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Abstract
High received signal noise and limited multipath suppression capabilities cannot be neglected when it comes to smartphone-
grade GNSS receivers and antennas and, along with frequent carrier-phase measurement discontinuities and losses, pose 
a challenge for advanced GNSS positioning techniques. To effectively utilize all satellite measurements in the absence of 
phase measurements, we proposed a pseudorange-only measurement enhanced PPP method with single- and dual-frequency 
combinations. In other words, the enhanced PPP utilizes the satellites with pseudorange-only observations that are typically 
excluded in traditional PPP processing with precise corrections. Validated with ten vehicle tests under different driving 
environments, the results show that application of the enhanced PPP approach surpasses the traditional PPP strategy for 
smartphone tracking through diverse obstruction and multipath profiles, and significant improvements of 64%, 23%, and 
46% can be observed in the 95th percentile positioning error, 68th percentile positioning error, and overall root-mean-square 
(RMS) statistics, respectively. In addition, a new adaptive post-fit residual threshold is introduced to optimize the measure-
ment quality control scheme. The results show that the solutions can be further improved with a 95th percentile positioning 
error of 1.8 m and overall RMS with 1.4 m for the horizontal component. These combined improvements further increase 
the utility of PPP processing in smartphone-based mobile positioning for mass-market applications.

Keywords GNSS · PPP · Smartphone · Pseudorange enhancement · Range errors · Adaptive post-fit threshold · Realistic 
driving environments

Introduction

Over the past decade, the modernization of Global Navi-
gation Satellite Systems (GNSS) and the availability of 
multi-constellation, multi-frequency signals have produced 
intensive development. Concurrently, the upsurge of GNSS-
enable handsets has also revolutionized receiver industries 
and location-based service (LBS) for mass-market applica-
tions, such as autonomous driving, social networking, aug-
mented reality, and personal/property security (Paziewski 
2020; Zangenehnejad and Gao 2021a). In this context, a 
fundamental push for smartphone positioning came in 2016 
after Google released the Android 7.0 platform, allowing 

users and developers the capability to access GNSS raw 
measurements, including carrier-phase observations, cata-
lyzing the progress of smartphone precise positioning using 
real-time kinematic (RTK) and precise point positioning 
(PPP) technologies (Gill et al. 2017; Odolinski and Teunis-
sen 2019).

Pioneering this field, Pesyna et al. (2014) initially drew 
on smartphone-grade antennas and external GNSS receiver 
to achieve centimeter-level accuracy in open-sky environ-
ments, which paved the way for exploring the profound 
potential of precise mobile positioning. In response to 
mass-market demands, Broadcom launched the first dual-
frequency, multi-constellation GNSS chipset BCM47755 in 
2017, ushering in a new era in smartphone dual-frequency 
GNSS processing to manage the ionospheric delay, which 
is one of the major error sources that limits initial solution 
convergence time for PPP processing (Odijk 2002; Tu et al. 
2013). It is reported in Yong et al. (2021) that centimeter-
level instantaneous RTK performance can be achieved for 

 * Jiahuan Hu 
 jhhu@yorku.ca

1 Department of Earth and Space Science and Engineering, 
York University, Toronto, ON M3J 1P3, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-023-01596-1&domain=pdf


 GPS Solutions (2024) 28:5656 Page 2 of 13

98.7% of the time (3 h) using the internal Google Pixel4 
smartphone antennas, and 99.9% of the time (8 h) with 
external antennas. To emulate RTK performance, dual-fre-
quency smartphone PPP experiments have been carried out 
in both static and kinematic environments (Yi et al. 2021; 
Wang et al. 2021).

Although extensive efforts have been made to further 
improve smartphone precise positioning, there are still sig-
nificant challenges for achieving dm- or cm-level accuracy 
for smartphone navigation in real-world driving environ-
ments. These challenges can be broadly categorized into 
two main groups: (1) insufficient observations owing to 
hardware limitations and obstructed environments, and (2) 
noisy measurement and multipath effects.

Regarding the first category of challenges, numerous 
endeavors have been made to enhance GNSS solutions 
with additional sensors, such as inertial measurement units 
(IMUs) (Gikas and Perakis 2016). A recent study showed 
that tightly-coupled PPP/IMU solutions have the capacity to 
bridge gaps in positioning solutions and markedly enhance 
overall positioning performance (Yang et al. 2023). How-
ever, dead-reckoning solutions with smartphone-grade IMUs 
cannot continuously and precisely track a vehicle over a 
long time, mainly due to its drifting nature. Consequently, 
how best to use the available raw measurements to improve 
smartphone GNSS performance remains a core challenge 
for the LBS community. In this context, Nie et al. (2019) 
proposed a PPP algorithm that combines single-frequency, 
ionospheric-corrected pseudorange measurements with 
dual-frequency ionospheric-free pseudorange and phase 
measurements. Continuing this research, Zangenehnejad 
and Gao (2021b) introduced the single-frequency phase 
observable into smartphone processing with dual-frequency 
observations.

