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Abstract
Multipath is the main unmodeled error source hindering high-precision Global Navigation Satellite System data processing. 
Conventional multipath mitigation methods, such as sidereal filtering (SF) and multipath hemispherical map (MHM), have 
certain disadvantages: They are either not easy to use or not effective enough for multipath mitigation. In this study, we 
propose a machine learning (ML)-based multipath mitigation method. Multipath modeling was formulated as a regression 
task, and the multipath errors were fitted with respect to azimuth and elevation in the spatial domain. We collected 30 days 
of 1 Hz GPS data to validate the proposed method. In total, five short baselines were formed and multipath errors were 
extracted from the postfit residuals. ML-based multipath models, as well as observation-domain SF and MHM models, were 
constructed using 5 days of residuals before the target day and later applied for multipath correction. It was found that the 
XGBoost (XGB) method outperformed SF and MHM. It achieved the highest residual reduction rates, which were 24.9%, 
36.2%, 25.5% and 20.4% for GPS P1, P2, L1 and L2 observations, respectively. After applying the XGB-based multipath 
corrections, kinematic positioning precisions of 1.6 mm, 1.9 mm and 4.5 mm could be achieved in east, north and up com-
ponents, respectively, corresponding to 20.0%, 17.4% and 16.7% improvements compared to the original solutions. The 
effectiveness of the ML-based multipath model was further validated using 30 s sampling data and data from a low-cost 
device. We conclude that the ML-based multipath mitigation method is effective, easy to use, and can be easily extended by 
adding auxiliary input features, such as signal-to-noise ratio, during model training.
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Introduction

Global Navigation Satellite System (GNSS) has already 
become an essential part of our daily life and a crucial part 
of the geodetic infrastructure (Rebischung et al. 2016). With 
the refinement of error correction models and the improve-
ment of precise products provided by the International 
GNSS Service (IGS), GNSS-based positioning precision can 
reach mm-level in static mode and cm-level in kinematic 
mode (Bock et al. 2004; Choy et al. 2016). However, mul-
tipath still remains the main unmodeled error source due to 
its nonlinear nature. It degrades the contribution of GNSS to 

applications demanding high precision, such as earthquake 
early warnings (Larson 2009).

Multipath is the effect of simultaneous reception of direct 
and reflected GNSS signals. It is almost inevitable due to the 
nondirectional nature of GNSS antennas. Apart from choos-
ing a less reflective environment, hardware- and software-
based measures are usually adopted to reduce multipath. 
The hardware-based methods, such as choke ring, can only 
reduce part of the multipath error (Park et al. 2004). The 
software-based approaches include various filtering meth-
ods utilizing the frequency signature of multipath (Satirapod 
and Rizos 2005). However, it is hard to apply such filtering 
when the multipath frequency range overlaps with that of 
signals of interest. Signal-to-noise ratio (SNR) measured by 
GNSS receivers can be used for multipath characterization 
or observation weighting (Bilich et al. 2008; Su et al. 2021). 
However, its efficiency is dependent on the SNR data quality 
and antenna gain pattern. Sidereal filtering (SF) is a widely 
used method to mitigate multipath for high-precision GNSS 

 *	 Yuanxin Pan 
	 yxpan@ethz.ch

1	 Institute of Geodesy and Photogrammetry, ETH Zurich, 
8093 Zurich, Switzerland

2	 Present Address: Department of Geodesy 
and Geoinformation, TU Wien, 1040 Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-023-01553-y&domain=pdf


	 GPS Solutions (2024) 28:9

1 3

9  Page 2 of 13

data processing (Genrich and Bock 1992). The idea is that 
the geometric relation between the Global Positioning Sys-
tem (GPS) constellation and a static station will repeat every 
sidereal day, and the positioning error induced by multipath 
will also repeat after the same period. Hence, the coordinate 
time series of previous days, with proper time shifts, can be 
used to correct the multipath for the target day. The key to 
implement SF is to calculate the correct orbit repeat period 
for each satellite, since the actual orbit repeat period of GPS 
is not exactly one sidereal day and even varies with different 
satellites (Choi et al. 2004; Agnew and Larson 2006). When 
it comes to multi-GNSS, the case is more complicated and 
SF can no longer be applied in the coordinate-domain. In 
order to solve this problem, observation-domain SF was first 
proposed by Zhong et al. (2010) for baseline processing and 
was also successfully applied to precise point positioning 
(PPP) and multi-GNSS processing (Atkins and Ziebart 2015; 
Ye et al. 2014; Geng et al. 2018). It extracts multipath cor-
rections from postfit residuals of previous days and applies 
them to the observations of each satellite on the target day 
after shifting the corrections by individual orbit repeat peri-
ods. This process is not easy to implement, particularly con-
sidering the varying repeat periods for different satellites and 
days (Choi et al. 2004). Furthermore, its effectiveness for 
multipath mitigation can sometimes be affected by orbital 
maneuvers.

