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Abstract
GNSS water vapor tomography has emerged as a prominent technique for obtaining the three-dimensional distribution of 
atmospheric water vapor. It effectively compensates for the deficiency of GNSS precipitable water vapor that only reflects 
the two-dimensional distribution of water vapor and has become a hotspot in GNSS meteorology. The GNSS water vapor 
tomography based on the Kalman filter well considers the correlation between successive epochs and avoids the restrictions 
of too many additional constraints, but its accuracy and stability are often affected by the noise covariance. We propose an 
optimized noise covariance matrix method for GNSS water vapor tomography based on the Kalman filter. It constructs the 
state noise covariance using historical water vapor information derived from atmospheric reanalysis data and establishes 
the observation noise covariance considering the satellite elevation angle and the signal intercept crossing the tomographic 
voxels. The tomography experiments conducted in Hong Kong show that the root-mean-square error (RMSE) and mean 
absolute error (MAE) of the slant water vapor computed by the proposed method decreased by 38.8% and 34.9% compared 
with the traditional method. The proposed method improves average RMSE and MAE of 23.2% and 24.8% compared to the 
radiosonde data and 27.6% and 44.3% compared to ERA5 data.
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Introduction

Water vapor plays a crucial role in the dynamics and spatial 
distribution of the atmosphere, exerting significant influ-
ences on climate and weather patterns. The continuous and 
stable monitoring of water vapor is of great significance for 
meteorological applications including severe weather fore-
casting and warnings (Liu et al. 2005; Yang et al. 2021). 
With the development of the global navigation satellite sys-
tem (GNSS) constellation and the establishment of a com-
prehensive ground-based observation network, GNSS has 
been considered as a powerful technique to retrieve water 
vapor and the research of GNSS meteorology has gained 

considerable attention from both the GNSS and meteorologi-
cal communities (Wan et al. 2016; Yao et al. 2017; Zhang 
et al. 2022).

In GNSS meteorology, it has been widely validated that 
the conversion of GNSS zenith tropospheric delay into 
precipitable water vapor (PWV) can achieve a high level 
of accuracy in the millimeter (Duan et al. 1996). Since the 
potential of tomography was proposed to apply in GNSS 
meteorology by Bevis et al. (1992), GNSS water vapor 
tomography has become a promising method to achieve 
the three-dimensional distribution of water vapor using the 
GNSS satellite signals as scanning rays in the research area 
(Nilsson and Gardinarsky, 2004; Perler et al. 2011; Xia et al. 
2018; Zhang et al. 2021). In GNSS water vapor tomography, 
the research area covered by ground-based GNSS receiv-
ers is discretized into finite cubic closed voxels based on 
latitude, longitude and altitude, and each voxel has a fixed 
amount of water vapor during a specified time period. The 
GNSS-derived slant water vapor (SWV), which propagates 
through the troposphere from the top of the study area, 
serves as the observation. Subsequently, the tomographic 
observation equation is formulated by considering the 
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intercept of the signal as it traverses through the voxels 
(Zhao et al. 2020a; Yang et al. 2023).

Using the GPS data from the Kilauea network in Hawaii, 
Flores et al. (2000) first realized the application of water 
vapor tomography, and then the least-squares method has 
been widely employed for estimating unknown parameters 
in the water vapor tomography (Guo et al. 2016; Zhang et al. 
2017; Zhao et al. 2019). This process needs to construct a 
variety of constraints such as vertical, horizontal and top 
constraints, which are based on empirical knowledge, and 
the inversion of sparse matrices often leads to deviations 
and instability in the tomographic results (Yang et al. 2020). 
On this basis, regularization methods such as the singular 
value decomposition (SVD), the damped least squares and 
the regularization method have been adopted to solve the 
water vapor tomographic equations. In these methods, the 
fluctuation of small singular value, the change of damping 
coefficient and the selection of regularization parameters 
affect the accuracy and stability of the tomographic results 
(Benevides et al. 2016; Shafei and Hossainali 2020; Zhao 
et al. 2020b). Moreover, Bender et al. (2011) proposed an 
iterative algorithm based on algebraic reconstruction tech-
nique (ART) and introduced other reconstruction algorithms 
within ART family, e.g., multiplicative algebraic recon-
struction techniques (MART) and the simultaneous itera-
tions reconstruction technique (SIRT). The comparison and 
analysis of these iterative algorithms and their applicability 
in water vapor tomography have been discussed in detail 
(He et al. 2015). Improved iterative algorithms, such as the 
parallel ART and the adaptive simultaneous ART, have also 
been developed (Zhang et al. 2020; Sa et al. 2021). These 
algorithms update the water vapor information for only a 
subset of the voxels within the tomographic area, and the 
accuracy of the tomographic results strongly relies on the 
exact initial values, the relaxation parameter and the termi-
nation criterion for the iteration.

