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Abstract
The primary code is further encoded with a secondary code for many modern global navigation satellite system (GNSS) 
signals. The secondary code usually has a higher chip rate than navigation message symbol rate, preventing integration time 
from being extended. Based on the partial-matched filter with FFT (PMF-FFT) algorithm, we propose the improved high-
sensitivity partial-matched filter with FFT (IHSPF) algorithm. The proposed parallel secondary code phase estimate (PScPE) 
algorithm combined with PMF-FFT can achieve parallel search in three dimensions: primary code, secondary code, and 
Doppler frequency. The envelope loss mitigation (ELM) method is used for the integration gain loss issue due to the FFT 
scalloping loss. Finally, the improved multi-search code phase compare detection method (I-MCCD) is also presented to 
improve the detection performance. The proposed algorithm achieves extremely high sensitivity and is suitable for hardware 
implementation. The BDS B1I, B2I, B3I, and B2a signals are used to simulate and analyze the algorithm performance. The 
simulation results show that the acquisition sensitivity of the B1I signal is effectively improved up to 23 dB-Hz. The success 
probability can get 93% at the maximum gain points and 74% at the minimum gain points.
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Introduction

Signals broadcast by global navigation satellite system 
(GNSS), such as the GPS, BDS, Galileo, and GLONASS, 
are made up of three major components: (1) navigation 
message, which is a sequence of + 1 and − 1 transmitted at a 
low rate to provide ephemeris and time information needed 
for navigation and positioning; (2) a pseudo-random noise 
(PRN) code, also known as pseudo-code, spreading code, or 
ranging code, which is used for ranging and distinguishing 
signals from different satellites; and (3) a carrier, a sinusoi-
dal signal in the L band (Leclere et al. 2014).

After being processed by the RF front end of the receiver, 
the satellite signal is converted to an intermediate frequency 
(IF) digital signal. The acquisition is the first stage of the 
following processes, which detects the visible satellites and 
roughly estimates Doppler frequencies and code phases. 
The implementation of the acquisition is based on the auto-
correlation properties of the PRN codes. First, multiplying 
with the local replica of the carrier signal, the IF signal is 
stripped off the carrier whose center frequency is the sum of 
the Doppler shift and the IF. Then, the carrier-peeled signal 
is correlated with the local replica of the PRN code. When 
the estimates of the Doppler frequency and code phase are 
both close to the actual values, the auto-correlation peak 
appears, and the acquisition is finished (Xie 2017).

The secondary code is widely applied in modern GNSS 
signals (Leclere and Landry 2018), such as the BDS B1I, 
B2a, GPS L5, Galileo E1, and E5a signals. Long spreading 
codes are generated by a tiered code construction, whereby 
the secondary code multiplies the primary code. Each sec-
ondary code chip's edge coincides with the primary code 
chip's edge. A primary code start coincides with the begin-
ning of a secondary code chip. Using the tiered code, better 
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cross-correlation and anti-jamming performance can be 
obtained (Svatoň and Vejražka 2018). However, the tiered 
code makes the acquisition more complicated at the same 
time. First, it adds the secondary code phase dimension to 
the conventional two-dimensional searching space (the Dop-
pler frequency and primary code dimensions), which results 
in more searching stages and longer acquisition time. Sec-
ond, the secondary code usually has a higher chip rate than 
the navigation message symbol rate, preventing the coherent 
time from being extended, which worsens the acquisition 
sensitivity. Meanwhile, for high-sensitivity acquisition, a 
long integration time increases computational complexity 
and acquisition time. Consequently, modern GNSS receiv-
ers should concurrently consider the two competing aims of 
high sensitivity and fast speed.

State of the art

A high-performance acquisition algorithm requires consid-
eration of three parts: the integration method, the search 
strategy, and the decision method. These parts directly deter-
mine the sensitivity and speed of acquisition (Kong 2017).