The spatiotemporal repeatability of multipath can also 
be modeled in the spatial domain. It is based on the fact 
that multipath errors mainly depend on satellite positions 
in a skyplot, and thus a multipath correction model can be 
established with respect to azimuth and elevation angles in a 
topocentric coordinate system. Dong et al. (2015) named this 
kind of spatial domain-based multipath model as multipath 
hemispherical map (MHM) and compared its performance 
with SF using 1 Hz GPS data from a dual-antenna receiver. 
It was concluded that similar multipath mitigation perfor-
mance could be achieved with both methods, but MHM was 
less effective for high-frequency multipath. However, MHM 
is satellite independent and is easy to implement and use 
(Zheng et al. 2019). Wang et al. (2019) modified the MHM 
method by introducing a set of trend surface coefficients for 
each grid to capture the multipath variation within a grid. It 
was found that the modified MHM method achieved about 
5% more residual reduction rate than MHM, but it compli-
cated the implementation of the original MHM method.

Over the last decade, artificial intelligence, especially 
machine learning (ML), has become more and more prominent 
in geosciences (Li et al. 2011; Beroza et al. 2021). Such data-
driven algorithms are suitable for solving nonlinear problems, 
including classification and regression tasks. ML algorithms 
have already been applied to GNSS multipath and non-line-
of-sight (NLOS) signal classification (Hsu 2017). Suzuki et al. 
(2020) trained a convolutional neural network (CNN) to detect 

NLOS signals based on the output of multiple GNSS signal 
correlators of a software-defined receiver and reported a 98% 
classification accuracy. Tao et al. (2021a, b) used neural net-
works to mine the multipath features in coordinate and fre-
quency domains, respectively, and reported better multipath 
mitigation performance than conventional methods. However, 
currently there is no research that studies the possibility of 
multipath modeling in the spatial domain with ML.

This research focuses on investigating the potential of ML 
algorithms on multipath modeling in the spatial domain. We 
formulate multipath modeling as a regression task for ML 
algorithms. The multipath errors are fitted with respect to azi-
muth and elevation angles in the skyplot. The benefit of SNR 
measurements for multipath modeling is also examined. Three 
widely used ML methods, i.e., random forest (RF), extreme 
gradient boosting (XGB) and multilayer perceptron (MLP), 
are tested regarding multipath mitigation for short baselines. 
The principles of multipath modeling are introduced in next 
section. Then, the data used in this study are described, and 
the ML-based multipath mitigation results are displayed and 
discussed. Finally, conclusions and outlooks are given.

Multipath modeling

Multipath cannot be modeled thoroughly due to its nonlinear-
ity. But under the assumption of specular reflection, the mul-
tipath errors of pseudorange and carrier phase can be modeled 
as (Bilich et al. 2007):

where P
MP

 and Φ
MP

 are multipath errors of pseudorange and 
carrier phase, respectively. We denote the reflection coeffi-
cient as � , which is the amplitude ratio between the reflected 
signal and the direct signal. The geometric path delay is 
denoted as � , and � is the phase offset of the reflected signal, 
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to the reflection.
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ML‑based multipath modeling

ML algorithms have been proven to be powerful tools for 
regression tasks. The main advantage of ML over classic 
spatial interpolation algorithms is that not only azimuth 
and elevation angles but also auxiliary information, such 
as SNR measurements, can be utilized for interpolation. 
There are a lot of ML algorithms suitable for regression 
tasks. Among them, ensemble learning algorithms, includ-
ing bagging and boosting, are usually ranked among the 
best-performing methods. Besides, artificial neural net-
works (ANN) are also commonly used ML algorithms. 
Hence, three representative ML algorithms, including ran-
dom forest (RF), extreme gradient boosting (XGB) and 
multilayer perceptron (MLP), are selected as the candidate 
methods for multipath modeling in this study. RF is an 
ensemble learning method that outputs the average results 
of a set of randomized decision trees (Breiman 2001). It 
can overcome the overfitting issue of a single decision tree 
and usually can achieve high accuracy without complex 
configuration. XGB is an open-sourced gradient boosting 
framework (Chen and Guestrin 2016). The basic idea is 
that a set of decision trees are trained sequentially to better 
fit the samples with larger residuals, and it is widely used 
due to its high performance. MLP is a type of ANN with 
fully connected nodes. It consists of three parts, i.e., input 
layer, hidden layer(s) and output layer. Nonlinear activa-
tion functions are used at each node, and thus can simulate 
the nonlinear relation between input and output.

Data preparation is the key to ML model training. 
Two sets of data, i.e., input features and a target vector 
need to be provided. Apart from azimuth and elevation, 
SNR is also tested as an additional input feature in this 
study. The target vector is an array of multipath errors, 
which are the denoised single-differenced (SD) residuals 
extracted from double-differenced (DD) residuals during 
baseline processing. The detailed multipath extraction 
method is described by Ye et al. (2014). Note that a low-
pass filter with an empirical corner frequency of 0.1 Hz 
is used to denoise the SD residuals in this study (Choi 
et al. 2004; Geng et al. 2018). It is usually recommended 
to stack 5–7 days’ residuals to build the multipath model 
for improved performance (Dong et al. 2015; Wang et al. 
2019). Finally, ML models are trained to best fit the rela-
tion between input features and the target vector. Note that 
all the training data should be cleaned for outliers and 
normalized to improve training stability and model perfor-
mance. The basic procedures of GPS data processing and 
ML-based multipath mitigation are illustrated in Fig. 1. 
Note that daily updating of the ML model is not necessary 
and is only adopted if the optimal model performance is 
desired. In other words, the model has the capability to 

predict multipath for multiple days, but this comes with 
a performance trade-off. More details about optimal ML 
model construction can be found in the Results section.