Gradinarsky and Jarlemark (2004) introduced the Kalman 
filter algorithm for water vapor tomography, benefiting from 
its ability to estimate dynamically changing parameters effec-
tively. Then the Kalman filter was widely adopted in water 
vapor tomography, which proves that the correlation between 
the tomographic epoch can be well considered and the restric-
tions of the additional constraints can be avoided to a cer-
tain extent by using this algorithm (Bi et al. 2010; Jiang et al. 
2013). In this technique, the accurate estimation of the noise 
covariance matrix plays a crucial role in determining the qual-
ity of the tomographic results (Zhang et al. 2008; Rohm et al. 
2014). Existing methods empirically construct the state noise 
covariance matrix based on the voxel distances and estab-
lish the observation noise covariance matrix using statistical 
information from the observations, which is difficult to provide 
accurate noise covariance information for the tomographic 
solution. Therefore, we propose a method to construct the 

optimized noise covariance matrix, in which the state noise 
covariance matrix is established using historical water vapor 
information derived from the atmospheric reanalysis data 
for each voxel, and the observation noise covariance matrix 
is constructed by considering the elevation angle and signal 
intercept.

We describe in detail the theory of the water vapor tomog-
raphy and the proposed method in the methodology section. 
The water vapor tomographic experiment in Hong Kong is 
introduced in the section on experiment. The comparisons 
between the proposed method and the traditional method are 
conducted using slant water vapor, radiosonde and ERA5 data 
as references in the next two sections. Finally, the conclusion 
is given.

Methodology

The SWV is utilized as the observation in the water vapor 
tomography. It can be converted from slant wet delay (SWD) 
as follows (Bevis et al. 1992):

where �w denotes the liquid water density (gm−3), R refers 
to the universal gas constant, and mw and md represent the 
molar mass of water and dry atmosphere, respectively. k1 , k2 
and k3 are the empirical physical constants. Tm represents the 
weighted mean temperature, which can be calculated using 
an empirical formula with surface temperature (Bevis et al. 
1992; Yang et al. 2022). To achieve SWD, the zenith wet 
delay (ZWD) and the wet delay gradients need to be mapped 
into the elevation direction as below:

where ele and azi indicate the satellite elevation and azimuth 
angles, respectively, and fw refers to the wet mapping func-
tion. Gw

NS
 and Gw

WE
 denote the wet delay gradient parameters 

in the north–south and east–west directions, respectively. Re 
is the unmodeled tropospheric slant delay, which is included 
in the undifferenced residuals. As the wet component of the 
zenith total delay (ZTD), ZWD can be obtained by subtract-
ing the zenith hydrostatic delay (ZHD) from ZTD. The ZTD 
is the primary parameter retrieved from the GNSS obser-
vations, and the ZHD can be accurately calculated by the 
Saastamoinen model as below (Saastamoinen 1972):
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where � and H are the latitude and geodetic height of the 
site, respectively, and Ps indicates the surface pressure.

