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Abstract
A priori variance–covariance matrix (VCM) estimation of global navigation satellite systems (GNSS) double difference 
observations in relative positioning is challenging. Existing methods have been limited to estimate variances only or present 
variables challenging to acquire a priori, unfeasible for observation planning. Ignoring the covariances produces mislead-
ing results and compromises reliance on GNSS positioning design. In this study, we propose models to estimate the VCM 
a priori for planning, based on simple variables accessible to any professional: observation time span, vector length, and 
ephemeris type. Using a database of over 140,000 GNSS vectors with double difference (DD) observations, we group the 
data by time span and length range and extract standard deviations and covariances for the linear regression process. The 
Isolation Forest algorithm is employed to filter outlying observations. Our models provide standard deviations and root 
square covariances in a local coordinate system, requiring only vector length, observation time span, and ephemeris type as 
input. Additionally, the equations can be easily implemented in a simple spreadsheet. The results show high coefficients of 
determination (R2 > 0.8). We tested the models in a simulated GNSS network and verified broadcast ephemeris resulted in 
6.5 to 16.7 times larger error ellipsoids compared to the precise ephemeris, indicating higher uncertainty. Ellipsoids differed 
in flattening and orientation when compared to the null covariance (variance only) approach. Although VCM models better 
reflect the precision of relative positioning observations, they did not affect the number of non-controllable observations in 
the observation’s reliability tests.

Keywords  GNSS · Relative positioning · Planning · Uncertainty modeling · Variance–covariance matrix · Metaheuristics

Introduction

Relative positioning is widely used in several applica-
tions, producing three-dimensional (3D) baseline vectors 
to obtain the coordinates of the points of interest. The 

variance–covariance matrices (VCM) of these estimated 
vectors, which describe the uncertainty of the baseline 
components, are used as a quality measure, and the con-
fidence region of the position solution depends directly on 
it. Estimating the uncertainty of these vectors a priori for 
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planning activities can lead to better decision-making and 
cost reduction in the fieldwork. However, defining a priori 
VCM is challenging, and correlations are often neglected 
in the first phases. Incorrect estimation, or neglecting the 
covariances, leads to misleading precision and reliability 
values not accurately representing the real uncertainties in 
the field campaign (El-Rabbany 1994; Kermarrec and Schön 
2016).

In the context of survey planning, it would be highly 
advantageous to predict covariances based on simple vari-
ables, such as observation time span and vector length. 
Several previous studies have successfully achieved this for 
variances in post-processed relative positioning (Eckl et al. 
2001; Gatti 2004; Soler 2006; Schwieger 2007; Ozturk 2011; 
Soycan 2011; Firuzabadì 2012; Gond 2023), as well as in 
other methods like PPP (Precise Point Positioning) and RTK 
(Real Time Kinematic) (Geng 2010; Öğütcü 2018; Gökdaş 
2020). Erdogan and Dogan (2019) and Kashani et al. (2004) 
studied the reliability and scaling of the VCM obtained from 
different GPS processing software. However, to the best of 
our knowledge, only one study considering a priori variances 
and covariances (or correlations) through simple variables 
such as vector length and observation time span is found in 
Gatti (2004).

Our study aims to provide models to estimate the VCM a 
priori for planning, based on simple variables accessible to 
any professional: observation time span, vector length and 
ephemeris type.

We have improved upon previous works by using over 
140,000 global navigation satellite system (GNSS) vectors, 
covering an extensive range of values for the models' vari-
ables, and processed with global positioning system (GPS) 
and GLONASS signals. Also, this study provides mod-
els in a local coordinate system for broadcast and precise 
ephemeris. Our work also benefits from machine learning 
techniques for data filtering and modeling, combining linear 
regression, metaheuristics, and penalty functions to obtain 
better models.

By utilizing the outcomes of the models, professionals 
can adjust the observation time to meet established crite-
ria and determine whether precise final ephemeris from the 
International GNSS Service (IGS)—which can take from 12 
to 19 days—are necessary to achieve a desired level of qual-
ity. Moreover, it is important to consider that many develop-
ing countries lack dense networks of active stations, making 
post-processed relative positioning a daily reality for profes-
sionals in those regions.