Data

We obtained 30 days (DOY 244–273 of 2021) of 1 Hz high-
rate GPS data from Curtin University to test the ML-based 
multipath mitigation method. There were four GPS antennas 
on the rooftop of Curtin University (Fig. 2). The antenna 
connected to a Trimble NetR9 receiver (CUT0) was used as 
the reference station. The other three antennas were all con-
nected to two different receivers, forming six rover stations, 
i.e., CUAA/CUTA, CUBB/CUTB and CUCC/CUTC (see 
details in Table 1). Here, a station denotes the combination 
of an antenna and a receiver. Station CUBB was excluded in 
the following studies since there were many gaps in its data. 
Hence, five short baselines were formed between CUT0 
and rover stations for multipath mitigation experiments. 
The baselines were processed with a modified version of 
the RTKLIB software (Takasu 2009). Uncombined obser-
vations of pseudorange and carrier phase on dual frequen-
cies were utilized for parameter estimation. An elevation 
cut-off angle of 10° was adopted, and no SNR mask was 
applied. Since the distance between the reference station 
and any rover station was less than 10 m, tropospheric and 
ionosphere delays were eliminated by differencing between 
stations. Only rover positions and DD ambiguities were esti-
mated in a Kalman filter. Specifically, rover positions were 
estimated in static mode to obtain postfit residuals including 
multipath and noise. It was worth noting that all the sta-
tions had the same type of antenna (Table 1), which meant 
antenna PCV (Phase Center Variation) errors could be elimi-
nated through differencing and would not affect multipath 
modeling. Finally, multipath errors were extracted from the 

Fig. 1   Flowchart of GPS data processing and ML-based multipath 
mitigation. The ML model is trained using the data from previous 
days, and it predicts the multipath errors for the target day
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postfit residuals (Ye et al. 2014) and were used for multipath 
modeling in the following experiments. The observation-
domain SF and MHM multipath models were built on the 
same data set for comparison. Note that observation-domain 
SF is simply denoted as SF in the remaining text for clarity. 

The orbit repeat period required by SF was calculated using 
broadcast ephemerides for each satellite (Choi et al. 2004), 
and the MHM model was constructed with 1° by 1° grids 
for improved model stability and effectiveness (Dong et al. 
2015). Multipath models for GPS P1, P2, L1 and L2 obser-
vations were constructed individually.

Results

We first analyze the characteristics of the extracted multipath 
errors. Then, different input features and ML algorithms 
are explored to establish the multipath models. Finally, the 
ML-based multipath mitigation method is compared to the 
conventional observation-domain SF and MHM methods 
regarding residual reduction and positioning improvement. 
Considering the similar data quality and multipath environ-
ment, we take the station CUCC as the example for specific 
analysis and present the statistical results for all the stations.

Multipath characteristics analysis

The key to set up a reliable multipath model is the spatiotem-
poral repeatability of multipath. Figure 3 shows the low-
pass filtered residuals of satellite G04 at CUCC station on 
DOY 244, 245 and 249. The Pearson correlation coefficients 
between DOY 244 and 249 can reach 0.68, 0.70, 0.82 and 
0.86 for P1, P2, L1 and L2, respectively. It indicates that the 
environment around the stations is stable during the experi-
ment periods. Considering the good temporal correlation, we 
stacked 5 days of residuals before the target day to enhance 
the multipath signals during modeling (Dong et al. 2015). 
We also checked the multipath correlation between both fre-
quencies for pseudorange and carrier phase, respectively. 
The correlation coefficients between P1 and P2 residuals 
are below 0.2 and most of the time close to 0. This indicates 
that the multipath errors of different pseudorange meas-
urements are not correlated. For carrier phase residuals on 
dual-frequency, the correlation coefficients vary between 0 
and 0.5. Hence, there is no definite relation between L1 and 
L2 multipath effects. Considering the same path delay but 

Fig. 2   Distribution of GPS stations and the observation environment 
on the rooftop of Curtin University. CUT0 is the reference station 
used for relative positioning. All three rover antennas are connected 
to two different receivers, respectively. (a) Bird’s-eye view (b) South 
view. The copyright of the photos is preserved by Curtin GNSS-
SPAN Group

Table 1   Detailed configurations 
of GPS stations used in this 
study

Station Receiver type Firmware 
version

Antenna type

CUT0 Trimble NetR9 5.45 TRM59800.00 SCIS (Choke ring antenna)
CUTA​ 5.22
CUTB 5.22
CUTC​ 5.45
CUAA​ Javad TRE_G3T DELTA 3.7.9
CUBB
CUCC​
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different wavelengths of L1 and L2 carriers, the phase of the 
two reflected carriers is usually unsynchronized, and thus the 
disturbance on the direct carrier signals will be different and 
uncorrelated (Bilich et al. 2007).