In terms of the second category of challenges, due to 
hardware disparities as compared with, e.g., geodetic-grade 
equipment, smartphones equipped with linear polarized 
antennas are more vulnerable to multipath effects, signal 
attenuation, and reduced reception capability (Pesyna et al. 
2014). Prior studies have also demonstrated that GNSS 
observations suffer from severe signal suppression and inter-
ference when smartphones are placed on a vehicle dashboard 
(Li et al. 2022), and the orientation of the smartphone can 
also affect the positioning performance (Yong et al. 2021). 
More recently, Hu et al. (2023) assessed smartphone mul-
tipath effects through the actual range errors, and the results 
suggest that smartphone range errors characterization dif-
fers for different constellations and frequencies. To identify 
and manage these coarse measurements in GNSS process-
ing, numerous quality control methods have been proposed, 
which can be realized through 1) data quality monitoring 
using raw measurement information, such as satellite eleva-
tion angle and carrier-to-noise ratio ( C∕N0) , and 2) pre-fit 

and post-fit residual analysis to detect outliers (Zhao 2018; 
Everett et al. 2022). In this regard, a host of studies have 
suggested that a C∕N0-based stochastic weighting scheme 
is more representative than an elevation-dependent weight-
ing scheme for smartphone processing (Banville et al. 2019; 
Shinghal and Bisnath 2021). Despite these advancements, 
precisely distinguishing measurement outliers remains an 
arduous task. It is also noteworthy to point out that most 
studies and open-source software, such as RTKlib and 
GAMP, often utilize an empirical and fixed residual thresh-
old to reject noisy measurements and satellites for geodetic 
receiver (Zhou et al. 2018; Everett et al. 2022). Due to the 
poor quality of data and limited tracking capability of GNSS 
observations, achieving accurate kinematic smartphone posi-
tioning necessitates higher demands on the quality control 
approach to filter out noisy measurements while keeping as 
many quality measurements as possible.

While the pursuit of precise smartphone navigation 
using PPP processing has been ongoing for several years, 
it is important to highlight that previous studies have not 
made use of all pseudorange and phase measurements for 
smartphone PPP processing. Especially in situations where 
a smartphone chipset occasionally records only the pseu-
dorange measurements from satellites, while omitting the 
corresponding phase measurements. We will refer to these 
satellites as “pseudorange-only satellites” throughout this 
paper. To address the first challenges stemming from inad-
equate measurements, this study proposes a pseudorange-
only measurements enhanced PPP approach to leverage the 
full potential of all available GNSS observations for smart-
phone processing. Furthermore, an adaptive post-fit resid-
ual rejection method is proposed to mitigate the effects of 
noisy measurements and multipath effects on smartphone 
processing for the second set challenges. This adaptive 
method can be realized with the aid of range errors and 
geofencing analysis to prevent over- and under-rejection of 
measurements based on different multipath profiles. This 
work makes significant contributions and introduces novel 
approach to address the following questions:

1. With regard to ultra-low-cost hardware, does pseudor-
ange-enhanced PPP improve traditional PPP solutions 
and to what extent in harsh environments?

2. Assessed through the range error correlation analysis, 
which indicators among the satellite elevation, SNR 
value, pre-fit residuals, and post-fit residuals can infer 
smartphone measurement quality?

3. How to form the adaptive post-fit residual rejection func-
tion according to the learning statistic? And what is the 
‘best’ GNSS PPP solution with smartphone-grade GNSS 
chipset and antenna that can be attained in real-world 
driving environments?
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The methodologies for the pseudorange-enhanced PPP 
model and the adaptive post-fit residual rejection thresh-
old are first presented, along with the specifications for the 
smartphone processing engine. The next section elaborates 
on the experimental setup and measurement campaigns 
with geofencing maps to validate the proposed algorithms, 
followed by the raw measurement analysis and positioning 
performance assessment.

Mathematical models and data processing 
strategies

This section presents the mathematical models used in the 
enhanced PPP algorithm, as well as the models for range 
errors and the adaptive post-fit residual rejection threshold, 
followed by processing settings and configurations employed 
in smartphone processing.