In this study, the processed vectors are grouped by 
observation time span (t), length (l), and ephemeris type 
to check for patterns in the discrepancies (north, east, and 
up) predicated on these three variables (t, l and ephemeris). 
First, we computed and defined benchmark values of the 
3D components of each baseline used in this study. Second, 

the discrepancies of each of the estimated vectors are set 
as input in the filtering process using the Isolation Forest 
algorithm (IFA) to remove outlying vectors (Liu et al. 2008, 
2012). Third, the standard deviations and covariances com-
puted for each group of vectors are fed to the proposed pro-
cedure for the models building. Each variance and covari-
ance component are modeled separately, also distinguishing 
between broadcast and precise ephemeris.

A simulated GNSS network is established and both cases 
with null covariances (VM) and VCM are tested. Reliabil-
ity measures proposed in Prószyński (2010) are computed 
to evaluate the observations’ quality and controllability to 
outliers. Error ellipsoids of the stations are also drawn and 
compared as measures of precision.

The next section presents the data we used, the pre-pro-
cessing filtering, and its organization. In the later section, 
the regression procedure, and the metaheuristic Independent 
Vortices Search (IVS) are presented, along with the strategy 
to compute reliability measures and their application in a 
simulated GNSS network. Following that, we present the 
models obtained to estimate the VCM (available online at 
https://​docs.​google.​com/​sprea​dshee​ts/d/​1zvMk​7J_​TYmkZ​
Ydguj​IZVsZ​OKIHm​cpelI​Ij4NL​MBdBzI/​edit?​usp=​shari​ng) 
and the outcomes from the implementation in the GNSS 
network and discuss the significance of the results. Finally, 
we summarize the findings and discuss final considerations.

GNSS vectors data, filtering, and organization

The investigation of variance and covariances models was 
based on a massive database of processed GNSS vectors, 
based on 43 stations of the Brazilian Network for Continu-
ous Monitoring of GNSS Systems (RBMC) (Fig. 1). 761 

Fig. 1   Location of the RBMC stations for the GNSS relative position-
ing. Concentrated in the middle-west, south, and southeast of Brazil. 
Ranges: latitude from −18° to −28°; longitude from −43° to −58°

https://docs.google.com/spreadsheets/d/1zvMk7J_TYmkZYdgujIZVsZOKIHmcpelIIj4NLMBdBzI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1zvMk7J_TYmkZYdgujIZVsZOKIHmcpelIIj4NLMBdBzI/edit?usp=sharing
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three-dimensional (3D) baselines ranging from 2.3 to 950 
km had their data collected on 32 different days, from Janu-
ary to May 2019. This period avoids data collection on high 
ionospheric activity. Each vector for each day of observation 
was processed with eight (8) unique time spans (1/2, 1, 2, 
4, 6, 8, 12, and 24 hours) and separately for broadcast and 
precise final ephemeris. The vector processing was carried 
out using the software Trimble Business Center (TBC).

The TBC processing configuration was mostly kept 
unchanged from the default settings, as follows: the accepted 
solution types were fixed, and in case of failure, float; all 
available frequencies of satellite signals were used; the 
epoch processing time interval was set to automatic; the 
elevation mask was 10 degrees, and the enabled GNSS con-
stellations were GPS and GLONASS. The method used to 
solve ambiguity varies according to the length of the vector. 
For vectors considered very short, less than two kilometers, 
TBC uses the double differences processing mode for all 
signal frequencies. For vectors between 2 and 20 km, double 
differences for all frequencies, but with ionosphere mod-
eling. Vectors with medium lengths, from 20 to 200 km, 
are processed with the combination of ionosphere-free and 
wide lane carrier phase measurements without ionosphere 
modeling. For baselines from 200 to 1000 km, the software 
generates a mixed solution of the previous method and the 
Melbourne-Wübbena mode (Trimble Inc. 2018). The epoch 
processing time interval varies automatically according to 
the observation duration. While there are various alternative 
processing strategies, it is important to emphasize that the 
proposed models are applicable for processing configura-
tions similar to the one utilized here (whether in TBC or in 
other software). Investigating the effect of different process-
ing strategies on the model could be the subject of future 
works. Additionally, the methodology proposed for obtain-
ing VCM models in this study is general and can be applied 
to different processing strategies.