Optimal ML‑based multipath model setup

To select the best ML algorithms and input feature combi-
nations, we used 30 days of data from the CUCC station to 
evaluate the performance of each combination regarding the 
residual reduction rate. The three candidate ML algorithms 
included RF, XGB and MLP, and the potential input features 
included azimuth, elevation and SNR. Note that while mul-
tipath combination is a direct metric for pseudorange mul-
tipath variation (Hilla and Cline 2004), based on our initial 
test, it does not enhance carrier phase multipath modeling 
due to the different multipath characteristics between pseu-
dorange and carrier phase (Bilich et al. 2007). Thus, it is not 
considered as a candidate feature. Since azimuth and eleva-
tion were necessary for spatial interpolation, there were only 
two choices for input features, i.e., with or without SNR. In 
this study, we employed calibrated SNR instead of raw SNR 
measurements extracted from RINEX (Receiver Independ-
ent Exchange Format) files. The reason for this choice is that 
variations in raw SNR are not solely caused by multipath 
effects but are also influenced by satellite elevation (Strode 
and Groves 2016). To remove the elevation impact, a poly-
nomial of degree 3 was fitted to raw SNR as a function of 
elevation, and it was then used to calibrate the raw SNR 
measurements (Lyu and Gao 2020a, b; Strode and Groves 

2016). ML-based multipath models with the six possible 
combinations of algorithms and input features were trained 
on the residuals of DOY 244–248 and validated using the 
residuals of DOY 249, respectively. Grid search was adopted 
for hyperparameter tuning. The optimal hyperparameters 
(Table 2) were determined based on the residual reduction 
rates for DOY 249. Note that adding calibrated SNR as an 
additional input feature had little impact on the optimal 
hyperparameters for each ML algorithm according to our 
experiments. After determining the best hyperparameters, 
model training and testing were repeated for the remaining 
24 days (see Fig. 1), and mean multipath reduction rates 
were calculated for each combination.

Figure 4 shows the average residual reduction rates for all 
six combinations. It indicates that including calibrated SNR 
as an additional feature does not improve model performance 
for carrier phase multipath mitigation, especially for RF 
and XGB. It even adversely affects carrier phase multipath 
mitigation for some days. Still, adding SNR can slightly 
improve the model performance for pseudorange multipath 
mitigation, especially for MLP. The primary reason is that 

Fig. 3   Low-pass filtered residuals of satellite G04 at station CUCC. 
Pseudorange and carrier phase residuals are shown in the upper and 
bottom panels, respectively. Residuals on DOY 244, 245 and 249 
are denoted by red, blue and green curves, respectively, and they are 
shifted by corresponding orbit repeat periods along the x-axis to bet-
ter show the temporal correlation. Shifts along the y-axis are made 
to avoid overlapping. Pearson correlation coefficients with respect to 
the residuals of DOY 244 are denoted above each curve for DOY 245 
and 249

Table 2   Optimal set of hyperparameters derived from the grid search

Algorithm Hyperparameter Value

RF n_estimators 10
Max_depth 30
Criterion Squared_error

XGB n_estimators 40
Max_depth 20
Criterion Squared_error

MLP Hidden_layer_sizes (128, 128, 128, 
128, 128, 128, 
128)

Activation Relu
Solver Adam

Fig. 4   Mean residual reduction rates for station CUCC over DOY 
250–273. The reduction rates using MLP, RF and XGB (only azimuth 
and elevation as input features) are denoted by blue, orange and green 
bars, respectively. The shaded bars represent the corresponding mod-
els with cablibrated SNR as an additional input feature
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theoretically, SNR and pseudorange multipath are in phase, 
but there is a time lag between SNR variation and carrier 
phase multipath (Strode and Groves 2016; Zhang et al 2019). 
However, this time lag varies with different multipath sig-
nals, and it needs further studies on how to better utilized 
SNR to improve carrier phase multipath modeling. Another 
reason may be that the numerical precision of SNR values in 
the RINEX files is not high enough. The Trimble and Javad 
receivers involved in this study only record SNR meas-
urements with a precision of 0.2 dB-Hz and 0.25 dB-Hz, 
respectively. Such coarse SNR increments are not precise 
enough to improve multipath modeling. Bilich et al. (2007) 
also found this issue and reported that it was receiver model 
dependent. Using only azimuth and elevation angles as input 
features are sufficient for RF and XGB models. Residual 
reduction rates of 25%, 36%, 30% and 25% can be achieved 
for P1, P2, L1 and L2, respectively. SNR is excluded as a 
feature to prevent any potential deterioration in carrier phase 
multipath modeling. It is worth pointing out that although 
RF can conduct multivariate regression (i.e., one multipath 
model for four observables), no obvious improvement can 
be observed compared to the results of building multipath 
models individually. Since XGB with azimuth and elevation 
as input features can achieve highest residual reduction rates, 
we only present the results of this combination for ML-based 
methods in the following experiments.