Pseudorange‑only measurements enhanced PPP 
processing algorithm

The un-differenced and un-combined (UDUC) model is used 
in smartphone PPP processing, and this model is expressed 
as:

where P and L denote pseudorange and phase measurements, 
respectively, s and j are satellite and frequency indexes, 
respectively. dtr is the receiver clock offset, while dts is the 
satellite clock correction. Wherever there is a tilde in the 
parameters in (1), it indicates that the term is biasedly esti-
mated due to the rank deficiencies which will be discussed 
later. c is the speed of light, and dtrP5 is the receiver clock 
bias for L5 which is caused by the inconsistency use of fre-
quencies for IGS Analysis Centers (AC) to generate satellite 
corrections (Pan et al. 2018). dtrP5 is zero for first frequency 
and is estimated for inconsistency frequencies, e.g., GPS L5. 
T  represents the tropospheric delay, and �j is the wavelength 
of the phase measurement at jth frequency. Is
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 , where f  is the frequency. N is the phase measure-

ment ambiguity term, � and  � are pseudorange and phase 
noise, respectively. With applying the S-system theory 
(Baarda 1973; Teunissen 1985), the underlying model rank 
deficiencies can be removed, and the parameters can be 
determined but somehow biased (Psychas et al. 2022), e.g., 
the ionospheric delays are coupled with satellite and receiver 
differential code biases, and the receiver clock is estimated 
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as a function of the “true” receiver clock and receiver hard-
ware bias.

When a smartphone is recording both pseudorange and 
phase measurements from g satellites, the measurement 
matrix is as follows:

and the corresponding state vector is as follows:

With the inclusion of pseudorange-only measurements, 
and assume that there are m pseudorange-only measure-
ments available for a specific epoch, the corresponding 
measurement matrix must be expanded to:

and the formation of the design matrix (4g + 2m)A(5+3g+m) 
can then be represented as:

where ex, ey, and ez are line-of-sight unit direction vectors 
from satellite to receiver. mf represents the wet mapping 
function of the tropospheric delay, other parameters can be 
referred to the above equations. The measurement precision 
ratio for phase and code are set to 100:1, and after apply-
ing C∕N0-based weighting scheme ( � ) to different measure-
ments, the final variance matrix R can be given as:

Range errors

To analyze the smartphone observation quality and mul-
tipath effects, the range error derivation algorithm is 
adopted in this study. This method involves forming meas-
urement-differencing pseudorange observations using both 
the smartphone and collocated geodetic-grade receiver 
data. The lever arm between the smartphone and geodetic 
receiver is pre-measured as ( x0 , y0 , z0 ) in the vehicle body 
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coordinate system. The following equation shows the deri-
vation of range errors of satellite n (Hu et al. 2023):

where ∇ denotes the differencing between-receiver and Δ 
represents the differencing between-satellite. Satellite q is 
the reference satellite with the highest elevation angle.

Adaptive post‑fit residual threshold

In the traditional fixed post-fit residual rejection threshold 
method, there is often a tradeoff between retaining a higher 
number of observations and filtering out noisy measure-
ments. This tradeoff can result in situations where the use 
of a tight threshold leads to the excessive rejection of satel-
lites, ultimately causing solution gaps. To address this issue 
and ensure that measurement outliers are effectively identi-
fied and removed from the solution, we propose an adaptive 
post-fit residual rejection threshold to dynamically adjust 
the threshold for outlier detection. The adaptive threshold 
is shown as:

where � is an adaptive factor and c2 is a constant represent-
ing the minimum post-fit threshold for pseudorange residu-
als. The adaptive threshold is equal to the traditional post-fit 
threshold when the adaptive factor is 1.

As the adaptive factor significantly impacts the pseu-
dorange threshold and positioning solution, it is crucial to 
determine it according to a learning statistic (LS), which can 
reflect the actual traffic conditions and is varied with differ-
ent driving environments. This work utilizes the ratio of visi-
ble satellites over pseudorange-only satellites as the learning 
statistic, which can be also determined by the PDOP (Posi-
tion Dilution of Precision) or other indicators that can reflect 
the GNSS conditions. The form of the adaptive factor based 
on a three-segment function is given as (Yang et al. 2001):

with

where c0 and c1 correspond to the minimum and maximum 
values of the learning statistic, respectively. The abbrevia-
tions PS and POS refer to the number of processed satellites 
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and the number of pseudorange-only satellites, respectively. 
As shown in (10), the learning statistic is set to c0 in GNSS-
challenging environments, resulting in a loosened post-fit 
residual threshold. This process aims to maintain enough 
satellites for reliable positioning, even if some signals 
exhibit a higher level of noise. On the other hand, when 
there are enough observations available and the learning sta-
tistic exceeds c0 , the adaptive threshold adopts a more rig-
orous rejection stance to filter out noisy measurements and 
enhance the overall positioning accuracy. The distinguishing 
of different GNSS conditions can be based on geofencing 
maps, the number of visible satellites, and PDOP. The effec-
tiveness of the adaptive post-fit residual threshold algorithm 
relies heavily on fine tuning of the constants c0 , c1 , and c2 , 
which can be initialized with empirically determined param-
eters and tuned adaptively according to different phone 
models and traffic conditions. Also, the post-fit threshold 
rejection iterations and overall processing time required are 
typically faster than the smartphone GNSS sampling time, 
demonstrating that the proposed adaptive post-fit threshold 
algorithm is feasible and suitable for real-time applications.

