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Abstract
Due to its wide-area and high-precision advantages, Global Navigation Satellite System (GNSS) timing is widely employed 
in critical infrastructures such as power, communication and transportation, maintaining high-precision time synchronization 
for the system. Nevertheless, due to the lack of authentication and unencrypted structure of civilian GNSS signals, GNSS 
receiver is vulnerable to be attacked, resulting in disastrous consequences. Therefore, detecting and mitigating a time syn-
chronization attack (TSA) to improve the security of GNSS timing and ensure the normal operation of critical infrastructures 
is of great significance. We proposed a TSA detection and mitigation algorithm based on long short-term memory (LSTM) 
neural network. Based on the good nonlinear mapping ability and high self-learning ability of LSTM, the authentic trend 
of the receiver clock can be learned and clock state can be predicted. Based on the difference between the predicted and 
measured clock state of the receiver, TSA detection and mitigation can be realized. Experiments and results show that the 
proposed algorithm can detect and mitigate two well-known types of TSA. In Type I TSA case, the root-mean-square error 
(RMSE) is improved by 56.41, 89.14 and 0.01 compared with Robust Estimator (RE), Time Synchronization Attack Rejec-
tion and Mitigation (TSARM) method and Multi-Layer Perceptron (MLP) neural network, respectively. In Type II TSA case, 
the RMSE is improved by 41.80, 88.16 and 0.33 compared with RE, TSARM and MLP, respectively. The research results 
can be applied to time synchronization systems of critical infrastructures, which can improve time synchronization accuracy 
and security performance.
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Introduction

The Global Navigation Satellite System (GNSS) provides 
accurate time synchronization services for critical infra-
structures such as power systems, communication networks, 
financial systems and transportation systems that rely on 
high-precision time synchronization (Schmidt et al. 2021; 
Yao et al. 2021; Jaduszliwer et al. 2021; Shereen et al. 
2020; Matsakis et al. 2007). However, due to the lack of 
authentication and unencrypted structure of civilian GNSS 
signals, the receiver may receive false satellite signals sent 
by malicious attackers and output wrong time information, 
which threatens the operation of critical infrastructures (Yao 
et al. 2016; Mosavi et al. 2016; Liang et al. 2017; Borio 
et al. 2021; Wang et al. 2021; Wang et al. 2018). Therefore, 
detecting and mitigating the time synchronization attack 
(TSA) is significant for ensuring the safe operation of criti-
cal infrastructures (Risbud et al. 2019; Jiang et al. 2013; 
Gao et al. 2022).
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In recent years, extensive research has been conducted on 
the detection and mitigation of TSA. Khalajmehrabadi et al. 
(2018) proposed the GNSS receiver clock model considering 
interference based on the Kalman filter. The attack on clock bias 
can be estimated based on energy functional regularization opti-
mization. The attacked clock can be compensated based on the 
compensation model so that the receiver can provide accurate 
and reliable time under TSA. Nevertheless, there exists the risk 
of divergence in the Kalman filter. Lee et al. (2020) proposed a 
tuning-free robust estimator to mitigate GNSS spoofing attacks. 
However, the robust estimator models the clock as a first-order 
model, while a second-order term for the frequency drift in the 
clock usually exists. Therefore, even in the absence of TSA, the 
estimator will estimate and correct the frequency drift as part of 
the TSA. Orouji et al. (2021) proposed a multi-layer perceptron 
neural network that focuses on the clock state correction in the 
receiver. It is independent of how TSA is generated to change 
time. However, the perceptron network is not the most suitable 
model for time series prediction. Chauhan et al. (2021a) pro-
posed a Residual-based Spoofing Detection and Measurement 
Correction (RSDMC) algorithm to detect TSA and correct 
the spoofed Phasor Measurement Unit (PMU) measurements. 
Chauhan et al. (2021b) proposed a Spoofing-Resilient State 
Estimator (SR-SE) which uses the extended Kalman filter to 
fuse GNSS and PMU measurements. Nevertheless, the risk of 
divergence in the extended Kalman filter also exists. Wang et al. 
(2022) proposed a weighed double ratio metric to detect TSA 
on a GNSS receiver.

The existing studies mentioned above can mitigate the 
TSA to a certain extent. Nevertheless, the accuracy of these 
methods is an important issue. We proposed a TSA detec-
tion and mitigation algorithm based on a long short-term 
memory (LSTM) neural network. The characteristics of the 
receiver clock can be learned through the LSTM network, 
and the clock state can be predicted. TSA detection is real-
ized when the difference between the measured and the 
predicted clock states exceeds the threshold. When TSA is 
detected, the predicted clock states are employed to correct 
the local clock, which achieves TSA mitigation.