First, selecting an integration method with higher signal-
to-noise ratio (SNR) gain is the primary way to improve 
sensitivity. Currently, coherent integration, non-coherent 
integration, and differential integration are the three main 
integration techniques used in acquiring GNSS signals. 
Coherent integration coherently adds up the correlation 
results and provides the highest gain but is constrained by bit 
transitions. The other two techniques are unaffected by bit 
transitions. Still, their gains are lower than coherent integra-
tion due to the squaring loss of non-coherent integration (Xie 
2017) and the monotonous phase shift loss of differential 
integration (Corazza and Pedone 2007). There are various 
approaches to increase the integration gain. The main con-
sideration for the non-coherent and differential integration is 
to lessen the loss of gain. The generalized differential com-
bination (GDC) method proposed by Corazza and Pedone 
(2007) and the improved generalized differential combina-
tion (MGDC) presented by Ta et al. (2012) both improved 
the differential integration performance. For coherent inte-
gration, the aim is to overcome bit transitions and extend the 
integration time. Lo Presti et al. (2009) proposed a new 2-D 
function on the search space insensitive to the bit transitions 
based on the energy invariance property of the total useful 
signal energy. Zhu and Fan (2015) proposed a time parallel 
acquisition algorithm with transition detection to overcome 
the bit transition limitation. Foucras et al. (2016) focused on 
the bit transition and its impact on acquisition performance 
by providing a general mathematical study.

Second, improving search parallelism is vital to improv-
ing acquisition speed (Kong 2017). Commonly used parallel 
search algorithms include the parallel code phase search, 

parallel Doppler search, and hybrid parallel search (Liu et al. 
2019). The FFT/IFFT-based circular correlation algorithm 
(Van Nee and Coenen 1991) and its extensions are typical 
parallel code phase search algorithms. As for the parallel 
Doppler search algorithms, FFT is employed to complete the 
coherent integration. In recent years, researchers have also 
been exploring new ideas to reduce the computational effort 
of conventional algorithms and improve the acquisition 
speed (Gao and Xia 2018). Kong (2013) proposed an acqui-
sition method based on compressed sensing, whereby the 
GNSS signal was sampled at a lower rate than that required 
by Nyquist’s theorem, reducing the computational effort of 
the associated operations and Kim and Kong (2014) further 
extended this approach using FFT. The synthesized Doppler 
frequency hypothesis testing (SDHT) method proposed by 
Kong (2015) used interpolation estimation to calculate the 
correlation results between two Doppler frequency bins, thus 
reducing the number of actual correlation operations. How-
ever, such methods generally harm the acquisition sensitivity 
and are unsuitable for designing high-sensitivity receivers.

Third, the decision strategy of acquisition is also impor-
tant to the acquisition sensitivity and speed performance 
(Duan et al. 2015). The threshold method (Viterbi 1995) 
was proposed for serial search algorithms that compared the 
current test statistic against the detection threshold until the 
statistic exceeded the threshold. The maximum-to-threshold 
method (Corazza 1996) extended the serial threshold method 
used in parallel search algorithms. This method found the 
maximum value after all test statistics had been obtained 
and then compared it to the detection threshold to complete 
the decision. The maximum-to-second-maximum ratio 
(MTSMR) (Geiger et al. 2012) used the first and second 
peaks ratio as the test statistic, not the correlation results. 
The K-largest method selected the K-largest correlation val-
ues and compared them twice to test the first verdict (Kong 
2017).

Due to the use of the tiered code, the bit transitions prob-
lem can be overcome naturally. Because the secondary code 
period is perfectly synchronized with the navigation bit, the 
coherent integration time can be extended to a navigation bit 
when the secondary code phase is identified. It allows the 
gain advantage of coherent integration to be fully exploited. 
Much relevant research has emerged over the past decade. 
Tawk et al. (2011) proposed a secondary code wipe-off 
technique for Galileo signals. Meng et al. (2017) proposed 
the Neumann–Hoffman (NH) code evasion and stripping 
method based on a statistical analysis of NH codes and 
enhanced the acquisition sensitivity of BDS signals using 
NH codes. Liu et al. (2018) proposed a two-stage high-
sensitivity acquisition method based on sign combinations. 
Svatoň et al. (2020) proposed a modified single-block zero-
padding (mSBZP) partially correlated code phase parallel 
search algorithm to achieve high sensitivity. However, it is 
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worth noting that all the above works are based on the cir-
cular correlation algorithm, which uses FFT/IFFT to replace 
correlation in the time domain. Although this algorithm can 
be easily implemented in DSP (Kong 2015) or software-
defined receiver (Guo et al. 2017), the vast computational 
load, coming with conducts of two Fourier transforms as 
well as one Fourier inversion (Guo et al. 2017), making it 
unsuitable for hardware receivers. Furthermore, these works 
pay insufficient attention to the search strategy and the deci-
sion method.