Smartphone processing engine setting

Table 1 presents the processing strategy adopted in this 
study. The ionospheric effect is initially constrained using 
the Klobuchar model, and the remaining residuals are esti-
mated with a small variance. This approach is specifically 
designed to address the rank deficiency issue that arises 
when estimating both the ambiguity and ionosphere delay 
simultaneously where only single-frequency observations 
are available. The float carrier-phase ambiguities are treated 
as constant terms in the estimation as long as cycle slips are 
not detected, and only float solutions are estimated due to the 

Table 1  Processing strategies of pseudorange-enhanced PPP

Items Strategy

Coordinates White noise
Receiver clock White noise
Ionospheric effect Constrained using Klobuchar 

model and residual estimation
ZWD Estimated
ZHD Saastamoinen model
Ambiguity Constant if no cycle slip detected
Troposphere mapping function NMF
Satellite orbit/clock corrections GFZ rapid products
Satellite DCB CAS products
Processed constellations GPS/GLONASS/Galileo/BDS
Processed frequencies Single- and dual-frequency
Elevation cut-off angle 10°
Weighting scheme

� = a + b ∗ 10
−

1

2
∗

C∕N0

10 (C∕N
0
-based)
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noisy measurements with internal smartphone antenna. Con-
ventional cycle slip detection methods are applied, specifi-
cally, loss of lock indicator, geometry-free (GF) combination 
(Blewitt 1990), Melbourne-Wübbena (MW) combination 
(Melbourne 1985; Wübbena 1985), and Doppler cycle slip 
detection. The thresholds are 0.1 m for GF, 3 m for MW, and 
10 for Doppler cycle slip detection, respectively. If a cycle 
slip is detected, the ambiguity parameter variance in the fil-
ter is reset. Furthermore, due to the constraints imposed by 
tracked satellites/observations, the elevation cut-off angle is 
set to a low threshold of 10 degrees. This adjustment helps 
in effectively filtering out noisy measurements, while maxi-
mizing the inclusion of much needed satellites/measure-
ments for smartphone processing. Meanwhile, a C∕N0-based 
weighting scheme is utilized in smartphone processing, and 
the measurement standard deviation � is estimated from 
coefficients a and b, which are derived from filter residuals 
and frequency information (Banville et al. 2019; Shinghal 
and Bisnath 2021).

Measurement campaigns

In assessing the performance of proposed algorithms for 
smartphone positioning in real-world driving environ-
ments, a series of vehicle experiments were conducted 
around York University, Toronto, Canada. As depicted 
in Fig. 1, two smartphones, namely a Xiaomi MI 8 and 
Samsung Galaxy S21 +, were positioned on the vehicle's 
dashboard to replicate typical driver behaviors. Both 
smartphones support tracking of GPS, GLONASS, Gali-
leo, and BeiDou (GREC) constellations, in addition to 
GPS L5 and Galileo E5a signals. The Geo +  + RINEX 
Logger (Geo + +) and Gnsslogger (Google), two widely 
used smartphone applications, were employed to collect 

observations. Furthermore, a geodetic GNSS system 
comprising a NovAtel SPAN (OEM7 + INS) and a geo-
detic antenna was securely mounted on the roof of the 
experimental vehicle. Another NovAtel OEM 7 receiver 
was installed within a 5 km baseline and operated as the 
base station. With the consideration of the lever arm com-
pensation, this setup enabled the generation of a precise 
RTK/TC solution, which served as the ground truth for 
comparison purposes.

Figure 2 highlights the street view of the vehicle tra-
jectory, with yellow arrows indicating the direction of 
movement. Additionally, a geofencing map is created to 
evaluate the positioning performance and analyze the raw 
measurements under different multipath profiles. The driv-
ing environments are classified into four categories: open-
sky highways (A), vegetation (B), suburban roads (C), and 
overpasses (D). These categories are represented by purple, 
green, yellow, and pink polygons, respectively. It is also 
worth noting that the overpasses consist of two distinct 
areas, D1 corresponds to a short road passing under a rail-
way bridge that spans approximately 10 m, while D2 rep-
resents an arterial road located beneath a highway viaduct, 
which is a more challenging area with a complete GNSS 
outage that extends over 100 m.

To ensure the replicability and reliability of this research, 
a total of ten road tests were performed on different days, 
following the identical routes. Table 2 provides comprehen-
sive details of these datasets. Notably, road tests 3–6 were 
conducted during rush hour in Toronto, leading to more 
challenging traffic conditions compared to the other tests.