The contributions of this research are as follows.

(1)	 A new TSA detection and mitigation algorithm based 
on LSTM is proposed, which can not only realize TSA 
detection but also mitigate the TSA. The proposed 
algorithm is independent of the TSA generation pro-
cess, which can defend a large number of TSA without 
worrying about new attack generation methods;

(2)	 To the best of our knowledge, this is the first work that 
LSTM has been employed in TSA detection and miti-
gation. Based on the good nonlinear mapping ability 
and high self-learning ability of LSTM, the accuracy 
of clock prediction can be improved which helps with 
TSA detection and mitigation;

(3)	 We collected the measured data and verified the per-
formance of the proposed algorithm. The experimental 
results show that the proposed algorithm has improved 
TSA mitigation accuracy compared with traditional 
TSA mitigation methods.

The principle of GNSS timing and the TSA model is 
introduced in the following section. The third section intro-
duces the proposed TSA detection and mitigation algorithm 
based on LSTM. First, the principle of clock prediction 
based on LSTM is introduced. Then, the TSA detection and 
mitigation principle is introduced, and finally, the perfor-
mance evaluation index is introduced. The fourth section 
introduces the experiments and results analysis. First, the 
experimental data are introduced, and then the comparative 
experiments are introduced. Finally, experiment results are 
analyzed. The conclusions are drawn in the fifth section. The 
future research directions are indicated.

Model and methodology

In this section, model and methodology are introduced. The 
first part of this section introduces the principle of GNSS 
timing. Receiver clock model is introduced in the second 
part of this section. Based on the GNSS timing and clock 
model principle, the TSA model is introduced in the third 
part of this section.

Principle of GNSS timing

GNSS timing solution is based on pseudorange measure-
ment (Borio et al. 2021), and the pseudorange measurement 
equation is as follows

where �n represents the pseudorange between satellite n and 
receiver; P⃗n denotes the position of satellite n which can be 
obtained from ephemeris; P⃗u indicates the receiver position; 
‖
‖
‖
P⃗
n
− P⃗

u

‖
‖
‖2

 is the true distance between satellite n and the 
receiver; c denotes the speed of light; bu represents the 
receiver clock bias; bn denotes the clock bias of satellite n 
which can be obtained from ephemeris; �n

�
 indicates the 

measurement noise of satellite n. In the pseudorange meas-
urement equation, the receiver position P⃗u and clock bias bu 
are unknown quantities which can be calculated by observ-
ing more than four satellites.

Doppler frequency shift is also one measured parameter 
of the receiver, which can be used to obtain the velocity of 
the receiver. Doppler frequency shift can be converted into 
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pseudorange rate, and receiver clock drift can be obtained 
based on pseudorange rate

where 𝜌̇n is the pseudorange rate of satellite n; � denotes 
the wavelength of the signal; and f n

d
 represents the Doppler 

frequency shift of satellite n.
The pseudorange rate measurement equation is as follows

where V⃗n represents the speed of satellite n which can be 
obtained from ephemeris; V⃗u denotes the velocity of the 
receiver; P⃗n

−P⃗u

‖
‖
‖
P⃗n

−P⃗u
‖
‖
‖2

 represents the normalized vector between 

satellite n and the receiver; ḃu indicates the clock drift of the 
receiver; ḃn represents the clock drift of satellite n, which 
can be obtained from ephemeris; 𝜀̇n

𝜌
 indicates pseudorange 

rate measurement noise. In the pseudorange rate measure-
ment equation, the receiver velocity V⃗u and clock drift ḃu are 
unknown quantities which can be obtained by observing 
more than four satellites.

The position, velocity, clock bias and clock drift of the 
receiver can be solved based on pseudorange and pseudor-
ange rate measurement, which is named as position, veloc-
ity and time (PVT) solutions. This research focuses on the 
determination of the receiver’s clock bias and clock drift.