All 3D vectors were transformed into a local 3D coordi-
nate system by using the midpoint of each baseline as the 
reference for the transformation, applying the following 
(Leick et al. 2015),

where Xenu is the vector with the transformed coordinates 
in the local 3D coordinate system, ∆XXYZ is the vector in 
the Earth-centered, Earth-fixed (ECEF) coordinate system, 
given by

(1)Xenu = RΔXXYZ

(2)ΔXXYZ =

⎡
⎢⎢⎣

ΔX

ΔY

ΔZ

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

XP − X0

YP − Y0
ZP − Z0

⎤⎥⎥⎦

where (·)P are the coordinates to be transformed and (·)0 the 
origin coordinates. R is the rotation matrix given by (Leick 
et al. 2015),

Here, λ0 and ϕ0 are the longitude and latitude at the origin 
of the local coordinate system.

We obtained benchmark values for 761 baselines by 
averaging vectors processed using twenty-four (24) hours 
of relative positioning with double differences observations 
and precise ephemeris. We then compared the standard 
deviation of the length variability with the residual of each 
24-h vector. Any vector with a residual higher than three 
standard deviations (σ > 3) was removed, and we recalcu-
lated the average length to obtain the best benchmark values. 
The residuals higher than 3σ were eliminated as they may 
indicate problems with the baseline observation. We defined 
the error-free benchmark values of each baseline as the 3D 
components of the averaged vector.

Next, all processed vectors had their length components 
(e, n, u) subtracted from their benchmark pair to get the 
discrepancy values. Vectors with minor timespan observa-
tions or longer baselines are likely to present higher differ-
ences (Koch et al. 2022). Nevertheless, these discrepancies 
may indicate outlying values as GNSS vectors are also sus-
ceptible to errors. The most common causes are multipath 
errors, in which the satellite signal is dispersed over a sur-
face and perceived by the receiver from different directions, 
and equipment errors, among others (Hofmann-Wellenhof 
et al. 2008).

A filtering process was conducted to identify outliers 
using the Isolation Forest algorithm (IFA). IFA uses a rel-
atively simple concept, isolating the anomalies through a 
binary tree structure called the Isolation Tree. It contrasts 
with most approaches, where a model is built on the data 
followed by outlier detection techniques. IFA allows us to 
clean the database beforehand, not depending on a previous 
model which could have already suffered bias in the regres-
sion. Another feature that draws attention is that IFA has 
only two training parameters and one evaluation parameter. 
The number of trees (nT) to be built and the sample size (ψ) 
belong to the training parameters. The tree height limit (hlim) 
for the sample scoring makes the evaluation parameter. More 
details on IFA can be found at Liu et al. (2008, 2012).

Although it is possible to use a threshold-based approach 
to remove outliers by analyzing residuals that exceed a cer-
tain limit, IFA is capable of handling non-Gaussian distri-
butions and correlations between variables, making it more 
suitable for identifying outliers for diverse data sets. IFA 
can detect outliers that may not be easily identified by just 

(3)R =

⎡
⎢⎢⎣

−sin�0 cos�0 0

−sin�0cos�0 −sin�0sin�0 cos�0

cos�0cos�0 cos�0sin�0 sin�0

⎤
⎥⎥⎦
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looking at the residuals. Overall, IFA provides a more robust 
and automated approach to outlier detection than a thresh-
old-based approach.

For the vector database, nT was set at 2,000 and ψ at 25%, 
defined by a trial-and-error process while checking the 
results and behavior of the algorithm. Based on the heteroge-
neity of the data, the sample size must retain a good amount 
of normal data, while a higher number of trees assures thou-
sands of sample combinations are tested, pursuing better 
isolations.

The remaining data contained 141.391 vectors. Approxi-
mately 4.1% and 3.9% were detected as anomalies for 
relative positioning processed with broadcast and precise 
ephemeris. All outlying vectors were removed from later 
experiments.

The filtered data were organized in intervals of baseline 
lengths, categories of eight (8) distinct time spans, and vec-
tors processed with broadcast or precise orbits. Table 1 
presents the north component standard deviations for each 
group of vectors. As the observation time span increases 
the standard deviations lower, while for longer ranges these 
values increase. The other two components (east and up) 
show a similar pattern, i.e., the shorter the time span and 
vector length, the lower the standard deviation. IFA identi-
fied vectors up to 50 km in length with 24 h of observation 
as anomalies. This could be explained by the limited number 
of short vectors in the database, causing them to be wrongly 
identified as anomalous due to their relative position (away) 
from other data points in the set space. However, this did not 
impede the construction of the models since other intervals 

were present. Moreover, in most real-life applications, 24-h 
observations on short length vectors are rare.

The covariances were also computed from each group 
of vectors, assembled by the same variables as in Table 1. 
Here we chose to work with the squared root of the covari-
ances values to produce better models. Table 2 presents the 
covariances for X and Y axes (σ(X, Y)) in absolute squared 
values (mm).