Fig. 1  Experimental setup 
with smartphones and geodetic 
receivers: smartphone GNSS 
observations are retrieved 
from Geo++ RINEX Logger 
and processed with YorkPPP 
engine; NovAtel SPAN RTK/
TC solutions are served as the 
reference
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Results analysis

To better appreciate the smartphone raw measurements 
behavior under different multipath profiles, the first four 
datasets listed from Table 2 were taken as examples and 
analyzed. Smartphones are usually employed for applica-
tions such as pedestrian navigation and vehicle navigation, 
where the primary focus lies in assessing user horizontal 
positioning errors. In alignment with this perspective, nota-
ble competitions such as the Google Smartphone Decimeter 
Challenge (Fu et al. 2020) in 2021, 2022, and 2023 have 
adopted horizontal positioning error as a key evaluation cri-
terion. Therefore, in this section, the horizontal solutions 
together with the statistics from all ten datasets are discussed 
and compared with different PPP processing modes.

Raw GNSS measurements analysis under different 
driving environments

Figure 3 shows a comparison of the observed number of 
pseudorange and phase measurements between smartphone 
MI 8 (dataset 1) and a geodetic OEM7 GNSS receiver. For 
OEM7 measurements, the absence of a blue line is due to 
the complete overlap between the green and blue lines, 
indicating that the number of code and phase measure-
ments recorded by geodetic receiver are always the same. 
For the MI 8 phone, the average number of pseudorange 
and phase measurements are 33 and 27, respectively. These 
quantities indicate that, on average, 6 phase measurements 
are lost during the data collection period, while the cor-
responding pseudorange measurements remained available. 
Conversely, no phase measurement loss is observed when 
the code measurements are available in the geodetic data 
collected by the OEM7 receiver. This comparison highlights 
the performance discrepancies that the smartphone experi-
ences more frequent phase measurement losses in challeng-
ing environments.

Fig. 2  Street views of geofenc-
ing map with A open-sky high-
ways, B vegetation, C suburban 
roads, and D overpasses

Table 2  Summary of ten road tests

Test # Phone model Collection time (Local 
time)

Traffic conditions

1 MI 8 Oct. 8, 2022, 22:03–22:24 Good
2 S21 + Oct. 8, 2022, 22:03–22:24 Good
3 MI 8 Oct. 10, 2022, 15:53–16:20 Harsh
4 S21 + Oct. 10, 2022, 15:53–16:20 Harsh
5 MI 8 Oct. 10, 2022, 16:21–16:44 Harsh
6 S21 + Oct. 10, 2022, 16:21–16:44 Harsh
7 MI 8 Aug. 7, 2021, 21:52–20:18 Good
8 S21 + Aug. 7, 2021, 21:52–20:18 Good
9 MI 8 Jul. 29, 2021, 20:48–21:13 Good
10 S21 + Nov. 7, 2022, 21:17–22:41 Good

Fig. 3  Number of pseudorange and phase measurements for smart-
phone (left) and geodetic receiver (right)
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In Fig. 4, a band-by-band, constellation-by-constellation 
analysis is performed to provide a comprehensive view 
of the phase unlock situation. The blue dots represent the 
difference between the number of pseudorange and phase 
measurements, while the red lines indicate the phase unlock 
ratio. From Fig. 4, it can be observed that no significant 
constellation- or band-specific trends are found in these 
phase unlock cases, suggesting that the phase losses issue is 
a general problem in smartphone raw observations and affect 
different frequencies and constellations in a similar manner.

Figure 5 Number of visible and pseudorange-only sat-
ellites under different driving environments presents the 
number of visible satellites and pseudorange-only satel-
lites, depicted as blue and green bars, respectively, under 
varying multipath conditions. Two key observations can be 
made from the plot. First, GNSS geometry remains relatively 
consistent across most driving environments irrespective of 
multipath effects. However, it is observed that multipath 
effects can vary significantly depending on the specific driv-
ing environments. Take satellite G10 as an illustrative exam-
ple. The L1 code-minus-carrier (CMC) residuals for G10 
differ across environments, measuring 2.0 m for open-sky 

Fig. 4  Difference between the 
number of pseudorange and 
phase measurements (blue dots) 
for different constellations and 
the corresponding phase unlock 
ratios (red lines)

Fig. 5  Number of visible and pseudorange-only satellites under dif-
ferent driving environments
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conditions, 3.6 m in vegetation roads, 3.3 m in suburban 
roads, and 5.4 m in overpasses areas. Second, it should be 
noted that the overpass areas encompass not only the imme-
diate overpass structures but also the nearby roads when 
geofencing was created, and as the vehicle approaches and 
traverses overpasses, the number of pseudorange-only satel-
lites increases (on-average to 7.7), while the availability of 
visible satellites decreases (on-average to 15.2). This finding 
suggests that the smartphone tracking capability of phase 
measurements is significantly susceptible to obstructed 
environments