Modeling of the receiver clock

Based on the principle of GNSS timing, the dynamic model 
of the receiver clock can be established as follows,

where bu and ḃu denote the clock bias and clock drift, respec-
tively; n + 1 and n represent the numbers of epochs, � is the 
time interval between adjacent epochs, and q⃗n denotes the 
process noise vector. The covariance matrix is as follows

where Qn represents the process noise covariance matrix 
which is dependent on the statistics of the receiver clock; 
�2

1
=

h0

2
 , �2

2
= 2�2h

−2 ; h0 is the frequency white noise coef-
ficient; and h

−2 denotes the frequency random walk noise 
coefficient of the receiver clock.
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ḃu(n)

]

+ q⃗n

(5)Qn=

[

��2

1
+

1

3
�3�2

2

1

2
�2�2

2
1

2
�2�2

2
��2

2

]

Modeling of TSA

By distorting the authentic/correct pseudorange and pseu-
dorange rate of the receiver, the clock bias and clock drift of 
the receiver can be distorted without changing the position 
and velocity of the receiver (Khalajmehrabadi et al. 2018). 
This TSA is difficult to be detected by the receiver, and the 
principle is shown as follows

where �n
s
 represents the measured pseudorange of satellite 

n under TSA; sn
�
 denotes the attack amount on pseudorange 

to satellite n; 𝜌̇n
s
 indicates the measured pseudorange rate of 

satellite n under TSA; sn
𝜌̇
 denotes the attack amount on pseu-

dorange rate to satellite n. The definition of other variables 
is the same as those mentioned before.

According to the above equations, the attack amount on 
pseudorange and pseudorange rate will be absorbed into 
clock bias and drift results. Therefore, the TSA can be mod-
eled as the superposition attack on pseudorange and pseu-
dorange rate:

where �s(m) is the pseudorange under TSA; �(m) denotes 
the authentic pseudorange; s�(m) represents the pseudor-
ange attack amount. 𝜌̇s(m) is the pseudorange rate under 
TSA; 𝜌̇(m) represents the authentic pseudorange rate; s𝜌̇(m) 
denotes the pseudorange rate attack amount.

According to the variation of attack amount on pseudor-
ange and pseudorange rate, TSA can be divided into two 
types: Type I TSA, the clock abruptly jump attack; Type II 
TSA, the clock gradually pull bias attack (Khalajmehrabadi 
et al. 2018; Schmidt et al. 2021).

Type I: clock abruptly jump attack

Through adding a fixed constant C1 and a corresponding Dirac 
delta function � to the authentic pseudorange and pseudorange 
rate, respectively, Type I TSA can be established,
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(8)�s(m) = �(m) + s�(m)

(9)𝜌̇s(m) = 𝜌̇(m) + s𝜌̇(m)

(10)s�(m) = C1

(11)s𝜌̇(m) = 𝛿
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During the PVT solution, the attacks on pseudorange 
and pseudorange rate are absorbed into clock bias and clock 
drift, respectively. The effect of this type of TSA is that the 
clock bias suddenly jumps and the clock drift peaks at the 
attack moment, as shown in Fig. 1.

Type II: clock gradually pull bias attack

In Type II TSA, the attack amount on pseudorange and pseu-
dorange rate changes gradually with time, which are shown 
as follows

where Δt represents the time interval which is determined by 
the period of receiver PVT solution; ṡ𝜌(m) and ṡ𝜌̇(m) denote 
the change rate of attack amount on the pseudorange and 
pseudorange rate, respectively. The attacks on pseudorange 
and pseudorange rate are absorbed into clock bias and clock 
drift, respectively. The effect of this type of TSA is that 
the clock bias is pulled away gradually, and the clock drift 
changes gradually, as shown in Fig. 2.

TSA detection and mitigation based 
on LSTM

This section introduces the detection and mitigation of 
TSA based on LSTM in detail. The first part of this sec-
tion introduces the principle of clock prediction based on 
LSTM. Principles of TSA detection and mitigation are intro-
duced in the second and third parts of this section. TSA 

(12)s𝜌(m) = s𝜌(m − 1) + ṡ𝜌(m)Δt

(13)s𝜌̇(m) = s𝜌̇(m − 1) + ṡ𝜌̇(m)Δt

can be detected and mitigated by comparing the difference 
between predicted and measured clock states. Finally, the 
performance evaluation index is introduced.

Clock prediction based on LSTM

Deep learning method has been widely used in solving 
nonlinear problems. Recurrent neural network (RNN) is a 
kind of artificial neural network. The core idea of RNN is 
to find the sequence correlation by using the characteristics 
of the network structure, which is suitable for time series 
prediction. Nevertheless, RNN faces difficulties in handling 
long-distance dependence. LSTM has made improvements 
to RNN to address long-term storage capacity shortages and 
the possibility of gradient explosion or vanishing (Hochre-
iter et al. 1997; Huang et al. 2021). To achieve better predic-
tion accuracy, the LSTM network is employed to predict the 
clock state of the receiver. Details are as below.

