
the urban area (between 16:05 and 16:20 h), the available 
number of satellites varies between 15 and 5 several times. 
When consecutive epochs vary between over-determined 
and under-determined solutions, the PPP estimation process 
struggles to recover and converge as multiple measurements 
prone to multipath, noise, etc., are present in the urban area. 
The MRAKF solutions show a dramatic improvement of 
38–55% in RMS when compared to the solution without 
RAKF enhancements.

Table 4 contains the summary of the overall RMS of the 
horizontal position error. Statistics include the horizontal 
position RMS for solution without enhancements, RAKF 
with thresholds, and MRAKF method 1 and method 2. The 
solution accuracy of RAKF with the thresholds method is 
60 cm, which is a decimeter better than the solution with-
out any enhancements. The horizontal position solution for 
method 2 performs 24% better than method 1. As the goal of 
this research is to apply MRAKF to maintain the accuracy 
of the position solution to below one meter throughout a 
route, it can be seen from Fig. 7 that the objective has been 
satisfied to a large extent.

Figure 9 is the representation of the adaptive factor � for 
RAKF with thresholds and both methods of MRAKF. It is 
quite evident from Fig. 9 that, while using RAKF method 
with thresholds, the adaptive factor is close to 1 in large 
number of epochs while MRAKF methods 1 and 2 are less 
than one in the time period 16:05–16:20. The underpass 
at 15:30 is not detected by RAKF with thresholds method 
resulting in no improvements in the underpass area (15:30) 
when compared to the solution without any enhancements. 
From the figure, it can be concluded that MRAKF method 
1 gives higher priority to the GNSS receiver compared to 
MRAKF method 2. In a sky-obstructed environment, the key 
factor is to assign priority to the most reliable sensor. In this 
dataset, applying method 2 delivers higher position accuracy 
performance than method 1 as the learning statistic compu-
tation for method 2 results from information from obser-
vation space (system innovations). It is quite interesting to 

Fig. 8   Number of satellites and DOP for August 10, 2022 data

Table 4   Horizontal error statistics for with and without enhance-
ments for August 10, 2022 data

With-
out 
RAKF

RAKF—
with thresh-
olds

MRAKF 
method 1

MRAKF 
method 2

Horizontal RMS [cm] 70 60 43 31
Percentage improve-

ment
– 14% 38% 55%

Fig. 9   Adaptive factor alpha plot for RAKF with thresholds, MRAKF 
method 1 and MRAKF method 2
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study how the � adaptive factor varies based on the statistic 
chosen and how the adaptive factor affects the position solu-
tion. The adaptive factor computation is the key to the suc-
cess of the MRAKF method, balancing the weight between 
the two sensors at the right times to achieve a lower position 
error. During the brief underpass outage, it can be noticed 
that the adaptive factor � for both methods 1 and 2 is close. 
Therefore, the position accuracy results from both methods 
are similar. As the car enters the urban area between 16:05 
and 16:20 h, due to swiftly changing satellite numbers and 
measurements prone to multipath, noise, etc., adaptive factor 
� values computed by method 1 and method 2 are different. 
From Fig. 9, it is clear that the adaptive factor values are 
lower for method 2 compared method 1 in the urban area 
indicating that IMU is given higher priority while applying 
MRAKF, which in turn results in greater position accuracy 
in the case of method 2. In order not to draw conclusions 
based on one dataset, 5 other datasets were collected and 
performance was assessed.

Figure 10 is the RMS percentage improvement compari-
son of MRAKF two methods over the non-enhanced solution 
of different datasets collected in 2022. Table 5 is a list of 
datasets collected, length and environment conditions for 

corresponding data. The percentage improvement exhibited 
by MRAKF both methods is significant compared to the 
solution without any enhancements. RAKF method with 
thresholds does perform better when compared to the solu-
tion with no enhancements; however, the improvements are 
minimal when compared to improvements achieved with 
MRAKF method. Overall, the system innovations residual-
based learning statistic (method 2) performs better than 
the position variance-based learning statistic (method 1) 
by 2–12%. Testing multiple datasets gives confidence that 
applying MRAKF to the urban data definitely provides 
improvements over not applying any kind of adaptive filter-
ing techniques. MRAKF provides 6–46% better accuracy 
compared to RAKF with thresholds and 11–55% better 
accuracy performance when compared to solution without 
enhancements over multiple datasets. August 10, 2022 data-
set was collected by spending more time in the urban areas 
compared to other datasets and was also driven during peak 
traffic hours. Therefore, applying MRAKF helps the datasets 
that have noisier data.

One of the reasons the system innovations method per-
forms better is that the learning statistic for the system inno-
vations-based method is formed with information from the 
observation space; therefore, it can go through screening to 
flag outlier measurements. In the position variance method, 
not all the abnormalities from the observation space may 
be reflected in the estimation space. Therefore, there can be 
indications from the observation space that may be missed in 
the current estimation space. However, the missed observa-
tion outliers will cause larger position errors in the follow-
ing epochs. Another reason the system innovations-based 
method performs with higher position estimation accuracy 
is that the position variance is scaled with the system inno-
vations variance in method 1. If both the position variance 
and the system innovations variance are high, the learning 
statistic may not give any indication of adaptiveness. As 
method 1 needs the change in position information to invoke 
the adaptiveness, the computation cycles increase. On the 
other hand, method 2’s adaptiveness can be applied when 
performing the estimation without requiring re-running the 
estimation portion of EKF.