Figure 6 Overall satellite CMC L1 residuals for datasets 
1 (lower traffic) and 3illustrates a comparative analysis of 
L1 code-minus-carrier (CMC) residuals between road tests 
1 and 3, offering insights into the smartphone observation 
quality influenced by various factors, including multipath 
effects and other noises, and different colors stand for CMC 
residuals from different satellites. As stated previously, test 3 
experienced more challenging traffic conditions compared to 
test 1. As anticipated, the average L1 CMC residual for test 
3 was 7.7 m, indicating a higher level of noise compared to 
test 1, which had an average residual of 5.5 m. The increased 
noise can be mainly attributed to more prominent multipath 
effects and signal interference caused by passing vehicles

Pseudorange‑enhanced PPP vs PPP in GNSS harsh 
environments

Figure 7 shows the time series of smartphone PPP horizontal 
errors for datasets 1 to 4. The conventional GNSS PPP solu-
tion is represented by the red line, while the enhanced GNSS 
PPP solution is represented by the blue line. It is evident 
that the smartphone pure GNSS PPP solution experiences 

significant degradation during GNSS outages. Additionally, 
although vehicle datasets 1–4 followed the same route, their 
PPP traditional solutions exhibited significant variations. 
Notably, datasets 3 and 4 display markedly inferior PPP 
solutions compared to datasets 1 and 2. This discrepancy 
can be attributed to the challenging traffic conditions during 
rush hours that are highlighted in Table 2, which results in 
frequent signal blockages and carrier-phase measurements 
loss.

In contrast, the proposed enhanced PPP strategy, which 
incorporates additional pseudorange observations, provides 
more stable and resilient solutions in those GNSS-challeng-
ing environments. The improvement is particularly evident 
in datasets 1 and 2, where the maximum horizontal errors 
are reduced from 25.9 m and 26.5 m to 12.0 m and 9.8 m, 
respectively. Figure 8 summarizes the overall horizontal 
statistics for road tests 1 to 4, and corresponding metrics 
95th percentile positioning error, 68th percentile positioning 

Fig. 6  Overall satellite CMC L1 residuals for datasets 1 (lower traffic) 
and 3 (higher traffic)

Fig. 7  Horizontal error with respect to the reference trajectory pro-
cessed by PPP and enhanced PPP solutions with pseudorange-only 
measurements, and the PPP maximum errors are 25.9  m, 26.5  m, 
25.1 m, 45.9 m for road tests 1–4, respectively

Fig. 8  Overall horizontal statistics for road tests 1 to 4 processed by 
PPP and pseudorange-enhanced PPP strategies
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error, and overall RMS are represented as red, blue, and 
green bars, respectively. The enhanced PPP solutions are 
depicted in lighter colors. It can be observed that the posi-
tioning performance is improved for all four datasets. For 
example, in dataset 4, the horizontal positioning accuracy 
is improved from 5.4 m, 3.1 m, and 3.4 m to 2.2 m, 1.8 m, 
and 1.9 m for the 95th percentile error, 68th percentile error, 
and RMS, respectively.

To investigate the reasons behind the improved solutions 
with enhanced PPP strategy, Fig. 9 shows the comparison 
between PDOP with/without the inclusion of pseudorange-
only satellites. The pink dashed lines represent the PDOP 
improvement achieved by including pseudorange-only satel-
lites for test 4. It is observed that the pseudorange-enhanced 
PPP strategy can improve PDOP by up to 60% compared 
to conventional PPP processing. Additionally, the 95th per-
centile positioning often reflects performance in challenging 
environments, such as those near overpasses or high-rise 
buildings where the phase measurements may experience 
significant signal loss. For instance, there could be situations 
with 4 satellites resulting in both pseudorange and carrier-
phase measurements and 4 satellites resulting in only pseu-
dorange observations. Including these 4 additional satellites/
observations can lead to a substantial improvement in PDOP. 
Consequently, a noticeable reduction of approximately 
20 cm in PDOP can be observed when pseudorange-only 
satellites are included in the data processing. Such improve-
ments play a crucial role in mitigating GNSS outliers, espe-
cially when there are only a few satellites available.

Pseudorange‑enhanced PPP with adaptive post‑fit 
residual threshold

The inclusion of pseudorange-only measurements provides 
significant improvement over conventional PPP performance 
in harsh environments, and based on the range error analy-
sis, the average measured range error for pseudorange-only 
observations is 2.4 m. This value is consistent compared to 
regular pseudorange observations, which exhibit an aver-
age range error of 2.3 m when phase measurements are 
available. However, the involvement of unexpected noisy 
pseudorange-only observations can also be detrimental to 
solutions. For instance, during the initialization time for 
road test 1, there are noisy measurements related to G09 
pseudorange-only observations with range errors exceeding 
20 m. Nonetheless, the post-fit residual for G09 observa-
tions were calculated at 7.4 m, which remained undetected 
in the traditional fixed post-fit threshold rejection function. 
To mitigate this problem, a range error rejection function is 
applied to the enhanced PPP solutions. And Fig. 10 indicates 
that the pseudorange-enhanced PPP with range errors rejec-
tion function (green) can further improve the positioning 
solutions for dataset 1.