Fig. 1   Effects of Type I TSA Fig. 2   Effects of Type II TSA

Fig. 3   Network structure of LSTM model
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Network structure and model parameter

The network structure of LSTM is shown in Fig. 3. The 
LSTM neural network structure mainly consists of three 
core parts: input layer, hidden layer and output layer. The 
input layer is responsible for processing the input clock 
time series, which can make the data meet the input 
requirements of LSTM neurons. The input of the LSTM 
network is the historical measured receiver clock bias 
[

bu,m(k), bu,m(k − 1), bu,m(k − 2) ⋅ ⋅ ⋅ bu,m(k − n)
]

 , where n = 5. 
The first hidden layer is a recurrent neural network based on 
LSTM neurons. The number of LSTM cells in the LSTM 
network is 6. Each LSTM cell in the LSTM layer fed with 
only one input (Ma et al. 2020). The LSTM layer outputs 
30 features. The second hidden layer is a dropout layer. The 
dropout is applied to the neurons to prevent overfitting. The 
output layer is a dense layer which is responsible for the out-
put of prediction results. The output of the LSTM network 
is the predicted receiver clock bias bu,p(k + 1) at next epoch.

The network training and parameter optimization is also 
important. In the network training, the Adam algorithm is 
employed to train the network. Grid search and cross-valida-
tion algorithm are used to optimize the parameters. Details 
of LSTM model parameter are shown in Table 1.

The gate mechanism of LSTM

By introducing the gate mechanism, LSTM neural network 
has stronger storage capacity and can obtain better predic-
tion results in a longer sequence (Hochreiter et al. 1997; 
Huang et al. 2021).

The cell structure of LSTM is shown in Fig. 4. There are 
four gates in the LSTM cell, which are the forget gate, the 
input gate, the select gate and the output gate. The forget gate 
determines how many cell states of the last moment are for-
gotten or retained. The input gate and select gate determine 
how many current inputs are input to the current cell state. 

The output gate determines how much of the current cell state 
is added to the output value at the current time. These gates 
are considered fully connected layers composed of multiple 
neurons. The number of neurons of fully connected layers is 
30. The LSTM layer outputs 30 features.

The expression of the input gate and select gate is shown 
as follows

where it and C̃t represent the input gate and the select gate 
at time t, respectively; � and tanh represent the sigmoid and 
tanh activation function, respectively; Wi and Wc denote the 
weight matrix of the input gate and the select gate, respec-
tively; ht−1 denotes the hidden state at time t-1; xt represents 
the input at time t; bi and bc are the offset of the input gate 
and the select gate, respectively.

The expression of the forget gate is as follows

where ft represents the forget gate at time t; Wf  denotes the 
weight matrix of the forget gate; and bf  is the bias of the 
forget gate.

The expression of the output gate is shown as follows,

where ot represents the output gate at time t; ht denotes the 
hidden state at time t and Ct represents the cell state at time 
t; the symbol ∗ represents the Hadamard product operator. 
The expression of the cell state is as follows,

where Ct−1 represents the cell state at time t-1.

(14)it = �
(

Wi ⋅

[

ht−1, xt
]

+ bi
)

(15)C̃t = tanh
(

WC ⋅

[

ht−1, xt
]

+ bC
)

(16)ft = �
(

Wf ⋅

[

ht−1, xt
]

+ bf
)

(17)ot = �
(

Wo ⋅

[

ht−1, xt
]

+ bo
)

(18)ht = ot ∗ tanh
(

Ct

)

(19)Ct = ft ∗ Ct−1 + it ∗ C̃t

Table 1   LSTM model parameter setting information

Number Parameters Value

1 Loss MAE
2 Metrics MAPE
3 Optimizer Adam
4 Number of LSTM layers 1 layer (6 cells)
5 Number of dropout layers 1 layer
6 Number of dense layers 1 layer
7 Number of epochs 4000
8 Dropout value 0.5
9 Input dimension size 6
10 Output dimension size 1
11 Size of batch 72

Fig. 4   The internal structure of the LSTM model
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Network training/test and clock prediction

There are two stages included in the clock prediction based 
on LSTM: the network training/test and the clock prediction. 
The characteristics of the receiver clock are learned in the 
network training/test stage, and the clock prediction is real-
ized in the network prediction stage.