Multipath mitigation test

After picking the optimal ML algorithm and input features, 
we tested and compared the multipath mitigation perfor-
mance for three different methods: SF, MHM and XGB.

Multipath model

The multipath models based on the XGB method are visual-
ized in Fig. 5 for station CUCC on DOY 251. It can be seen 
that most severe multipath errors concentrate in the low-
elevation areas, and there is no obvious pattern difference 
with respect to azimuth. This is because there is no strong 
reflection source around the station, and most reflected sig-
nals come from the surrounding grounds (Fig. 2). Such an 
observation environment is similar to most IGS stations and 
can make the conclusions of this study generally applicable. 
We further plotted the multipath correction time series of 
SF, MHM and XGB in Fig. 6a to directly compare their 
capability of modeling multipath. The corresponding low-
pass filtered residuals of satellite G10 are also included as 
the reference. It can be found that the multipath models of 
SF and XGB are in good agreement with the low-pass fil-
tered residuals for both pseudorange and carrier phase on 
dual frequencies. They successfully replicate both the long- 
and short-term variations induced by multipath. However, 

MHM can only capture the long-term tendency but not the 
short-term changes, i.e., high-frequency components. This 

Fig. 5   Visualization of XGB-based multipath models for station 
CUCC on DOY 251

Fig. 6   Low-pass filtered residuals and different multipath models 
for satellite G10 at station CUCC on DOY 251 and the correspond-
ing PSDs for L1. a The filtered residuals and multipath models of SF, 
MHM and XGB are displayed in black, red, blue and green, respec-
tively. The individual curves are shifted vertically to avoid overlap-
ping. b L1 PSDs (relative to 1 m2/Hz) for low-pass filtered residuals 
and different multipath models. The two orange vertical lines repre-
sent the frequency range from 17 to 60 s
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drawback is most obvious during the period from 14 to 16 h 
when the satellite is at low elevation and multipath changes 
fast. The MHM multipath model in this period resembles a 
low-resolution version of SF and XGB models.

Figure 6b exhibits the power spectral density (PSD) for 
L1 multipath models generated by three methods as well 
as the low-pass filtered residuals. The MHM model has a 
lower power density between the frequency range from 17 
to 60 s. Compared to XGB, MHM is about 7 dB lower for 
the high-frequency multipath components, which accounts 
for around 80.5% lower signal power. This explains the low 
resolution of the MHM model in Fig. 6a. For lower fre-
quencies, MHM agrees well with the other two methods. In 
contrast, the PSDs of SF and XGB are in good agreement 
with that of low-pass filtered residuals from 17 s to the low-
est frequency. The PSD drop before 0.1 Hz of the SF model 
and the low-pass filtered residuals is caused by the low-pass 
filter used to remove the white noise in raw residuals. The 
higher noise level in the XGB model between 2 and 17 s is 
most probably caused by spatial interpolation errors, but it 
does not affect the multipath mitigation effect since the noise 
magnitude is very small compared to multipath errors. A 
similar phenomenon is also observed for MHM, although it 
is not expected since the MHM model averages the residuals 
within each grid and the noise level should be lower. Hence, 
the higher noise level is possibly an artifact caused by the 
step signals generated by the low-resolution MHM model as 
shown in Fig. 6a. Overall, the PSD analysis confirms that the 
ML-based multipath model can achieve similar performance 
as SF and outperforms the MHM model due to the advantage 
of spatial interpolation.

Residual reduction

Figure 7 shows the posterior residuals of G10 at station 
CUCC on DOY 251 and those corrected using SF, MHM 
and XGB methods. The multipath errors are effectively 
reduced by all three methods, especially for periods when 
the satellite is at low elevations. The RMS of the residuals 
corrected with XGB is the smallest among the three meth-
ods, reaching 0.55 m, 0.27 m, 2.25 mm and 2.52 mm for P1, 
P2, L1 and L2, respectively. Compared to the raw residu-
als, the improvements are 26.7%, 41.3%, 36.6% and 30.6%, 
respectively. Here, it can be found that the reduction rate for 
P1 is much smaller than for P2. This can be explained by 
the higher noise level of P1 residuals. The multipath mitiga-
tion performance of SF is similar to that of XGB, and the 
RMS differences between them are only 0.01 m, 0.01 m, 
0.00 mm and 0.02 mm for P1, P2, L1 and L2, respectively. 
This is reasonable as observation-domain SF represents the 
state-of-the-art method for establishing multipath models 
and multipath alignment error is within 1 s if the orbit repeat 
period for each satellite is accurately obtained. In contrast, 

MHM can only achieve improvements of 10.6%, 26.1%, 
25.1% and 25.3% for the four observables. That is because 
MHM cannot effectively capture the high-frequency mul-
tipath components. This can be seen in the L1 residual time 
series between 14 and 16 h in Fig. 7. There are still obvious 
fluctuations in this period after being corrected with MHM, 
especially the variations near 15 h. Such fluctuations nearly 
disappear when XGB or SF models are applied.