The partial-matched filter with FFT (PMF-FFT) algo-
rithm is proposed initially in the communication literature 
(Spangenberg et al. 2000). It enables a two-dimensional 
parallel search of code phase and carrier Doppler and pro-
vides a good trade-off between acquisition performance 
and complexity (De et al. 2006; Guo et al. 2017). Based 
on the conventional PMF-FFT algorithm, we fully consider 
the integration, search, and decision methods. Then, a high-
sensitivity acquisition algorithm is proposed for designing 
acquisition modules in high-sensitivity hardware receivers.

Summary of work

We propose a high-sensitivity GNSS signal acquisition algo-
rithm, the improved high-sensitivity partial-matched filter 
with FFT (IHSPF), which is compatible with acquiring all 
BDS-2 and BDS-3 signals. In the IHSPF, we make the fol-
lowing improvements to the PMF-FFT algorithm:

The parallel secondary code phase estimate (PScPE) 
can extend the coherent integration time to one sec-
ondary code period and search for all secondary code 
phases in parallel, significantly compressing the time 
consumed in the secondary code phase dimension 
search.
The envelope loss mitigation (ELM) combines spec-
trum interleaving and zero-padding FFT to mitigate 
the scalloping loss caused by the FFT.
The improved multi-search code phase compare detec-
tion algorithm (I-MCCD), which introduces the com-
parison of the secondary code phase, is proposed in the 
detection process to improve the acquisition sensitivity 
further.

These improvements are described in subsequent sec-
tions. Simulation results of the IHSPF show that the acqui-
sition sensitivity of the BDS B1I signal can reach 23 dB-Hz.

First, a mathematical model of the signal is used to ana-
lyze the challenge of acquiring tiered-code-modulated GNSS 
signals. Then, we introduce the conventional PMF-FFT 
algorithm, describe the proposed IHSPF acquisition algo-
rithm, and present simulations and analysis of the IHSPF’s 
performance. Finally, conclusions are drawn.

Model description

To better introduce the proposed algorithm, we describe 
some basic models in this section. First, we give the mod-
els of tiered-code-modulated GNSS signal and signal 
acquisition. Then, the bit transitions problem is intro-
duced. Finally, we describe the traditional PMF-FFT algo-
rithm, which is the basis of our proposed algorithm.

Mathematical model of tiered‑code‑modulated 
signal

We use the binary phase shift keying (BPSK) signal as an 
example. The GNSS IF signal sequence r obtained after 
the RF front end can be written as:

where A is the signal amplitude, k is the time of the sample 
point, c[∙] is the primary code sequence, �c is the primary 
code phase, sc[∙] is the secondary code, �sc is the secondary 
code phase, d[∙] is the data bit, Ts is the sampling interval, 
fd is the Doppler frequency, �0 is the initial phase of the 
carrier, and Wn[k] is the signal noise.

Tiered‑code‑modulated GNSS signal acquisition

The acquisition is a typical maximum likelihood (ML) 
estimation process (Lo Presti et al. 2009). This process, 
seen as a two-dimensional search, is finished when the 
estimates are close to the actual value and the maximal 
correlation value is obtained. This process sees each pos-
sible code phase and Doppler frequency value as a search 
point.

In the two-dimensional search, we do not care about the 
secondary codes and data bits, i.e., we consider sc[k] and 
d[k] to be invariant constants. The receiver only needs to 
provide �̂c and f̂d as the estimates of �c and fd . According 
to the estimates, the local replica of the carrier is generated 
to strip off the Doppler frequency, and the local replica of 
the primary code sequence is generated to complete the 
correlation and coherent integration as:

where cL[∙] represents the local replica of the primary 
sequence, n represents the n th coherent integration in a sin-
gle non-coherent integration, l is the number of samples 
used for integration, and Δ�c = �̂c − �c and Δf = f̂d − fd are 

(1)
r[k] = A ⋅ c

[
k − �c

]
⋅ sc

[
k − �sc

]
⋅ d[k] ⋅ cos

(
2�kTsfd + �0

)
+Wn[k]