Although having a range errors rejection function is ben-
eficial for solutions, it is impractical and cost inefficient for 
setting a geodetic rover adjacent to the smart device through-
out real-time applications. Meanwhile, CMC assessment 
necessitate access to carrier-phase measurements, which are 
unavailable for pseudorange-only observations. Therefore, 

Fig. 9  PDOP comparison for road test 4 with/without pseudorange-
only satellites. Blue line denotes PDOP for PPP solution, while green 
line is the PDOP for enhanced PPP. Pink line is the percentage of 
PDOP improvement for these two solutions

Fig. 10  Time series of horizontal error and corresponding statis-
tics for dataset 1 processed by pseudorange-enhanced PPP (blue) 
and pseudorange-enhanced PPP with range errors rejection function 
(green)
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how to optimize the quality control methods and remove 
measurement outliers based on filter-inherited information 
are vital to smartphone positioning. Figure 11 describes the 
scatter diagrams and correlation analyses between smart-
phone pseudorange range errors and several parameters: 
pre-fit residuals, post-fit residuals, signal strength, and sat-
ellite elevation. These parameters are available in real-time 
PPP processing and have been commonly used for stochas-
tic modelling and measurement optimization in smartphone 
positioning. It can be observed that the post-fit residuals 
exhibit the strongest correlation (0.67 on L1 frequency and 
0.55 on L5 frequency) with range errors among the exam-
ined parameters, suggesting that utilizing post-fit residuals 
as a criterion for distinguishing measurement quality is more 
suitable and effective in smartphone positioning among 
other indices.

Considering that the smartphone measurement quality is 
not only limited by the low-cost GNSS chipset and antenna 
but also the environment, it is unrealistic to assume a con-
stant post-fit residual rejection threshold throughout smart-
phone processing. Figure 12 shows how the adaptive post-
fit rejection threshold varies with the learning statistic and 
elapsed time for dataset 4. The left subplot illustrates that the 
adaptive post-fit threshold decreases as the learning statistic 
grows with predefined empirical constants c0 , c1 , and c2 , 
which are set to 1, 21, and 6, respectively. These values are 
derived empirically based on the ratio of visible satellites 
over pseudorange-only satellites, the metric/learning statistic 

can also be determined using indicators such as PDOP or 
other parameters reflecting the GNSS conditions. In other 
words, the post-fit threshold would be adjusted adaptively 
according to different driving conditions as in the right sub-
plot: in harsh GNSS environments, where the quality of sat-
ellite measurements may be weaker, the post-fit threshold 
for satellite rejection is set higher. Conversely, in less chal-
lenging GNSS environments, the threshold is set lower. This 
adaptive adjustment allows for improved customization of 
the measurement rejecting criterion to suit different driving 
conditions and improve the PPP solutions accordingly.

Figure 13 presents the time series of horizontal errors 
for datasets 1 to 4, where the enhanced PPP with traditional 

Fig. 11  Correlation analysis of smartphone range errors with pre-fit residuals, post-fit residuals, signal strength, and elevation angle

Fig. 12  Left subplot: variation of adaptive post-fit rejection thresh-
old with respect to learning statistic (LS). Right subplot: time series 
depicting the adaptive post-fit rejection threshold for dataset 4
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fixed post-fit residual threshold (blue lines) and enhanced 
PPP with adaptive post-fit residual threshold (green lines) 
are compared. The first subplot of Fig. 13 demonstrates 
that the adaptive post-fit residual threshold can detect and 
mitigating noisy measurements in the initialization stage for 
dataset 1. Although there are still performance discrepancies 
compared to the enhanced PPP with the range error rejection 
approach, the adaptive threshold approach shows its potential 
to reduce the maximum error from 12.0 to 4.2 m. Further-
more, the last subplot of Fig. 13 exemplifies the importance 
of the proposed adaptive algorithm for dataset 4. Enhanced 
PPP solutions with the adaptive post-fit residual threshold 
exhibit improved positioning performance, with 95th per-
centile error, 68th percentile error, and overall RMS reduced 
to 1.5 m, 1.0 m, and 1.6 m, respectively. Although the adap-
tive post-fit residual threshold provides little improvement 
for datasets 2 and 3, the proposed algorithm does not harm 
the enhanced PPP solutions with good GNSS geometry and 
data quality. Meanwhile, owing to the harsher driving condi-
tions, the maximum horizontal positioning errors for data-
sets 3 and 4 can reach as high as 24.7 m and 44.9 m at the 
overpass D2, respectively. Given the limited availability of 
GNSS observations during these instances, neither the pro-
posed methods could effectively mitigate these gross errors. 
Consequently, it is anticipated that the inclusion of an IMU 
holds the potential to significantly reduce such large errors, 
which deserves future research.