The mean residual reduction rates using SF, MHM and 
XGB over all five stations and 25 days are displayed in 
Fig. 8. Overall, the results are consistent with those shown 
in Fig. 7, i.e., XGB performs similarly to SF and better than 
MHM regarding residual reduction rates. After multipath 
mitigated with XGB, RMS improvements of 24.9%, 36.2%, 
25.5% and 20.4% can be achieved for P1, P2, L1 and L2 
residuals, respectively. The reduction is 0.1% to 0.7% and 

Fig. 7   Raw and multipath corrected residuals of satellite G10 at sta-
tion CUCC on DOY 251. The raw residuals and those corrected with 
SF, MHM and XGB are represented by black, red, blue and green 
curves, respectively. The individual curves are shifted along the 
y-axis to avoid overlapping. The RMS value is denoted above each 
curve

Fig. 8   Mean residual reduction rates using different multipath mitiga-
tion methods over all five stations and 25 days
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2.0% to 2.8% larger than for SF for carrier phase and pseu-
dorange residuals, respectively. In contrast, the reduction 
rates achieved with MHM are 13.7%, 14.3%, 8.0% and 3.5% 
less than for XGB for P1, P2, L1 and L2, respectively, due to 
its deficiency of modeling high-frequency multipath signals.

Thus far, we have always used the residuals of the latest 
5 days before the target day to set up the multipath model. 
Although the best correction effect can be obtained this way, 
updating the model daily is cumbersome. It would be ben-
eficial, especially for real-time applications, if the multipath 
model can be applied to subsequent days without too much 
precision loss. Hence, we tested the model validity period 
for all five stations and compared the performance among 
SF, MHM and XGB. Residuals from DOY 244–248 are used 
to set up the multipath model, and later, it is applied for 
multipath correction on days from DOY 249 to 273. The 
mean residual reduction rates over five stations on each 
day are plotted in Fig. 9. It can be found that the multipath 
correction effect of the three different methods gradually 
degrades over the whole test period. XGB achieves the high-
est residual reduction rates for all four observables on the 25 
test days. The reduction rates using XGB drop from 25.2%, 
35.6%, 25.1% and 19.4% to 9.0%, 17.7%, 16.1% and 14.4% 
for P1, P2, L1 and L2 residuals, respectively. It means the 
multipath correction effect on DOY 273 is only half of that 
on DOY 249. A 5–7 days update rate seems to be a good 
trade-off between model validity and the workload of data 
processing. In this circumstance, it can still achieve 90% 
multipath correction effect of the daily updated model. SF 
performs similarly to XGB on the first day, but its perfor-
mance rapidly drops on the subsequent three days and then 
decreases at a linear pace. That is mainly because the effec-
tiveness of the SF model heavily depends on the accurate 

orbit repeat time for each satellite on each day and any 
deviations between the computed and real orbit repeat time 
will impact the model performance. The MHM model per-
formance is more stable, with the reduction rates dropping 
by 5.9%, 8.7%, 6.3% and 5.6% over the test periods for P1, 
P2, L1 and L2, respectively. It confirms that MHM model 
mainly captures the lower frequency multipath signals as 
they are more stable over time.

Positioning improvement

We further applied the three different multipath models for 
kinematic relative positioning. The model performance was 
evaluated regarding the positioning precision improvement 
compared to the solutions without correction. The daily 
static coordinates were used as the benchmark for calcula-
tion of positioning RMS. Note that multipath correction was 
not applied for static solutions as the impact of multipath 
on daily static positioning could be neglected. We finally 
obtained 125 time series (at five stations over 25 days) for 
each type of solution, i.e., raw (without correction), cor-
rected with SF, MHM and XGB.

Figure 10 depicts the displacements for four different 
solutions at station CUCC on DOY 273. The raw solution 
contains many variations induced by multipath spanning 
from tens of seconds to half an hour, which are evident in 
all three coordinate components. These variations are effec-
tively mitigated by applying the multipath models of SF, 
MHM and XGB. The RMS of the solution corrected by 
XGB is 1.4 mm, 1.9 mm and 4.4 mm for east, north and up 
components, respectively, which are equal to those of SF. 
It is interesting that the MHM model can reach comparable 
positioning precisions, especially considering its disadvan-
tage to capture high-frequency multipath signals. The RMS 
values are only 0.1 mm, 0.1 mm and 0.2 mm larger than the 
other two models in east, north and up components, respec-
tively. Usually, the high-frequency multipath occurs when 
a satellite is at low elevations. Such low-elevation obser-
vations are down-weighted during data processing. This 
can explain the reasonable positioning precision of MHM 
although it is deficient in high-frequency multipath mod-
eling. The mean positioning precisions over all five stations 
and 25 days are listed in Table 3. Again, XGB and SF can 
achieve the highest precisions, which are 1.6 mm, 1.9 mm 
and 4.5 mm for east, north and up components, respectively. 
Compared to the raw solutions, the improvements are about 
20.0%, 17.4% and 16.7% for the three components. Despite 
XGB achieving approximately 0.5% higher residual reduc-
tion rate for carrier phase compared to SF, this advantage 
is not reflected in the positioning precision statistics due 
to the weak multipath environment in which the stations 
are located. The performance of MHM is a bit worse com-
pared to XGB and SF, but it can still reach 15.0%, 13.0% 

Fig. 9   Comparison of validity periods for different multipath models. 
Data from DOY 244–248 are used to set up the multipath models, 
which are later applied for multipath mitigation on DOY 249–273. 
The residual reduction rate on each day is the mean value of all five 
stations
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and 13.0% precision improvements for east, north and up 
components, respectively.