In water vapor tomography, the research area is discre-
tized into finite voxels and the distance of signal rays passing 
through the divided voxel can be obtained by ray tracing its 
path from receiver to satellite. Then, the basic equation of 
GNSS water vapor tomography can be expressed as below:

where n denotes the total number of the voxels in the tomo-
graphic region and di refers to the intercepted distance of the 
signal inside voxel i, which can be achieved by the coordi-
nates of the corresponding GNSS satellite and station. xi is 
the unknown parameter, namely the water vapor density of 
voxel i. Then the SWV observations during a certain epoch 
are used to form the tomographic observation equation as 
follows:

where k denotes the tomographic epoch, Lk is the column 
vector of the SWV observations, Ak refers to the corre-
sponding design matrix, Xk represents the column vector 
of the unknown parameters, and ek is the observation noise. 
Assuming that the water vapor density of each voxel con-
forms to the Gauss–Markov stationary stochastic process 
within a certain period, the state equation of the tomography 
is expressed as follows:

where � refers to the state transition matrix, which is an 
identity matrix, wk denotes the state noise of epoch k, Xk is 
the same as (5).

In the Kalman filter (Kalman 1960), the prediction of the 
covariance matrix of the estimated state at epoch k ( Po

k
 ) is 

calculated as follows:

where Pk-1 denotes the correction of the covariance matrix of 
the estimated state at epoch k-1. Qk is the covariance matrix 
of the state noise at epoch k. The Kalman gain matrix at 
epoch k (Hk) is expressed as below:

where superscript T denotes the matrix transpose. Rk is the 
covariance matrix of the observation noise at epoch k. Ak 
and Po

k
 are the same as (5) and (7), respectively. The cor-

rected estimates of water vapor in the voxels at epoch k ( X+

k
 ) 

(4)SWV =

n
∑

i=1

di ⋅ xi

(5)Lk = AkXk + ek

(6)Xk = �k−1Xk−1 + wk

(7)Po
k
= Pk−1 + Qk

(8)Hk =

Po
k
AT
k

Rk + AkP
o
k
AT
k

and the corresponding corrected covariance matrix (Pk) are 
updated as follows:

where I represents the identity matrix. Lk and Ak are the 
same as (5), and Hk is the same as (8). After completing the 
above update, the iteration of epoch k + 1 is carried out, and 
the above steps iterate until the final water vapor tomography 
results are obtained.

In the process mentioned above, determining the noise 
covariance matrix plays a critical role in the filter solution. 
For the traditional methods, the observation noise covariance 
matrix is obtained with respect to the statistics of the observa-
tions, and the values of the state noise covariance are deter-
mined based on an empirical formula that incorporates the 
distance between two voxels as below:

where C and L are empirical coefficients and l3d and l4d are 
the distances of each two voxels at the same and different 
epochs, respectively. hi, hj and hsc are the height of the voxel 
i, the voxel j and the tomographic region, respectively.

To optimize the state noise covariance matrix, we focused 
on the spatial structure function of water vapor density in two 
voxels (Gradinarsky and Jarlemark 2004), which is defined 
as follows:

where l is the distance between each two voxels, i represents 
the position vector of the corresponding voxel, and Xi is its 
water vapor density. DX represents the covariance matrix of 
the two epochs, and E refers to the mathematical expecta-
tion. Then the historical water vapor information derived 
from the reanalysis data could be utilized to improve the 
state noise covariance values. In practice, the ERA5 (Hers-
bach et al. 2020), which is the fifth-generation atmospheric 
reanalysis provided by European Centre for Medium-Range 
Weather Forecasts (ECMWF), was selected to calculate the 
historical water vapor density of the voxels as follows:

where T and RH are the air temperature in Kelvin (K) and 
the relative humidity in kg kg−1, respectively. Rv is a con-
stant with the value of 461.5 J ⋅ kg−1 ⋅ K−1 . Then the state 
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noise covariance value of the two voxels can be expressed 
as follows:

where Xi(k) denotes the water vapor density of voxel i at 
historical epoch k.

To optimize the observation noise covariance matrix, 
the elevation angles of the satellite signal and its intercept 
across the tomographic region were utilized to determine 
the weights of the available SWV observations, as below:

where ele and Dis are the corresponding elevation angle 
and the intercept of voxel i, respectively. We

i
 and Wd

i
 refer to 

the weight based on elevation angle and intercept in voxel i, 
respectively. Wi represents the weight of ith SWV observa-
tion used in the tomographic model. Accordingly, the diago-
nal elements of the observation noise covariance matrix are 
the inverse of the weights mentioned above.