Figure 14 highlights the overall horizontal error probabil-
ity density function (PDF) and cumulative distribution func-
tion (CDF) for ten tested datasets. The solutions processed 
by PPP, enhanced PPP, and enhanced PPP with adaptive 
post-fit residual threshold are represented by red, blue, and 
green colors, respectively. It is evident that the inclusion 
of pseudorange-only measurements significantly enhances 

the accuracy of PPP positioning, as it effectively reduces 
the occurrence of horizontal errors exceeding 2.5 m. Fur-
thermore, as highlighted in Table 3, the proposed adaptive 
post-fit residual rejection function further improves overall 
solutions, resulting in improvements of approximately 0.3 m, 
0.2 m, and 0.3 m for overall RMS, mean, and 95th percentile 
errors, respectively, when compared to employing a tradi-
tional fixed post-fit threshold across ten datasets. Overall, 
when compared to conventional PPP strategy, the horizon-
tal RMS, 95th percentile error, and 68th percentile error 
are reduced from 2.8 m, 5.5 m, and 2.2 m to 1.4 m, 1.8 m, 
and 1.3 m, respectively. These results demonstrate a notable 
improvement in smartphone PPP performance compared to 
previous studies conducted in harsh GNSS environments 
(Wu et al. 2019; Aggrey et al. 2020; Yi et al. 2022).

Conclusions and future work

Since every satellite measurement matters in smartphone 
GNSS processing, this study uniquely proposes a new PPP 
algorithm by enhancing the single- and dual-frequency 
PPP with pseudorange-only measurements to improve 

Fig. 13  Horizontal error with respect to the reference trajectory for 
road tests 1 to 4 processed by pseudorange-enhanced PPP and pseu-
dorange-enhanced PPP with adaptive post-fit thresholds, and maxi-
mum errors are 24.7 m, 44.9 m for road tests 3 and 4, respectively

Fig. 14  Overall horizontal errors probability density function (PDF) 
and cumulative distribution function (CDF) for all tested ten data-
sets processed by PPP (red), pseudorange-enhanced PPP (blue), and 
pseudorange-enhanced PPP with adaptive post-fit residual threshold 
rejection function (green)

Table 3  Overall horizontal statistics for all tested ten datasets pro-
cessed by PPP, pseudorange-enhanced PPP, and pseudorange-
enhanced PPP with adaptive post-fit residual threshold rejection func-
tion (Unit: m)

Processing strategy RMS STD Mean 95th errors

PPP 2.8 1.9 2.1 5.5
Enhanced PPP 1.7 0.8 1.3 2.1
Enhanced adaptive PPP 1.4 0.7 1.1 1.8
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the satellite geometry and measurement redundancy. 
Also, a new adaptive post-fit residual rejection threshold 
is adopted to improve the measurement quality control 
strategy for different driving conditions. In light of these 
investigations, the contributions and novelties of this work 
can be concluded to answer the posed research objective 
questions:

1. We utilized the pseudorange-only measurements 
enhanced PPP algorithm to draw upon all available 
smartphone observations. Through the validation of ten 
vehicle experiments, the result reveals that the enhanced 
PPP solution can provide all-round enhancements in 
mitigating 95th and 68th percentile horizontal position-
ing error. Moreover, a significant level of 46% improve-
ment with 1.5 m overall horizontal RMS can be attained 
with the enhanced PPP, which considerably outperforms 
conventional PPP solutions in smartphone processing.

2. The range error analysis explicitly indicates that post-
fit residuals have the strongest positive correlation with 
receiver noise and multipath effects among the examined 
parameters. However, it is also important to note that 
in rare cases, post-fit residuals can perform deceptively 
compared to actual range errors, e.g., in Fig. 11, there 
are some measurements with small post-fit residuals but 
large range errors.

3. We proposed a new adaptive post-fit residual rejection 
threshold to screen out the measurement outliers accord-
ing to the specific learning statistics, which can be deter-
mined by the three-segment function. Based on experi-
mental solutions, it is concluded that the enhanced PPP 
with adaptive post-fit residual rejection threshold can 
provide improved solutions among other traditional PPP 
strategies, and corresponding statistics indicate that the 
proposed algorithm can attain 1.8 m, 1.3 m, and 1.4 m 
horizontal positioning performance in 95th percentile 
error, 68th percentile error, and overall RMS, respec-
tively, under different driving environments.

Future work will focus on utilizing other advanced qual-
ity control strategies and stochastic weighting schemes to 
further reduce the negative impacts induced by pseudor-
ange-only measurements. More broadly, this work will be 
extended to GNSS/IMU integrations and dense urban can-
yon environments for smartphone-based LBS applications.
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