A small GNSS network was also designed to simulate 
the application of the models we produced. Four stations of 
the RBMC (MSMN, MSAQ, SPBO, SPFE) forming six 3D 
vectors with a single control point (MSMN). This resulted 
in nine (9) parameters to estimate, 18 observations and nine 
(9) degrees of freedom. The observation time simulated was 
six hours and the vectors ranged from 340 to 610 km long.

Estimation approach

To build the models, a linear regression was set up using the 
data from the three variables we investigated: time span (t), 
length (l), and ephemeris type. The two first variables were 
repeated in the equation by adding an unknown exponent to 
each, plus a relation within the two (l/t) and a constant (b6). 
The ephemeris type was treated in different regressions to 

Table 1   Standard deviations from reference baselines (mm) for the 
North component. Values shaded in orange represent more significant 
deviations, while values in blue indicate smaller deviations

Vector length (km) Time span (h)

Orbits Range Mean 0.5 1 2 4 6 8 12 24

B
ro

ad
ca

st

0 - 50 15 16,9 10,9 10,2 9,1 3,9 3,7 2,0

50 - 200 132 32,6 19,3 10,8 6,1 4,9 4,2 3,5 2,7

200 - 350 264 39,4 26,3 20,1 10,3 7,6 6,5 5,4 4,5

350 - 500 424 41,1 34,1 30,8 15,6 11,1 9,2 8,2 7,0

500 - 650 564 71,8 41,7 35,2 20,7 14,7 12,5 11,5 9,8

650 - 800 717 78,2 50,1 43,6 24,9 19,2 16,5 16,0 13,5

800 - 950 870 103,1 56,6 50,3 32,1 23,9 20,5 20,3 17,2

P
re

ci
se

0 - 50 19 7,4 8,8 7,7 5,2 2,6 2,3 1,6

50 - 200 132 16,1 9,9 6,7 4,6 3,7 3,2 2,6 2,0

200 - 350 271 17,4 11,7 7,9 5,2 4,4 3,8 3,4 2,7

350 - 500 422 19,0 12,1 8,2 5,6 5,0 4,2 3,7 2,9

500 - 650 562 19,1 12,1 8,2 5,9 5,2 4,6 4,2 3,2

650 - 800 717 17,2 11,7 8,4 6,1 5,4 5,0 4,3 3,2

800 - 950 871 22,4 13,6 8,5 6,4 5,5 5,0 4,4 3,4

Table 2   Absolute square XY covariances (mm). Values shaded in 
orange represent more significant covariances, while blue shades 
indicate smaller values

Vector length (km) Time span (h)

Orbits Range Mean 0,5 1 2 4 6 8 12 24

B
ro

ad
ca

st

0 - 50 15 296 271 96 54 44 25 15

50 - 200 132 1076 508 133 68 54 36 27 18

200 - 350 264 1498 638 122 145 125 83 67 39

350 - 500 424 1583 470 148 156 173 125 94 55

500 - 650 564 1162 888 68 156 277 202 136 67

650 - 800 717 690 1151 157 287 427 266 173 70

800 - 950 870 578 669 398 125 649 370 187 65

P
re

ci
se

0 - 50 19 103 95 68 33 19 10 5

50 - 200 132 572 300 130 54 40 30 20 12

200 - 350 271 645 391 218 84 66 48 41 22

350 - 500 422 573 406 226 106 82 67 50 26

500 - 650 562 625 412 261 116 104 82 56 27

650 - 800 717 402 417 246 119 104 87 46 23

800 - 950 871 348 372 235 131 100 85 56 25
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produce models for each type of orbit. This equation was set 
for all three standard deviation and covariance components 
in a local coordinate system (Koch et al. 2022),

where σ(·) stands for the standard deviation of the respective 
component (e, n, u, X, Y or Z), while t and l represent the 
observation time span in hours and the length of the vec-
tor in kilometers, respectively. The exponents x, y and z are 
determined during the regression process by a metaheuristic 
algorithm (MH). The same equation is reproduced for the 
covariances models where σ(·) becomes σ(·,·) for en, eu, nu, 
XY, XZ, and YZ covariances.