(14)
Qij = E

[(

Xi(k + 1) − Xi(k)
)(

Xj(k + 1) − Xj(k)
)]

(k = 1, 2⋯)

(15)We
i
= sin2 (ele)

(16)Wd
i
= 1∕(1 + Dis)

(17)Wi = We
i
⋅Wd

i

Experiment

To evaluate the performance of the optimized noise covari-
ance matrix in water vapor tomography, we selected Hong 
Kong as the research area to experiment. This region was 
chosen due to its classification as a marine subtropical 
monsoon climate, characterized by relatively high levels 
of water vapor and precipitation throughout the year. The 
Hong Kong Satellite Positioning Reference Station Net-
work (SatRef) also consists of a dense network of GNSS 
sites, providing ample GNSS observation data for analysis. 
The horizontal boundary of the research area in west–east 
and south–north directions was 113.87ºE to 114.35ºE and 
22.19ºN to 22.54ºN, with horizontal resolutions of 0.06º and 
0.05º for longitudinal and latitudinal directions, respectively. 
In the vertical direction, the study area extended from the 
earth's surface to 8 km, with a resolution of 800 m, cover-
ing a total of 560 voxels. Figure 1 illustrates the location of 
thirteen GNSS stations, represented by red pentagons, which 
provided the slant water vapor (SWV) observations for the 
tomographic model. Additionally, the GNSS station named 
HKQT and the radiosonde station were utilized as references 
to assess the accuracy of the tomographic results.

One month of GNSS observation data from DOY 121 to 
151 of 2022, during which the number of rainy and rainless 
days in Hong Kong was relatively average, were processed 
using the GAMIT 10.71 software (Herring et al. 2018). 
The data included GPS, BDS, GLONASS and Galileo con-
stellations observations. The processing was based on a 

Fig. 1   Distribution of GNSS 
stations, radiosonde sites and 
the horizontal structure of the 
voxels in the study region
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double-differenced model and aimed to obtain tropospheric 
parameters, including ZTD and gradients. In processing, a 
cutoff elevation angle of 15º and a sampling rate of 30 s were 
set for the observations. The LC_AUTCLN and BASELINE 
modes were adopted as the processing strategies. LC_AUT-
CLN represents the ionospheric-free linear combination of 
the GNSS observations, while BASELINE mode indicates 
that the orbital parameters were fixed. To reduce the strong 
correlation among tropospheric parameters due to the short 
baseline, three IGS sites, namely JFNG (30.5ºN, 114.5ºE), 
LHAZ (29.7ºN, 91.1ºE) and URUM (43.8ºN, 87.6ºE), were 
incorporated into the data processing. The ZHD values 
were achieved using the measured pressure from the mete-
orological sensor; then, the SWV observations used for the 
tomographic model were calculated using (1) and (2). In the 
experiment, two types of noise covariance matrix provided 
by the traditional method and the proposed method were 
utilized in the Kalman filter solution for the tomography 
and the estimated water vapor density obtained from both 
methods was compared and analyzed.

Validation of the slant water vapor

Using the estimated water vapor densities obtained from 
tomography and the distance of the signal rays crossing 
each voxel, the SWV values at the HKQT site can be com-
puted by (4). That is, the parameters on the right side of (4) 
are taken as known quantities and the left side is unknown; 
thus, the estimated SWV is called as tomography-computed 
SWV. Figure 2 shows the scatter plots of the tomography-
computed SWV of the two methods and the corresponding 
GAMIT-estimated SWV during the experimental period. In 
this figure, the red line refers to a linear fit line between 
the tomography-computed SWV and the GAMIT-estimated 
SWV and the black dashed line corresponds to a straight 
line with an angle of 45º. It can be seen that the proposed 

method outperforms the traditional method, as more points 
are concentrated near the fitted line. Specifically, the slope of 
the linear fitting for the proposed method is 0.9985, whereas 
it is 0.9786 for the traditional method.