Multipath mitigation for 30 s sampling data

In the last section, we have demonstrated the multipath miti-
gation performance of the XGB model using 1 s GPS data. 
However, 30 s is the more common sampling rate for most 
geodetic stations, such as the IGS network. Hence, we fur-
ther validate the XGB model using GPS data of 30 s interval.

We reprocessed the data at 30 s sampling rate for all five 
stations and utilized the 30 s sampling residuals from 5 days 
before each target day to set up the multipath models for SF, 
MHM and XGB, respectively. Then, the residuals of P1, P2, 

L1 and L2 are corrected with the corresponding models. The 
daily residual reduction rates are plotted in Fig. 11, and the 
mean values over 25 days are given in Table 4. We find that 
the reduction rates of XGB are the highest among the three 
different methods. The performance of XGB is almost con-
stantly 1.9% and 2.6% higher than for SF and MHM for P1 
residuals and 2.7% and 4.5% for P2. For carrier phase residu-
als, the reduction rates of XGB are about 1.0% and 2.4% 
higher than for SF and MHM for L1, and 0.4% and 1.3% for 
L2. This demonstrates the superiority of ML methods for 
multipath mitigation. In the circumstance of 30 s sampling 
rate, the error of the orbit repeat time calculation might be 
up to 15 s, which will degrade the SF model performance. 
For 30 s data, the frequency of multipath signals will not 
be higher than 60 s. Hence, the performance of the MHM 
model is closer to SF and XGB. But there will also be fewer 
data points within each grid cell, which might degrade the 
stability of the MHM model. The corresponding kinematic 
positioning results are listed in Table 5. It is found that XGB 
can achieve 0.1 mm higher precision in both north and up 
components than those of SF and MHM. The improvement 
compared to SF and MHM may not be evident because 
the data were collected in a weak multipath environment. 
Compared to the raw solutions, precision improvements of 
15.0%, 13.0% and 11.3% can be achieved with the XGB 
model in east, north and up components, respectively.

Fig. 10   1  Hz kinematic positioning results at station CUCC on 
DOY 273 with multipath mitigated with different methods. The raw 
positioning result and those corrected with SF, MHM and XGB are 
shown in black, red, blue and green curves, respectively. The individ-
ual curves are shifted along the y-axis to avoid overlapping. RMS val-
ues of displacements are denoted above each curve. Only the last 6 h 
displacements are displayed to show the detailed positioning errors 
induced by multipath

Table 3   Mean RMS of 1 Hz 
displacements in east, north and 
up components for four types of 
solutions over all five stations 
and 25 days

Method Kinematic position-
ing precision (mm)

East North Up

Raw 2.0 2.3 5.4
Sidereal 1.6 1.9 4.5
MHM 1.7 2.0 4.7
XGB 1.6 1.9 4.5

Fig. 11   Residual reduction rates for 30 s sampling data using differ-
ent multipath mitigation methods. The residual reduction rate on each 
day is the mean value of all five stations

Table 4   Mean residual 
reduction rates for 30 s data 
over all five stations and 25 days

Model Residual reduction rate 
(%)

P1 P2 L1 L2

SF 10.2 21.8 16.3 15.6
MHM 9.5 20.0 14.9 14.7
XGB 12.1 24.5 17.3 16.0
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Multipath mitigation for low‑cost devices

In the previous sections, we focused exclusively on geo-
detic GNSS stations operating within a weak multipath 
environment. To further demonstrate the applicability of 
our method, we applied it to a u-blox data set collected 
by Hohensinn et al. (2022) atop the HPV building of ETH 
Zurich. The data collection, spanning from DOY 104 to 109 
in 2021, employed a u-blox ZED-F9P receiver alongside 
an ANN-MB antenna. Given the use of a low-cost patch 
antenna, significant multipath interference was anticipated. 
Additional data collection details can be found in Hohensinn 
et al. (2022). A geodetic station on the same rooftop was 
employed to form a short baseline. We processed the 1 Hz 
GPS data with the same strategies and constructed multipath 
models using SF, MHM and XGB, respectively. Note that for 
SF, the orbit repeat periods needed updating in this different 
time period. The residuals from the first five days were used 
to establish the multipath models, subsequently applied to 
DOY 109.