Independent vortices search

To define the exponents of (4) and evaluate the penalty func-
tion result, the metaheuristic Independent Vortices Search 
algorithm (IVS) was implemented (Koch et al. 2019). IVS 
is applied for optimizing numerical functions with a unique 
solution. It is based on the idea of vortices that move through 
the search space, narrowing the production of new candi-
date solutions around the best solution for each vortex. The 
center of each vortex coincides with the best solution at that 
moment, and all vortices behave independently.

The candidates are produced using a normal distribution 
around the center where the extent (radius) of the vortex 
equals 1σ. Because the radius size is decreased over the 
cycles, the search shifts from a global to a local search 
(exploration to investigation) (Koch et al. 2019).

A fitness function evaluates the result for each candidate 
solution produced by any vortex and normalizes the values 
of fi within the range of [0;1].

where fi results from the objective function of the i-th 
candidate.

IVS only needs a few parameters to be determined: the 
size of the search space common to all metaheuristics, the 
total count of cycles; the number of vortices; and the num-
ber of candidate solutions generated by each vortex in each 
cycle. For more details on IVS, the reader can refer to Koch 
et al. (2019) and Dogan and Olmez (2015).

Penalizing and approach overview

In the regression process, a penalty function was introduced 
based on Koch et al. (2022) study.

(4)

σ(⋅)(t, l) = b0
1

t
+ b1l + b2

l

t
+ b3

(
1

t

)x

+ b4l
y + b5

(
l

t

)z

+ b6

(5)f iti =
1

1 + |fi|

For the regressions, Eq. (6) provides better adjustment 
to the more precise data (less discrepancies). where n is the 
number of data points, rn

p is the n-th estimated value from 
the regression, and rn is the n-th value in the dataset. As the 
proportion of the i-th estimated discrepancy (ri

p) and i-th 
discrepancy in the dataset (ri) approaches 1, the sum will 
tend to 0, reducing the penalty value applied.

Once the penalized result is computed, it returns to IVS, 
and the fitness of the result is evaluated. If IVS has reached 
a stopping criterion (the number of fitness evaluations), the 
algorithm verifies the null hypothesis at 5%. Any variable 
that presents a p-value higher than 5% is removed from the 
model. In case two or more variables presented p-values 
higher than 5%, the variable associated with the highest 
p-value is removed. The algorithm restarts with the remain-
ing variables and adjusts the number of fitness evaluations 
in IVS when necessary.

If IVS reaches the stopping condition and all variables 
pass the null hypothesis test at 5%, the linear regression coef-
ficients are returned along with the exponents estimated by 
the metaheuristic. The equation can then be fulfilled based 
on the initial model (4). A diagram detailing the procedure 
is presented in Fig. 2.

Occasionally, none of the exponent variables might 
remain in the expression (4) after continuously removing 
them based on their p-value. If so, the MH execution can 
be skipped as no exponents remain in the model. The null 
hypothesis test is still applied directly after the linear regres-
sion. The disadvantage of such a situation is that the penalty 
function is no longer activated as it only influenced the esti-
mation of the exponents by the MH.

Validating models results in a network

To validate the VM and VCM models, they were applied 
for the network we presented and considered for both orbits, 
precise and broadcast. The network adjustment was com-
puted using the Gauss–Markov model for linear or linearized 
problems, computing the residuals and comparing error 
ellipsoids of the adjusted vertices. Reliability measures were 
also evaluated for the observations.

Reliability measures

For the VM model, the local redundancy number indicates 
the fraction of a possible (non-random) error in an observa-
tion that is reflected in the respective residue of that obser-
vation. It is obtained by computing the redundancy matrix 
RL given by

(6)min
∑n

0

|||||
r
p
n

rn
− 1

|||||
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Fig. 2   Procedure for linear regression with the application of IVS and penalty function
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where I is an identity matrix. Here, Wd = σ2�−1
d

 with �d as 
a diagonal matrix composed by the VM of each observation. 
If 0.5 < ri ≤ 1 for ri representing the i-th diagonal element of 
R
L
 , i.e., ri = diag(R

L
)ii, than the i-th related observation will 

have at least half possible (non-random) error reflected in the 
respective residual. The observation has good controllability.

Similarly, for the VCM model, a two-parameter reli-
ability measure was adopted as proposed in Prószyński 
(2010) for the tests with covariances. It transforms the 
observations into correlated dimensionless variables of 
equal accuracy by dividing the system by σs =

√
diag(�).