(2)

ICO(n) =

nl+l−1∑
k=nl+0

(
A

2
⋅ c[k] ⋅ cL

[
k − Δ�c

]
⋅ cos

(
2�kTsΔf + Δ�

))



	 GPS Solutions (2023) 27:143

1 3

143  Page 4 of 18

the estimated deviation of the primary code phase and Dop-
pler, respectively. The several consecutive results of coher-
ent integration are non-coherently accumulated to obtain the 
tests statistic:

where NNC is the times of non-coherent accumulation. When 
the set of estimated deviations corresponding to the search 
cells is small enough, the INC tends to the maximum.

It is worth noting that equation (2) is based on the 
assumption that the secondary codes and data bits can be 
ignored under the limited length of integration, i.e., the 
size of l  . The length of a message bit limits the integra-
tion time due to the bit transitions. Figure 1 depicts the bit 
transitions phenomenon, which means the sign transitions 
may occur and reduce the correlation value. The orange 
line represents the data bit. Furthermore, the use of the 
tiered code complicates the question. The possible sign 
transitions between the secondary code chips may also 
cause gain loss.

(3)INC =

NNC∑
n=1

ICO(n)

Here, the structure of the tiered code is described using 
the BDS B1I signal as an example (shown in Fig. 2). The 
B1I signal's message symbol rate is 50 bps. The primary 
code rate is 2.046 Mbps, with 2046 code chips in one period. 
The secondary code employs NH code with a chip rate of 
1kbps and 20 code chips in one period. One secondary code 
period's edges are aligned with the edges of the message 
bits, and one primary code period's edges are aligned with 
a secondary code chip. Due to the potential secondary code 
sign transitions, we can only guarantee an effective integra-
tion time of 1 ms.

One solution to extend the coherent integration time is to 
transform the acquisition process into a three-dimensional 
search process to locate the secondary code phase �̂sc . A 
local replica of the secondary code sequence can be intro-
duced concurrently in the correlation operation, extending 
the coherent integration time to 20 ms and bringing about a 
noticeably higher acquisition sensitivity. In this case, Equa-
tion (2) is modified as:

where scL[∙] is the local replica of the secondary code 
sequence and Δ�sc = �̂sc − �sc is the estimated deviation of 
the secondary code phase. The addition of a new dimension 
greatly increases the computational load. Covering all search 
spaces is time-consuming and needs an efficient search strat-
egy. The PMF-FFT uses partial-matched filters for correla-
tion to realize a parallel search of the primary code phase. 
The FFT operation is performed on the partial correlation 
results to achieve a parallel search of the Doppler frequency 
domain while completing coherent integration.

Conventional PMF‑FFT algorithm

Here is a description of the PMF-FFT as shown in Fig. 3. 
For brevity, the following phrases are defined and used 
throughout the text:

Coarse Doppler estimates are used as the main fre-
quency point for generating the local replica of the 
carrier
Fine Doppler estimates are determined by FFT spec-
trum lines. A Doppler estimate consists of both a 
coarse and a fine estimate.
A search cell comprises a Doppler estimate and a pri-
mary code phase estimate.
A test statistic is the final integration result at a search 
cell.

(4)
ICO(n) =

nl+l−1
∑

k=nl+0

(A
2
⋅ c[k] ⋅ cL

[

k − Δ�c
]

⋅ sc[k]

⋅scL
[

k − Δ�sc
]

⋅ cos
(

2�kTsΔf + Δ�
))
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All search cells in a single partial parallel search are 
combined to form a search space.

The conventional PMF-FFT algorithm flow is as follows:

(1)	 The input IF signal, whose center frequency is the sum 
of the Doppler shift and the IF, is sampled at twice the 
primary code rate. A PMF bank consists of P sections 
of PMF. Each section can complete the correlation of 
S sample points with the local replica of code ( P and 
S are chosen by combining the desired level of paral-
lelism with the hardware consumption, e.g., P = 6 and 
S = 341 , allowing 2046 correlation operations on dif-
ferent code phases to be performed in parallel). The IF 
signal sample points are multiplied by the local replica 
of the carrier (main frequency point fdc plus IF) and 
moved into the PMF bank.