In this article, the role of LSTM network is as a predictor 
to achieve receiver clock characteristic learning and clock 
prediction. The data input to the network during the training 
and test phase is all authentic clock data without TSA. The 
data are randomly divided into two parts, 80% of which is 
training data, which is used to adjust the network structure 
parameters and reduce the error. The remaining 20% is used 
as test data to test the performance of the network. Through 
the training of the LSTM network, the clock characteristics 
can be learned.

In the prediction stage, the authentic clock bias is input to 
the network to realize clock prediction when no TSA occurs. 
When TSA occurs, the clock bias after TSA mitigation is 
employed to input to the network to realize clock prediction.

The variations of clock biases and clock drifts reflect 
clock characteristics that the LSTM network needs to learn. 
The variations of the clock biases and clock drifts in both 
the training/test phase and prediction phase are introduced 
in this part.

In the training/test phase, the input data are clean data 
without TSA and the clock biases and drifts change accord-
ing to the clock model. The clock model is shown as follows

where bu(t) and bu(t − �) represent clock biases at epoch t 
and t − � , respectively; ḃu(t) and ḃu(t − 𝜏) represent clock 
drifts at epoch t and t − � , respectively; � is the time inter-
val between epochs; �(t) and 𝜀̇(t) denote phase noises and 
frequency noises.

In the prediction phase, the data input to the network 
can be divided into two types: authentic clock bias when no 
TSA occurs and clock bias after TSA mitigation when TSA 
occurs. The clock biases and clock drifts change according 
to the clock model shown in Eqs. 20 and 21.

Because the LSTM network is employed to learn the char-
acteristics of the receiver clock and realize clock prediction, 
we employ the same LSTM network with the same parameters 
and hyperparameters for mitigating both type I and II attacks. 
The input data of the LSTM network are the real measured 
receiver clock bias in the training phase. Each piece of data 
has a similar pattern shift behavior to the others in terms of 
clock, and the network is trained only once. Therefore, the 
same LSTM network is employed to learn the characteristics 

(20)b
u
(t) = b

u
(t − 𝜏)+ḃ

u
(t) ⋅ 𝜏 + 𝜀(t)

(21)ḃ
u
(t) = ḃ

u
(t − 𝜏) + 𝜀̇(t)

of the receiver clock and realize clock prediction. Then the 
predicted clock biases and drifts are employed to mitigate the 
type I and II attacks.

The evolution of the LSTM network output error and 
inputs of LSTM over time also need to be discussed. In 
LSTM, the network’s input values are authentic data at the 
initial stage of TSA, and the network’s output value is accu-
rate. The network’s previous outputs will eventually become 
its input values. As time goes by, more output values become 
inputs and there is a potential for the output inaccuracy to 
grow. As a result, output errors may accumulate over time. 
However, it is important to note that this error does not grow 
indefinitely. The network’s ability to correct its own errors 
and learn from past mistakes will limit the growth of the 
output error. The output error evolution can be seen as a 
trade-off between the ability of LSTM to learn patterns in 
the data and its ability to maintain accurate predictions over 
time. Therefore, the output error of the network may accu-
mulate over time, but it will not grow infinitely.

TSA detection

The TSA detection is the premise of TSA mitigation. TSA 
detection is realized based on the difference between the 
measured and the predicted clock states. The details of TSA 
detection under Type I and Type II TSA conditions are as 
follows.

Type I TSA

The principle of Type I TSA detection is shown as follows,

where bu,m
(

ts
)

 and bu,p
(

ts
)

 represent the measured and pre-
dicted clock bias, respectively; �bu

(

ts
)

 indicates the differ-
ence between the measured and predicted clock bias. When 
the difference between the measured and predicted clock 
bias �bu

(

ts
)

 exceeds the threshold Lbu , it is considered that the 
measured clock bias is abnormal, and Type I TSA detection 
is realized. The accuracy requirement for time synchroni-
zation determines the threshold Lbu . For example, the time 
synchronization accuracy requirement for smart substation 
is better than 1 microsecond, in which case the threshold Lbu 
can be set as 1 microsecond.