The system chosen to obtain the network LS solutions 
is also transformed, resulting in (Prószyński 2010):

where ls, As, and vs are the transformed vector of observa-
tions, design matrix, and vector of residuals, respectively, 
obtained by l

s
= �

−1
s

 , As = �
−1
s
A , vs = �

−1
s
v (Prószyński 

2010).
The two parameters that measure the reliability of each 

observation in the network are then evaluated. hii, is the 
i-th diagonal element of H (Prószyński 2010):

if 0.5 < hii ≤ 1 then the first criteria is met, here meaning that 
at least half the error will be reflected on the i-th residual, 
similar to ri from (7) which in this study yields the same 
result (Prószyński 2010).

The second parameter is computed as

which gives the relation to observations disturbance on local 
and quasi-global errors. If 0 < ki < 1 then the local error effect 
of the i-th observation is greater on the i-th residual than 
on the quasi-global effect on all other residuals (Prószyński 
2010). wii is defined by

where wii is the effect of the asymmetry of the i-th row and 
the i-th column of H.

Since our VCM models are designed for GNSS obser-
vations and geodetic network planning, establishing 
readability measures is very important. Regarding net-
work responses to outlying observations, these reliability 
measures produce interpretable results. The reader can find 
more details in Prószyński (2010).

(7)R
L
= I − A

(
A
T
WdA

)−1
A
T
Wd

(8)v
s
= A

s
x − l

s
with�

s
= �

−1
s
��

−1
s

(9)H = I − As

(
A
T
s
�
−1
s
As

)−1
A
T
s
�
−1
s

(10)ki =
1

hii
−

wii

h2
ii

− 1

(11)wii = hii −
(
H

T
H
)
ii

Results and discussion

We applied the proposed procedure to obtain standard 
deviations and covariances estimation equations accord-
ing to the ephemeris chosen. The equations were used in a 
GNSS network, and null covariances and a complete VCM 
were compared.

Models

By implementing the procedure detailed in Fig. 2, 24 equa-
tions were obtained that model the standard deviations 
and covariances of the GNSS DD relative positioning as a 
function of the time span (t in hours) and vector length (l 
in kilometers). Based on the collected data, all components 
have different models for broadcast and precise ephemeris. 
Standard deviations are given in meters (m) and covari-
ances were squared in the estimation process, meaning 
they are also represented in meters (m) (Table 3).

All equations kept at least one coefficient related to l 
and t, for both orbit products. It is essential to note that 
using values of l and t outside the studied intervals may 
produce undesirable and misleading results. Nevertheless, 
this study covers most practical applications since quanti-
ties beyond these intervals are rarely employed, allowing 
for widespread use of the models.

Regressions were also run with Eckl et al. (2001) equa-
tion to compare the models produced for standard devia-
tions and root squared covariances. The obtained models 
were based on the same data, but without IVS and penalty 
functions, using only the four coefficients proposed in Eckl 
et al. (2001). The models’ results were analyzed and sum-
marized in Table 3.

The procedure to obtain the models presented in Table 4 
showed better results when comparing the R2 and RMSE 
values. Models with more coefficients and IVS better 
represented standard deviations and root squared covari-
ances in all components (Figs. 3 and 4). For vectors with 
8 to 24h of observation time span and up to 650 km long, 
where smaller deviation values are expected, our models 
reduced RMSE by 75.5% and 22% for standard deviation 
and root squared covariances models, respectively. This 
is mostly accomplished by the penalization function pre-
sented in Eq. 6, which provides better adjustment to the 
more precise data.

The resulting equations can be easily applied to plan-
ning GNSS relative positioning with double differences 
applications and require only two variables to be known: 
the time span of the observation, which is easily man-
aged, and the vector length that can be planned without 
difficulty.



	 GPS Solutions (2024) 28:15

1 3

15  Page 8 of 13

Application

All models were tested on the simulated network presented 
earlier, which consisted of four RBMC stations, one control 
point, and six 3D observation vectors. Adjustments were 
computed using both VCM and VM (null covariances), and 
the error ellipsoids and reliability measures were analyzed 
for each station. The volume values of the ellipsoids for each 
network station are presented in Fig. 5.

The error ellipsoids for the stations computed using the 
broadcast ephemeris were found to have larger volumes, 
indicating that the uncertainty of these points is substantially 
higher compared to using precise final orbits. For the studied 
network, the error ellipsoids from the broadcast models were 
found to have volumes ranging from 6.5 to 16.7 times greater 

than with the final ephemeris, with a mean value of approxi-
mately 12.4 times greater. Comparing the error ellipsoids 
computed using the VCM and VM approaches showed no 
significant difference in the volumes. Figure 6 illustrates the 
error ellipsoids for station MSAQ using the local models.