(2)	 The local replica of the code sequence is set as the 
matched filter's coefficients, and the code phase is 
changed by shifting the sample points. The correlation 
procedure is continued until all the correlation opera-

tions of TCI duration on each primary code phase are 
finished. The partial correlation results are assembled 
into an M-segment partial correlation matrix with 
P × S ×M correlation results (each correlation time is 
Tp).

(3)	 The coherent integration results are obtained by per-
forming FFT at each primary code phase. Only the first 
and last 1∕(4M) of the M points are used as Doppler 
fine estimates. It is due to the significant correlation 
loss that occurs when the estimated residuals of Dop-
pler are large. In this case, an FFT covers a frequency 
range from −1∕

(
4Tp

)
+ fdc to 1∕

(
4Tp

)
+ fdc , and the 

frequency resolution is 1∕
(
M × Tp

)
.

(4)	 The non-coherent integration is applied after code Dop-
pler compensation to increase the SNR gain further. 
To cover all search cells, we should serially switch 
the search space. Repeat the procedure above until all 
search spaces are searched. The detection is completed 
by testing the maximum test statistics of all search 
spaces.

Fig. 3   Block diagram of the conventional PMF-FFT algorithm. The PMFs are used to search the code phase in parallel. The FFT is used to 
search carrier Doppler in parallel
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Because the secondary code phase is not considered and the 
FFT introduces envelope loss, the conventional PMF-FFT 
cannot be used directly to acquire tiered-code-modulated 
GNSS signals in weak signal environments. We propose the 
IHSPF algorithm, which enhances the conventional PMF-
FFT algorithm to attain high sensitivity.

Improved high‑sensitivity partial‑matched 
filter with FFT (IHSPF)

The IHSPF algorithm is shown in Fig.  4, where the 
improvements have been marked with dashed boxes. The 
phrases defined in the last chapter are made the following 
modifications:

A search cell comprises a Doppler estimate, a primary 
code phase estimate, and a secondary code phase esti-
mate. Accordingly, the search space becomes three-
dimensional.

The process of the IHSPF is described using the exam-
ple of acquiring the B1I signal, where P = 6 , S = 341 , and 
M = 128 . Figure 5 shows the correlation and coherent inte-
gration process.

(1)	 The sample points are mixed with the local replica of 
the carrier. Then, successively shifting 2046 × 40 times 
obtains 240 partial correlation results under 2046 pri-
mary code phase estimates. The length of each segment 
is 1/12 ms. The four adjacent partial correlation results 
are added to obtain 1/3 ms correlation results. The local 
replica of the secondary code sequence is then multi-
plied by 60 1/3 ms correlation results. The correlation 
results are multiplied by 20 secondary code sequences 
with different initial phases.

(2)	 Each of the 20 sets of partial correlation values is sub-
jected to a zero-padding 128-point FFT operation. One 
20 ms coherent integration is completed at all search 
cells in a search space. A search space is made up of 
2046 × 20 × 64 search cells. The coherent integration 

Fig. 4   Block diagram of the improved high-sensitivity partial-matched filter with FFT (IHSPF) algorithm. Based on the PMF-FFT, it introduces 
the PScPE, ELM, and I-MCCD methods
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process is repeated, and the non-coherent integration is 
performed.

(3)	 The processing above continues until the 4092 primary 
code phases, 20 secondary code phases, and ± 5000 Hz 
Doppler range are covered. Here, the main frequency 
points are set using spectrum interleaving. When the 
above process is finished, the test statistics’ value, Dop-

pler, and code phase matrices are recorded. Then, one 
search is completed.

(4)	 When the signal strength is high enough, the maximum 
threshold compare detection (MTCD, which compares 
the maximum test statistic to the threshold to complete 
the detection) is used to complete the detection. If not, 
the search is repeated, and the I-MCCD is used.

Fig. 5   Correlation and coherent integration process in the IHSPF. Data with a total length of 20 ms are used for coherent integration
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Parallel secondary code phase estimate (PScPE)

Using the tiered code enables us to extend the length of the 
coherent integration to the length of a message bit without 
considering bit transitions. By including a third dimension 
(the secondary code phase) in the conventional search pro-
cess, we extend the acquisition to a three-dimensional search 
process.