Type II TSA

The principle of Type II TSA detection is shown as follows

where ḃu,m
(

ts
)

 and ḃu,p
(

ts
)

 represent the measured and pre-
dicted clock drift, respectively; 𝜀ḃu

(

ts
)

 denotes the difference 

(22)�bu

(

ts
)

=bu,m
(

ts
)

− bu,p
(

ts
)

(23)𝜀ḃu

(

ts
)

=ḃu,m
(

ts
)

− ḃu,p
(

ts
)
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between the measured and predicted clock drift. When the 
difference between the measured and predicted clock drift 
𝜀ḃu

(

ts
)

 exceeds the threshold Lḃu , it is considered that the 
measured clock drift is abnormal, and the detection of 
Type II TSA is realized. The accuracy requirement for 
clock drift determines the threshold Lḃu . For example, the 
clock drift requirement for smart substation is less than 0.2 
microseconds/s, in which case the threshold Lḃu can be set 
as 0.2 microseconds/s.

TSA mitigation

After the TSA is detected, the clock bias and clock drift 
measured by the receiver need to be corrected. The TSA 
needs to be mitigated. The details of TSA mitigation under 
Type I and Type II TSA conditions are introduced as follows.

Type I TSA

After Type I TSA is detected at time ts , the clock bias 
measured by the receiver at and after the time ts should be 
corrected.

where bu(t) denotes the corrected clock bias at time t. The 
difference between the measured and predicted clock bias is 
deducted from the measured clock bias to mitigate the effect 
of Type I TSA on receiver clock bias.

Type II TSA

After Type II TSA is detected at the time ts , the clock drift 
measured by the receiver at and after the time ts should be 
corrected.

where ḃu(t) denotes the corrected clock drift at time t. The 
difference between the measured and predicted clock drift is 
deducted from the measured clock drift to mitigate the effect 
of Type II TSA on receiver clock drift.

After Type II TSA is detected at the time ts , the clock bias 
measured by the receiver at and after the time ts should also 
be corrected.

where bu(t) denotes the corrected clock bias at time t. The 
product of the clock drift attack amount and the time interval 
is deducted from the measured clock bias to mitigate the 
effect of Type II TSA on receiver clock bias.

(24)bu(t) = bu,m(t) − �bu
(t), t ≥ ts

(25)ḃu(t) = ḃu,m(t) − 𝜀ḃu
(t), t ≥ ts

(26)bu(t) = bu,m(t) − 𝜀ḃu
(t) ⋅

(

t − ts
)

, t ≥ ts

Performance evaluation

The root-mean-square error (RMSE) which shows the aver-
age error between the true value and the estimated value 
is employed to evaluate the prediction accuracy and TSA 
mitigation performance

where K denotes the data length; ctu(k) is the true value; and 
c̃tu(k) represents the estimated value.

Test and results

Experiments and results analysis are introduced in this 
section. First, the experimental data are introduced. Then 
the comparative experiment design is introduced. Finally, 
experiment results are analyzed.

Experimental data

Smartphones are widely used in daily life. Most smartphones 
have built-in GNSS receiver chips, which can achieve GNSS 
positioning and timing. Therefore, a smartphone can be con-
sidered as a GNSS receiver. Due to the widespread applica-
tion, easy access and susceptibility to TSA of smartphones, 
we employed the smartphone to collect GNSS data for TSA 
detection and mitigation experiments.

The HUAWEI P40 smartphone with an embedded 
GNSS chipset is employed to collect real GNSS signals. 
The location of the smartphone receiver is the sports field 
of Shenzhen campus of the Sun Yat-sen University, which 
is an open area shown in Fig. 5. It should be noted that 

(27)RMSE =

√
√
√
√ 1

K

K−1
∑

k=0

(

ctu(k) − c̃tu(k)
)2

Fig. 5   Data collection
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the smartphone is stationary during the data collection 
procedure. The signal collection date is April 15, 2023, 
and the data collection lasted 300 s.

The Android application GNSSLogger released by 
Google is employed to record and output raw GNSS meas-
urements. The related postprocessing MATLAB codes are 
employed to postprocess the original GNSS data to obtain 
pseudorange and pseudorange rate data (Google 2020). 
Experimental conditions setting is shown in Table 2.

The ground truth (GT) of the clock bias and clock 
drift is obtained through taking the weighted least square 
(WLS) solution for the stationary device. Type I and Type 
II TSA are simulated and injected into pseudorange and 
pseudorange rate data to simulate Type I and Type II TSA 
(Khalajmehrabadi et al. 2018).

Comparative experiment design

The performance of different algorithms can be compared 
by conducting comparative experiments. The comparative 
experiments are introduced in this section, and relative 
information is shown in Table 3.

As mentioned above, the ground truth (GT) of the clock 
bias and clock drift estimation is obtained through taking 
the WLS solution for the stationary device. The ground 
truth is the baseline for testing the TSA detection and miti-
gation performance.