Figure 3 shows how the differences of the tomography-
computed and GAMIT-estimated SWV changes with eleva-
tion angle. The blue and red dots in this figure refer to the 
traditional and our proposed methods, respectively. Both 
methods show the same trend, that is, the SWV differences 
increase as the elevation angle decreases. The largest abso-
lute difference values are 12.7 mm for the traditional method 
and 9.0 mm for the proposed method. For the traditional 
method, the root-mean-square error (RMSE) is 2.42 mm and 
the mean absolute error (MAE) is 1.72 mm. Also, RMSE 
and MAE values for the proposed method are 1.48 and 
1.12 mm with approximately 38.8% and 34.9% improve-
ments, respectively. More than 84.1% of the SWV differ-
ences are located in the range of − 2.0 to 2.0 mm for the 
proposed method, while the percentage was 71.0% for the 
traditional method. When the range is expanded to − 5.0 
to 5.0 mm, these percentages are 99.4% and 94.7% for the 
proposed and traditional methods, respectively.

The SWV differences were further grouped into indi-
vidual elevation bins of 5 degrees, where each bin repre-
sents a range of elevation angles (e.g., 15º to 20º). The 
RMSE of each elevation bin of both methods was calcu-
lated, and their changes with the elevation angle are shown 
in Fig. 4. This figure indicates the RMSE reduction as the 
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increasing elevation angle for the both evaluated methods, 
which is consistent with their trend in Fig. 3. According 
to the figure, in all elevation bins, the RMSE values of the 
proposed method are better than 4 mm, especially for the 
elevation angles less than 35º. The maximum and mini-
mum improvements of the SWV differences are 22.05 and 
0.41 mm for the proposed method, respectively, appearing 
in the range of 20º to 25º and greater than 80º.

Comparison of the obtained results 
with radiosonde and ERA5 data

The water vapor density profiles derived from radiosonde 
data are considered as the reference to validate the tomo-
graphic results. Figure 5 compares the estimated water vapor 
density by the investigated methods and radiosonde data at 
different altitudes on UTC 11:45–12:15, DOY 121, 135 and 
151 of 2022. These three days are the beginning, middle and 
end of the month with precipitation of 32.4, 26.2 and 0 mm. 
According to the figure, the water vapor density increased 
with decreasing height. The estimated water vapor density 
obtained by the proposed method, represented by the red lines, 
exhibits better agreement with the radiosonde-derived data, 
particularly in the lower atmosphere near the earth surface.

To further assess the tomographic results using the radio-
sonde data, the residuals between the tomographic water 
vapor density and that derived from radiosonde data were 
counted for each day of the experimental period, and their 
RMSE was also calculated. Figure 6 represents boxplots 
illustrating the statistical characteristics of these residuals 
and RMSE. In the boxplots, Q1 and Q3 represent the first 
and third quartiles, respectively, while Q2 refers to the sec-
ond quartile located within the box. The quartiles divide a 
set of residuals into four sections, each representing 25% 
of the residuals. According to the figure, it can be observed 
that the proposed method exhibits a smaller range of bounds 
and box length (the range from Q1 to Q3) compared to the 
traditional method in both panels. This suggests that the pro-
posed method yields more favorable WVD residuals and 
RMSE distributions than the traditional method. The values 
of Q1, Q2 and Q3 for the residual comparison are − 0.23, 
0.57 and 1.44 g/m3 for the traditional method and − 0.24, 
0.35 and1.14 g/m3 for the proposed method, respectively. In 
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the RMSE comparison, the quartiles show that 50% of the 
RMSE is concentrated in the range of 1.15 to 2.17 g/m3 for 
the traditional method and 0.96 to 1.56 g/m3 in the proposed 
method. The average RMSE and median for the proposed 
method are 1.26 and 1.27 g/m3, outperforming the traditional 
method with approximately 23.2% and 27.4% improvement. 
In addition, the differences in the water vapor density at 
different layers were computed for both evaluated methods 
using the radiosonde data as references, and their statistics 
are listed in Table 1. It is observed that the proposed method 
outperforms the traditional method in each height layer, 
exhibiting lower RMSE and MAE values. The mean RMSE 
and MAE values for the proposed method are 1.26 g/m3 and 

0.99 g/m3, respectively, while for the traditional method, the 
corresponding values are 1.58 g/m3 and 1.30 g/m3.