Algorithm principle

The IF signal samples (length of one secondary code period) 
can be written as a row vector:

where rk = r[k] . The estimates of a search cell 
(
�̂c, �̂sc, f̂d

)
 

can be used to generate local replicas in the form of row 
vectors:

w h e r e  ck = c
[
k − �̂c

]
 ,  sck = sc

[
k − �̂sc

]
 ,  cak = exp

(

2�kTsf̂d + �L

)

 . In the order of stripping off the carrier, 
stripping off the secondary code, stripping off the primary 
code, and correlating, the coherent integration at a search 
cell is:

where ◦ denotes Hadamard product. This step can easily 
be mathematically extended to parallel search by extend-
ing vector operations to matrix operations. Assuming that 
the number of the Doppler frequency estimates, secondary 
code phase estimates, and primary code phase estimates are 
A , B, and Υ , respectively, we can form the local replica of 
the carrier matrix, the local replica of the secondary code 
matrix, and the local replica of the primary code matrix as:

(5)r =
[
r1 r2 ⋯ rk ⋯ rl

]

(6)c =
[
c1 c2 ⋯ ck ⋯ cl

]

(7)�� =
[
sc1 sc2 ⋯ sck ⋯ scl

]

(8)�� =
[
ca1 ca2 ⋯ cak ⋯ cal

]

(9)I = r◦��◦�� ⋅ cT

(10)

�� =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 ⋯ c1k ⋯ c1l
c21 c22 ⋯ c2k ⋯ c2l
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

c�1 c�2 ⋯ c�k ⋯ c�l
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

cΥ1 cΥ2 ⋯ cΥk ⋯ cΥl

⎤
⎥⎥⎥⎥⎥⎥⎦
Υ×l

=
�
c1 c2 ⋯ c� ⋯ cΥ

�T

where the first number in the lower corner of each element is 
the ordinal number of the estimate and the second number is 
the chronological number. Each row of the matrix represents 
a local replica sequence.

The flow of a fully parallel search in three dimensions 
can be expressed as:

where ⊙ denotes Khatri–Rao product. We can obtain a 
(AB) × Υ coherent integration matrix �(AB)×Υ , where each 
matrix element is a coherent integration value at a search 
cell. Since the local primary and secondary code sequences 
have only two numbers, 1 and − 1, the code stripping opera-
tion only requires the multiplication of ± 1. The original 
value of multiplication by 1 remains unchanged, and mul-
tiplication by -1 can be replaced by inverting the sign. To 
obtain �(AB)×Υ , AB × l + ABΥ × l ± 1 multiplication (code 
stripping), A × l complex multiplication operations and 
AB × Υ × (l − 1) addition operations are required.

The number of code chips in a secondary code period is 
B , and one chip has l∕B sample points. Therefore, we can use 
PMF for partial correlation and strip off the secondary code 
over the correlation results rather than all sample points. The 
primary code sequence matrix can be rewritten as a matrix 
of D ⋅ B ( D is the partial correlation results in one primary 
code period) chunks:

(11)

��� =

⎡
⎢⎢⎢⎢⎢⎢⎣

sc11 sc12 ⋯ sc1k ⋯ sc1l
sc21 sc22 ⋯ sc2k ⋯ sc2l
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

sc�1 sc�2 ⋯ sc�k ⋯ sc�l
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

scB1 scB2 ⋯ scBk ⋯ scBl

⎤
⎥⎥⎥⎥⎥⎥⎦
B×l

=
�
��1 ��2 ⋯ ��� ⋯ ��B

�T

(12)
��� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ca11 ca12 ⋯ ca1k ⋯ ca1l
ca21 ca22 ⋯ ca2k ⋯ ca2l
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

ca�1 ca�2 ⋯ ca�k ⋯ ca�l
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

caA1 caA2 ⋯ caAk ⋯ caAl

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦A×l

=
[

��1 ��2 ⋯ ��� ⋯ ��A
]T

(13)�(AB)×Υ = r ⊙ �A
LA×l ⊙ SC

LB×l × C
T

LΥ×l

(14)�� =
[
�1 �2 ⋯ �i ⋯ �DB

]