The PVT solutions such as WLS, the extended Kalman 
filter (EKF) and the classical Luenberger observer (LBG) 
(Luenberger et al. 1966) are employed to evaluate the per-
formance of typical PVT solutions under TSA.

The Robust Estimator (RE) (Lee et  al. 2020), the 
Time Synchronization Attack Rejection and Mitigation 
(TSARM) method (Khalajmehrabadi et  al. 2018), the 
Multi-Layer Perceptron (MLP) neural network method 
(Orouji et al. 2021) and the proposed TSA detection and 
mitigation method based on LSTM (LSTM) are employed 
to detect and mitigate TSA and for performance compari-
son. They are employed to evaluate the performance of 
TSA detection and mitigation methods under TSA.

Experiment results analysis

Experiment results analysis is introduced in this section. 
First, clock prediction precision is analyzed. Then, TSA 
mitigation performance under Type I and Type II TSA con-
ditions is analyzed.

Clock prediction

The accuracy of clock prediction affects the performance of 
TSA detection and mitigation. Therefore, the accuracy of 
clock prediction is first analyzed. Widely used clock predic-
tion methods, the Kalman filter (KF) and quadratic polyno-
mial (QP), are employed as comparison.

As shown in Fig. 6, the prediction errors of KF, QP and 
LSTM are exhibited. The performance of prediction error of 
LSTM is the best due to the use of a neural network to learn 
clock characteristics accurately.

The RMSE of KF, QP and LSTM is exhibited in Table 4. 
The RMSE of LSTM is the smallest, which indicates the 
LSTM is with the best prediction performance. The RMSE 
of KF is better than QP.

Table 2   Experimental conditions setting

Number Parameters Value

1 Equipment version HUAWEI P40
2 System version Harmony OS 3.0.0
3 GNSSLogger version GNSSLogger 2.0.0.1
4 Starting time April 15, 2023 3:24:37 (UTC)
5 End time April 15, 2023 3:29:37 (UTC)
6 Data length 300 s

Table 3   Comparative experiment design

Number Method Type

1 GT Ground truth
2 WLS Typical PVT solution
3 EKF Typical PVT solution
4 LBG Typical estimation method
5 RE Existing TSA mitigation method
6 TSARM Existing TSA mitigation method
7 MLP Existing TSA mitigation method
8 LSTM Proposed TSA mitigation method

Fig. 6   Clock prediction accuracy
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The LSTM clock prediction method is better than widely 
employed prediction methods, which is good for TSA detec-
tion and mitigation. The TSA mitigation performance is ana-
lyzed in the next part.

TSA mitigation

After evaluating the prediction performance, the TSA miti-
gation performance is analyzed in this part. The TSA mitiga-
tion performance under Type I and Type II TSA conditions 
is analyzed.

Type I TSA  As shown in Fig. 7, the performance of typical 
PVT solutions under Type I TSA is exhibited. After Type I 
TSA is applied from t = 50 s to t = 300 s, the clock biases of 
the WLS, EKF and LBG jumped nearly 427 microseconds 
and the clock drifts of the WLS, EKF and LBG suddenly 
jumped. This indicates that the typical PVT solutions cannot 
withstand the Type I TSA.

The performance of TSA mitigation methods is shown 
in Fig. 8. As shown in Fig. 8, there exist a sudden jump and 
recovery of clock bias and drift in the RE method. There 
exists bias between the TSARM method and ground truth. 
Meanwhile, the clock bias and the clock drift curve of LSTM 
are closest to ground truth. This indicates that the LSTM 
TSA mitigation method performs the best under Type I TSA.

The RMSE of the estimated clock bias under Type I TSA 
is shown in Table 5. The RMSE values of typical PVT solu-
tions, WLS, EKF and LBG, are in the 102 order of magni-
tude, while the RMSE of RE and TSARM is in the 101 order 

of magnitude. The RMSE values of MLP and LSTM are in 
the 10–2 order of magnitude. The RMSE of LSTM is smaller 
than that of MLP. This indicates that the TSA mitigation 
methods, RE, TSARM, MLP and LSTM can mitigate Type 
I TSA and the proposed LSTM method has the best TSA 
mitigation performance.

The LSTM-based method improves the RMSE by an 
amount 0.01 compared with MLP method under type I 
attack. This improvement can improve timing accuracy by 
0.01 microseconds. Assuming PDOP value is 3, the algo-
rithm proposed in this article can improve positioning accu-
racy by nearly 8.99 m. Therefore, the proposed algorithm 
can improve the positioning accuracy and timing accuracy 
under type I attack, which is significant for high-precision 
positioning and timing.