Figure 11 shows the percentage of time when the hori-
zontal position error is less than one meter for the solution 

Fig. 10   Percentage improvement in horizontal RMS for RAKF 
with thresholds and MRAKF both methods when compared to no 
enhancements

Table 5   Datasets collected and 
related information details

Date Length of 
data [min]

Environment conditions

August 5, 2022 50 20 min data were collected in obstructed environment, medium traffic
August 10, 2022 70 Over half an hour spent in obstructed environment during peak rush hour
September 3, 2022 45 20 min data were collected in obstructed environment, medium traffic
November 8, 2022 55 Less than 20 min data in obstructed environment, light traffic
November 29, 2022 70 Over half an hour data in obstructed environment, medium to light traffic
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without any enhancement and the solutions with MRAKF 
(methods 1 and 2) technique applied. When RAKF with 
thresholds is applied, there are no significant improve-
ments to the percentage of time when the horizontal posi-
tion remains below a meter. It is evident that applying the 
MRAKF method clearly improves the amount of time when 
the horizontal position solution error remains less than one 
meter. The percentage of time when horizontal error is 
less than one meter by applying MRAKF method 1 or 2 is 
2–22% better when compared to when no enhancements are 
applied. The November 8, 2022 dataset was collected in the 
nighttime; therefore, the position error did not have many 
spikes due to vehicular traffic. The largest improvements 
were seen in the most obstructed dataset (August 10, 2022), 
the MRAKF enhancements provide the largest percentage 
improvements.

As the November 8, 2022 data were collected at night-
time and the overall performance without any enhancements 
is as good as 96% below one meter accuracy, an attempt to 
understand the accuracy performance in the urban environ-
ment alone is made in Fig. 12. From Fig. 12, it is evident that 
when no enhancements are applied, the solution accuracy 
better than one meter occurs only 84% of the time. When the 
RAKF method with thresholds is applied, it can be noticed 
that there is a solution accuracy improvement of 2.5% com-
pared to no enhancements in the urban areas. However, by 
applying methods 1 and 2 MRAKF enhancements, there is 
an improvement in the percentage of time when the position 
solution accuracy remains below one meter. When MRAKF 

method 1 is applied, the percentage of time the solution is 
below one meter is 87% and with method 2 it goes up to 
94%. The change in percentage improvement by 4–10% is 
quite significant for the urban environment with low-cost 
equipment.

Research work conducted by Yang and Gao (2005) 
achieved a 60% horizontal accuracy performance improve-
ment in RTK mode for flight data when RAKF was used in 
its traditional form with the state discrepancy-based statistic 
and exponential function for the adaptive factor computa-
tion. These results cannot be directly compared with the 
current research work as the processing technique used is 
RTK mode, along with a high-performance GNSS receiver 
and antenna for data collection and the application is dif-
ferent from the one targeted by the current work. To per-
form the same data analysis with an existing method, RAKF 
with thresholds method involving adaptiveness only for the 
dynamic model has been assessed in this work using Yang 
and Gao (2005) method.

Figures  7, 8, 9, 10, 11 and 12 show that applying 
MRAKF significantly impacts low-cost sensors to achieve 
the objective of this research, which is to maintain position 
error below one meter as much as possible. The proposed 
MRAKF method based on slope of the satellite count and 
the number of measurements available achieves a significant 
improvement to the results. Application of such software 
enhancements to improve the results is a significant step 
toward using low-cost sensors for navigation compared to 
high-precision sensors that are expensive, and bulky sensors.

Fig. 11   Percentage of time when horizontal position error is less than 
one meter for different datasets

Fig. 12   Percentage improvement for Nov-8-2022 data in horizontal 
RMS with RAKF with thresholds and MRAKF both methods when 
compared to no enhancements only in urban areas
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Conclusions and future work

Adaptive filtering becomes mandatory while using low-cost 
equipment to achieve accurate, continuous and precise navi-
gation solutions in urban environments (Vana 2021, 2023). 
In a traditional RAKF, empirical values are used to deter-
mine when the RAKF filter is to be invoked. In this research, 
the dependence on the empirical values has been avoided by 
applying adaptiveness and detecting the rise in the incoming 
satellites after a partial or complete GNSS outage. Remov-
ing the dependency on the empirical value is a significant 
development and contributions of this work. Two learning 
statistics were examined, namely: (1) variance component 
method based on change in position and innovation method 
and (2) system innovations-based method.

The modified-RAKF method was discussed, and the 
results are quite positive. When MRAKF is used, it is shown 
that the position is below a meter most of the time—close 
to 98–99%. A dm-level RMS was maintained throughout 
the data that were tested. To compare the solution accu-
racy, RAKF with thresholds method, MRAKF method 1 and 
method 2, performed 14%, 38% and 55% better when com-
pared to the solution with no enhancements. Furthermore, 
to make a stronger conclusive remark, multiple datasets 
were tested, and the urban area data proved to perform bet-
ter when MRAKF is applied than when no adaptiveness is 
applied. Method 2 performs 10–30% better than the method 
1, as the measurement domain can detect measurement out-
liers earlier than the position domain. These results prove 
that the MRAKF proposed in this research work is prom-
ising to achieve continuous, precise and accurate naviga-
tion solutions in urban environments using tightly coupled 
TF-GNSS-PPP and MEMS-IMU. There is no previous 
research with which the results from the current research 
can be directly compared, as there has been no work done in 
the low-cost sensor area using RAKF to make it independ-
ent of the empirical boundaries to detect the need to apply 
adaptiveness in the case of Kalman gain.

As part of future work, other GNSS and IMU sensor data 
with different GNSS data rates need to be collected and 
tested to validate the proposed modification to the RAKF 
algorithm. The reconvergence issue can be dealt with as a 
next step by applying ionosphere constraining and PPP-AR 
(Naciri et al. 2021).
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