Figure 12 displays the results of residual reduction for 
satellite G03 on DOY 109. The carrier phase multipath is 
found to be approximately twice as large as that observed 
in the geodetic stations. Among the methods, XGB demon-
strates the largest residual reduction rates for this satellite, 
reaching 50.7%, 51.9%, 61.9% and 54.1% for P1, P2, L1 and 
L2, respectively. The advantage of the XGB model is most 
evident around 19 h and 23 h, where multipath errors are 
more pronounced. Here, XGB evidently outperforms MHM 
and SF regarding multipath mitigation. The mean residual 
reduction rates for all satellites are shown in Table 6. XGB 
achieves about 3% and 15% higher residual reduction rates 
for carrier phase than SF and MHM, respectively. This 
improvement is also reflected in the kinematic positioning 
test, as depicted in Fig. 13. Compared to the raw solution, 
the positioning precision improves by 39.7%, 44.0% and 
38.6% for east, north and up components, respectively, when 
employing XGB for multipath correction. The XGB-based 
solution surpasses SF by 0.2 mm and 0.5 mm in north and 
up components, respectively. Thus, XGB exhibits higher 
improvement in multipath mitigation for low-cost devices 
than for geodetic stations operating in weak multipath 
environments.

Table 5   Mean RMS of 30 s 
displacements in east, north and 
up components for four types of 
solutions over all five stations 
and 25 days

Method Kinematic position-
ing precision (mm)

East North Up

Raw 2.0 2.3 5.3
Sidereal 1.7 2.1 4.8
MHM 1.7 2.1 4.8
XGB 1.7 2.0 4.7

Fig. 12   Raw and multipath corrected residuals of satellite G03 from a 
u-blox data set on DOY 109. The individual curves are shifted along 
the y-axis to avoid overlapping. The RMS value is denoted above 
each curve

Table 6   Mean residual 
reduction rates for u-blox data 
on DOY 109, 2021

Model Residual reduction rate 
(%)

P1 P2 L1 L2

SF 40.5 33.7 58.0 56.1
MHM 26.7 23.4 45.4 44.3
XGB 40.7 36.9 60.8 59.6

Fig. 13   1  Hz kinematic positioning results for a u-blox data set on 
DOY 109 with multipath corrected with different methods. The indi-
vidual curves are shifted along the y-axis to avoid overlapping. RMS 
values of displacements are denoted above each curve
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Conclusion

Multipath is the main unmodeled error in high-precision 
GNSS data processing. In this study, we proposed an ML-
based multipath mitigation method. It takes azimuth and ele-
vation as input features and outputs multipath corrections for 
pseudorange and carrier phase on both frequencies. Owing 
to its ability of spatial interpolation, it can outperform the 
conventional multipath mitigation methods. With 30 days of 
1 Hz GPS data from five baselines on the rooftop of Curtin 
University, we validated the superiority of the ML-based 
multipath mitigation method. It was found that XGB with 
azimuth and elevation as input features could reach the best 
multipath mitigation effect. Adding calibrated SNR as an 
additional feature can only slightly improve the model per-
formance for pseudorange but not for carrier phase. This 
phenomenon may be attributed to both the time lag between 
SNR variations and carrier phase multipath and the insuf-
ficient numeric precision of SNR measurements used in 
this study. We demonstrate that the XGB model can achieve 
24.9%, 36.2%, 25.5% and 20.4% reduction rates for P1, P2, 
L1 and L2 residuals, respectively. Such performance is simi-
lar to SF but without the inconvenience of computing the 
orbit repeat period for each satellite. XGB can reach 14.0% 
and 5.8% more reduction rates than MHM for pseudorange 
and carrier phase residuals, respectively. After applying the 
XGB model, kinematic positioning precisions of 1.6 mm, 
1.9 mm and 4.5 mm can be achieved in east, north and up 
components, respectively, which are 20.0%, 17.4% and 
16.7% improvements compared to the raw solutions. The 
effectiveness of the XGB model for 30 s sampling data was 
also evaluated and compared to that of SF and MHM. It 
confirms that the advantage of spatial interpolation holds 
for low-sampling data. Residual reduction rates of 12.1%, 
24.5%, 17.3% and 16.0% can be reached for P1, P2, L1 and 
L2, respectively, which are better than for SF and MHM. The 
advantage of the XGB model over SF and MHM becomes 
more pronounced when applied to a u-blox data set, where 
multipath is more severe due to the utilization of a patch 
antenna during data collection.

Although we only demonstrated the ML-based mul-
tipath mitigation using baseline data in this study, it is also 
valid for PPP multipath modeling and mitigation accord-
ing to our preliminary internal tests. Since the ML-based 
model has the merit of ease of use, it is also promising 
for real-time applications, such as structural health moni-
toring. Besides, the ML-based model can be extended to 
include additional input features, such as environmental 
information and SNR measurements with higher numeri-
cal precision. However, further research is needed to better 
understand and refine the application of SNR for carrier 
phase multipath modeling. This might be helpful to further 

improve the model, especially in long-term performance. 
Finally, more sophisticated ML algorithms are worth fur-
ther investigation. As demonstrated in this study, basic 
tree-based ML algorithms can perform well for multipath 
modeling. More powerful algorithms, such as deep learn-
ing and reinforcement learning, can be further examined 
for multipath mitigation in future studies.
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