Figure 7 indicates the three-dimensional distribution of 
SWD derived from the two investigated methods along with 
the computed water vapor density from the ERA5 reanalysis 
data as a reference at UTC 12:00, DOY 135 of 2022, through 
the troposphere. According to the tomographic results, both 
evaluated methods can describe the spatial distribution of 
water vapor. However, the proposed method demonstrates 
closer agreement with the ERA5 data in certain voxels than 
the traditional method. Moreover, the water vapor density 
derived from both methods at different layers was compared 
to the computed values from ERA5 data, and the correspond-
ing statistics are listed in Table 2. It can be seen that the accu-
racy of the water vapor density derived from both methods 
is improved by moving upward. This can be attributed to the 
decreasing amount of water vapor with the increasing height 
of the atmosphere. The proposed method outperformed the 
traditional one in each layer with better RMSE and MAE 
values. Specifically, the mean RMSE and MAE values have 
been decreased from 1.56 and 1.06 g/m3 to 1.13 and 0.59 g/
m3, with an approximate improvement of 27.6% and 44.3%, 
respectively.

Conclusion

We proposed a new water vapor tomography method based 
on a Kalman filter with an optimized noise covariance 
matrix to estimate the three-dimensional water vapor den-
sity accurately. The proposed method establishes the state 
noise covariance matrix based on the historical water vapor 

Fig. 6   Boxplot of the residu-
als and RMSE between the 
radiosonde data and the two 
evaluated methods
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Table 1   RMSE and MAE values of the water vapor density from the 
investigated methods at different layers using radiosonde as refer-
ences (values in g/m3)

Layers Proposed method Traditional method

RMSE MAE RMSE MAE

1 2.31 1.68 2.96 2.46
2 1.71 1.43 2.30 1.84
3 1.62 1.31 2.06 1.78
4 1.56 1.24 1.98 1.61
5 1.36 1.10 1.54 1.32
6 1.22 1.04 1.45 1.23
7 1.18 0.88 1.36 1.08
8 0.86 0.58 1.00 0.79
9 0.52 0.38 0.68 0.57
10 0.30 0.22 0.44 0.36
Average value 1.26 0.99 1.58 1.30
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information derived from the atmospheric reanalysis data. It 
constructs the observation noise covariance matrix consider-
ing the elevation angle and the intercept crossing the voxels 
by the signal rays.

The proposed method is validated by water vapor tomo-
graphic experiments using the GNSS data collected over 
HONG KONG from DOY 121 to 151 of 2022. In a com-
parison between the GAMIT-estimated SWV and tomogra-
phy-computed SWV at HKQT site, the RMSE and MAE of 
the proposed method are 1.48 and 1.12 mm, outperforming 
the traditional method with an improvement of 38.8% and 
34.9%, respectively. In addition, the tomographic results 
obtained using the proposed method exhibited better agree-
ment with both radiosonde and ERA5 data compared to the 

traditional method. When compared to radiosonde data, the 
proposed method achieved an average RMSE and MAE of 
1.26 g/m3 and 1.00 g/m3, respectively, while against ERA5 
data, the corresponding values were 1.13 g/m3 and 0.59 g/
m3, indicating improvements of approximately 23.2% and 
24.8%, as well as 27.6% and 44.3%, respectively, compared 
to the traditional method. Future studies should consider 
additional influencing factors such as different weather con-
ditions, the number of available satellite systems, and the 
density and distribution of GNSS sites to further enhance the 
accuracy and applicability of the water vapor tomography.
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Table 2   RMSE and MAE values of the water vapor density from the 
investigated methods at different layers (values in g/m3)

Layers Proposed method Traditional method

RMSE MAE RMSE MAE

1 2.38 1.73 2.92 2.29
2 1.79 1.23 2.19 1.73
3 1.45 1.04 1.78 1.38
4 1.02 0.70 1.67 1.34
5 0.63 0.43 1.26 1.02
6 0.45 0.31 1.22 0.93
7 0.30 0.21 0.99 0.75
8 0.18 0.13 0.80 0.60
9 0.09 0.06 0.46 0.34
10 0.05 0.03 0.29 0.21
Average value 1.13 0.59 1.56 1.06
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