The processing time of the employed methods under Type 
I TSA is shown in Table 6. The processing time of typical 
PVT solutions and RE is in the 100 order of magnitude, 
while the processing time of TSARM, MLP and LSTM is 
in the 101 order of magnitude. This indicates that compared 
with typical PVT solutions and RE, TSARM, MLP and 
LSTM have a higher computational complexity. For LSTM, 
this algorithm achieves higher TSA mitigation precision at 
the cost of higher computational complexity.

Type II TSA  As shown in Fig. 9, typical PVT solution per-
formance under Type II TSA is exhibited. After the Type II 
attack is applied from t = 50 s to t = 300 s, the clock biases 
of the WLS, EKF and LBG are gradually pulled away from 
the ground truth. The clock drifts of the WLS, EKF and 
LBG are gradually pulled away from the ground truth. This 
indicates that the typical PVT solutions cannot withstand 
the Type II TSA.

The performance of TSA mitigation methods is shown 
in Fig. 10. For both the clock bias and clock drift curves, 

Table 4   RMSE of clock 
prediction

Method KF QP LSTM

RMSE 8.81 14.16 3.51

Fig. 7   Typical PVT solution performance under Type I TSA

Fig. 8   Type I TSA detection and mitigation performance
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there exists bias between RE, TSARM and the ground truth. 
Meanwhile, the clock bias and clock drift curve of LSTM 
are closest to that of the ground truth. This indicates that the 
LSTM TSA mitigation performance is the best.

The RMSE of the estimated clock bias under Type II TSA 
is shown in Table 7. The RMSE values of typical PVT solu-
tions, WLS, EKF and LBG, are in the 102 order of magni-
tude. Meanwhile, the RMSE values of RE and TSARM are 
in the 101 order of magnitude. The RMSE value of MLP is in 
the 100 order of magnitude. The RMSE value of LSTM is in 
the 10–1 order of magnitude. The RMSE of LSTM is smaller 
than that of MLP. This indicates that the TSA mitigation 
methods, RE, TSARM, MLP and LSTM can mitigate Type 
II TSA. The proposed LSTM method is with the best TSA 
mitigation performance.

The proposed LSTM method improves the RMSE by an 
amount of 0.33 compared with MLP method under type 
II attack. This improvement can improve timing accuracy 
by 0.33 microseconds. Assuming PDOP value is 3, the 
algorithm proposed in this article can improve position-
ing accuracy by nearly 296.79 m. The proposed algorithm 
significantly improved the positioning accuracy and timing 
accuracy under type II attack, which is significant for high-
precision positioning and timing.

The processing time of the employed methods under Type 
II TSA is shown in Table 8. The computational complexity 
of employed methods under Type II TSA is similar to that 
of Type I TSA. For LSTM, this algorithm achieves higher 
TSA mitigation precision at the cost of higher computational 
complexity.

Table 5   RMSE under Type I 
TSA

Method WLS EKF LBG RE TSARM MLP LSTM

RMSE 390.54 390.29 391.50 56.42 89.15 0.02 0.01

Table 6   Processing time of the 
employed methods under Type 
I TSA

Method WLS EKF LBG RE TSARM MLP LSTM

Time/s 2.84 3.12 2.91 4.05 56.40 17.87 26.70

Fig. 9   Typical PVT solution performance under Type II TSA

Fig. 10   Type II TSA detection and mitigation performance

Table 7   RMSE under Type II 
TSA

Method WLS EKF LBG RE TSARM MLP LSTM

RMSE 132.24 134.96 135.74 42.79 89.15 1.32 0.99
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Conclusions

This study focuses on TSA detection and mitigation. The 
TSA detection and mitigation algorithm based on LSTM is 
proposed, and the performance of the proposed algorithm 
is verified. Experiments and results show that the proposed 
algorithm can detect and mitigate two well-known types of 
TSA. In Type I TSA case, the RMSE is improved by 56.41, 
89.14 and 0.01 compared with RE, TSARM and MLP, 
respectively. In Type II TSA case, the RMSE is improved 
by 41.80, 88.16 and 0.33 compared with RE, TSARM and 
MLP, respectively. This indicates that the proposed algo-
rithm has better TSA detection and mitigation capabilities 
than the existing three algorithms. A further research direc-
tion of this study will test the TSA detection and mitigation 
performance of the algorithm in the real TSA environment.
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