Reliability measures were used to evaluate how control-
lable the observations in the network is. Figure 7 illustrates 
the percentage of rejected vectors in the tests. In the case of 
VCM models, both hii and ki are considered for controllabil-
ity, while only ri is used for VM models.

The VCM models consider more uncertainty in the obser-
vations and therefore better reflect the precision involved 
in relative positioning observations, although no difference 
is detected in the number of non-controllable observations. 
The reliability metrics of Prószyński (2010) for individual 

Table 3   Comparative analysis: 
quality metrics of obtained 
models vs. Eckl et al. (2001) 
regression models

For standard deviation 
models

For root squared covari-
ances models

Comments

Average R2  + 5.2%  + 8.6% Higher R2 on both stand-
ard deviation and root 
squared covariances 
models

Average RMSE −48.4% −7.0% Reduced RMSE on both 
standard deviation and 
root squared covariances 
models

Table 4   Equations resulted from the proposed procedure for the 
standard deviations and covariances. σ(·) stands for the standard devi-
ation of (·) given in meters (m), and √σ(·,·) indicates the square root 

of the covariance of (·,·) also given in meters (m). R2 is the coefficient 
of determination of the statistical model, and RMSE is the root-mean-
square error

Ephemeris Component Equation R2 RSME (m)

Broadcast σ(e)
−

6.1795×10−3

t

− 3.8831 × 10
−4 l

t

+
6.8333×10−5

t
−1.4093

+ 524.62325l−3.9585 + 1.4557 × 10
−3
(

l

t

)0.8551

− 0.0066
0.990 4.20E-03

Broadcast σ(n) 0.02517

t

+ 3.7804 × 10
−5 l

t

−
0.01004

t
1.7989

+ 2.4879 × 10
−7
l
1.6408 0.987 3.48E-03

Broadcast σ(u) 0.01364

t

+ 1.0713 × 10
−5
l −

8.5144×10−4

t
3.9658

+ 174.45336l−3.7295 + 2.3845 × 10
−3
(

l

t

)0.5518 0.998 2.19E-03

Broadcast
√
�(e, n) 3.6617×10−3

t

+ 1.0544 × 10
−5
l + 5.0505 × 10

−5 l

t

− 9.2943 × 10
−7
(

l

t

)1.5257 0.880 4.83E-03

Broadcast
√
�(e, u) 4.2683×10−3

t

+ 1.1095 × 10
−5
l + 2.9949 × 10

−5 l

t

0.917 5.92E-03

Broadcast
√
�(n, u)

1.0994 × 10
−5
l + 2.4587 × 10

−4
(

l

t

)0.6943 0.945 4.16E-03

Precise σ(e) 7.5293×10−3

t

+ 1.2504 × 10
−5
l + 2.0717 × 10

−5 l

t

− 4.8669 × 10
−13

l
3.4713 0.969 2.38E-03

Precise σ(n) −
0.03037

t

+ 1.2166 × 10
−5
l + 5.3044 × 10

−6 l

t

+
0.03836

t
0.908

− 3.175 × 10
−7
l
1.5121 0.988 8.78E-04

Precise σ(u) 3.0476×10−3

t

+ 1.3162 × 10
−4
l +

0.03174

t
0.1381

− 5.1498 × 10
−5
l
1.1361 + 1.4813 × 10

−3
(

l

t

)0.4504

− 0.0203
0.972 2.18E-03

Precise
√
�(e, n) 2.7479×10−3

t

+ 1.2758 × 10
−6
l + 2.216 × 10

−9
(

l

t

)2.0771 0.921 1.06E-03

Precise
√
�(e, u) 8.1522×10−3

t

+ 2.886 × 10
−6
l −

5.2927×10−4

t
4.0

0.866 1.98E-03

Precise
√
�(n, u) −

3.5522×10−3

t

+
3.6728×10−4

t
3.9952

+ 0.01807l−0.1863 + 0.06403

(
l

t

)0.0276

− 0.0736
0.858 7.59E-04
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observations generally vary with the type of ephemeris, with 
the broadcast ephemeris showing greater variation. How-
ever, the number of controlled observations within the out-
lier exposing area did not change with the type of ephemeris 
or the model (VM or VCM). This is the first study to make 
this type of comparison, and therefore further investigations 
with other networks would be necessary. Figure 8 illustrates 
the two-parameter reliability measure for the observations 
computed with the VCM models. The precise orbits resulted 
in less dispersion on h, but the number of observations that 
fit within the reliability area does not appear to improve.

The final summation of the squared residuals from the 
network’s adjustments is also assessed. Figure 9 shows the 
absolute difference between the sum of the squared residuals 
computed with VCM and VM.

The differences in the final sum of squared residuals 
between the VCM and VM models were found to be negligi-
ble, with values under 100 mm2. Precise orbits yielded even 
lower values, under 1 mm2. This confirms that the weight 
matrix, which is built from variance and covariance models, 
has a low impact on the estimator but more on the VCM and 
reliability measures.

When adjusting networks, it is always advisable to use the 
VCM models, even if they may not improve the final solu-
tion. The VCM provides a more realistic error ellipsoid in 
terms of its flattening and orientation, which helps prevent 
the overestimation of the final precision of the computed 
variables. Furthermore, even though the total number of 
controlled observations did not change (in the global analy-
sis), the reliability of each individual observation (local) did 
change. Therefore, the VCM model is also recommended in 
terms of observation reliability.

Conclusion

This study proposed to provide models to estimate the VCM 
of GNSS DD vectors a priori for planning, based on obser-
vation time span, vector length and ephemeris type. These 
values are critical for decision-making in structural displace-
ment monitoring, GNSS networks, and several civil infra-
structures that use GNSS observations. The study expanded 
the results of previous research by applying data from vari-
ous vector lengths and time spans for both broadcast and pre-
cise orbits based on 140,000 GNSS relative positioning with 
double difference vectors. The models obtained are easy to 
implement with low computational cost and were tested on 
a simulated GNSS network.

The proposed procedure combines the IVS metaheuristic 
algorithm with a penalty function to better fit lower discrep-
ancy values. It resulted in 24 models for standard deviations 
and covariances using broadcast and precise ephemeris for 
a local coordinate system.
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Fig. 3   Comparison of the R2 values obtained for each component of 
standard deviations and root squared covariances. In blue color, val-
ues for the models produced from Koch et al. (2022) procedure with 
IVS and penalizing function. In gray color, values from the regres-
sions with four components (Eckl et al. 2001)
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The obtained models require only two variables to be 
known: the time span of the observation and vector length, 
which can be planned in any project’s design phase. The 
RMSE ranged from 7.59 × 10–4 to 5.92 × 10–3 m for the mod-
els, and the high coefficients of determination (R2 > 0.8).

When tested on a simulated GNSS network, error ellip-
soids obtained with the broadcast ephemeris presented larger 
volumes, indicating that the uncertainty of these points is 
substantially higher than with precise ephemeris. Despite 
not presenting big changes in the volumes, in terms of flat-
tening and orientation the use of a complete VCM brings 
differences when compared to the VM (null covariances) 
approach.

Although the VCM models consider more uncertainty 
in the observations and therefore better reflect the precision 
involved in relative positioning observations, no difference 

Fig. 6   Ellipsoids of station MSAQ. On the left, the error ellipsoids 
using the VCM for both broadcast and precise ephemeris. On the 
right, the ellipsoids produced when computing the errors only with 

the VM. Different volumes, orientations and flattening reinforce the 
need to work with a full VCM

33% 33% 33% 33%

0%

20%

40%

Network (Local)

Broadcast Model VCM Broadcast Model VM
Precise Model VCM Precise Model VM

Fig. 7   Percentage of non-controllable observations. No change is 
detected for VCM or VM or broadcast and precise ephemeris
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is detected in the number of non-controllable observations 
by reliability measures applied in this study.

Final residuals produced by adjusting the networks with 
VCM and VM presented negligible differences in terms of 
the residual magnitude. In general, the variance and covari-
ance models have a low effect on the estimator and more on 
the VCM and reliability measures. When comparing orbits, 
precise ephemeris reduced the differences in residuals.

In conclusion, this study demonstrated that using the 
VCM is essential for obtaining more reasonable a priori 
error ellipsoids, avoiding misleading predictions in plan-
ning observations. The linear regression-based models led 
to uncomplicated implementation of the models for simula-
tions and practical use. Future research could extend the 
experiments with tests on high ionospheric activity and high 
variations in height within the stations. Also, we recom-
mend comparing our method with expert models based on 
the physical properties involved, considering factors such as 

the elevation angles of the satellites and the temporal cor-
relation in the process of constructing the double differences.
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