(15)�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1(i+1) c1(i+2) ⋯ c1(i+k) ⋯ c1(i+l∕DB)
c2(i+1) c2(i+2) ⋯ c2(i+k) ⋯ c2(i+l∕DB)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

c�(i+1) c�(i+2) ⋯ c�(i+k) ⋯ c�(i+l∕DB)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

cΥ(i+1) cΥ(i+2) ⋯ cΥ(i+k) ⋯ cΥ(i+l∕DB)

⎤
⎥⎥⎥⎥⎥⎥⎦
Υ×(l∕DB)
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where 1 ≤ i ≤ DB . Carrier stripping yields matrix �Ar×l
 , 

which is written in the same chunked form:

where Ar = A∕(M∕2) will be described later. Partial correla-
tion produces the correlation results matrix:

where �i is the partial correlation results for A different 
Doppler frequency and Υ different primary code phases. The 
same-position element of different �i matrix is extracted 
to create a row vector, which is then combined to create a 
ArΥ × DB partial correlation results matrix (16). �̃ and � 
differ only in the order of elements.

Each partial correlation time is 1∕D primary code period. 
A single secondary code period has D ⋅ B correlation results.

Accordingly, we generate B secondary code sequences 
of length D ⋅ B based on different secondary code phases, 
forming a secondary code sequence matrix:

Then, complete secondary code stripping and coherent 
integration over the partial correlation results:

(16)�Ar×l
= r⊙ ���Ar×l

=
[
�1 �2 ⋯ �i ⋯ �DB

]

(17)
�Ar×(Υ⋅DB) =

[

�1 × �T
1 ⋯ �i × �T

i ⋯ �DB × �T
DB

]

=
[

�1 �2 ⋯ �i ⋯ �DB
]

(18)�̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

k11 k12 ⋯ k1j ⋯ k1(DB)
k21 k22 ⋯ k2j ⋯ k2(DB)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

ki1 ki2 ⋯ kij ⋯ ki(DB)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

k(ArΥ)1 k(ArΥ)2 ⋯ k(ArΥ)j ⋯ k(ArΥ)(DB)

⎤
⎥⎥⎥⎥⎥⎥⎦
ArΥ×DB

(19)�̃�� =

⎡
⎢⎢⎢⎢⎢⎢⎣

sc11 sc12 ⋯ sc1j ⋯ sc1(DB)
sc21 sc22 ⋯ sc2j ⋯ sc2(DB)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

sci1 sci2 ⋯ scij ⋯ sci(DB)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

scB1 scB2 ⋯ scBj ⋯ scB(DB)

⎤
⎥⎥⎥⎥⎥⎥⎦
B×(DB)

(20)��
ArΥB×DB

= �̃ArΥ×DB
⊙ ���

T

L

M-point FFT is used for parallel search in the Doppler 
frequency domain, with carrier stripping applied only at the 
Ar = A∕(M∕2) main frequency points and other frequency 
points covered by FFT spectrum lines. The PMF partial cor-
relation and M-point FFT operations carry out the coherent 
integration.

To obtain the coherent integration matrix �ArΥB×(M∕2) , a M
-point FFT operation is performed on each row vector, tak-
ing the results on M∕2 spectrum lines in each FFT. A total of 
ArΥ × (l∕DB) × DB + ArΥDB × B ±1 multiplications (code 
stripping), Ar × l + ArΥB × (M∕2)log2M complex multipli-
cation and ArΥ × ((l∕DB) × DB − DB) + ArΥB ×Mlog2M 
additions are carried out. The integration gain envelope is as:

where Δ�cand Δ�sc are the estimated residuals of the primary 
code phases and secondary code phases, respectively, and 
Δf  is the estimated residual of the coarse Doppler estimates.

Analysis of computational complexity

To analyze the computational complexity, the B1I signal 
is used as an example, in which Ar = 7,B = 20,Υ = 4092

,l = 81840 (TCI = 20ms),D = 3 , M = 128 , and the radix-2 
FFT is used. To compare the computational complexity, the 
conventional algorithm, in this case, also executes a coher-
ent integration of 20 ms. The conventional two-dimensional 
parallel search algorithms must serially change the local sec-
ondary phase 20 times to obtain the secondary code phase 
estimate. Thanks to the three-dimensional parallel search, 
which reduces repetitive correlation operations, the PScPE 
algorithm greatly reduces the computational complexity (as 
shown in Table 1).

Envelope loss mitigation (ELM)

The scalloping loss problem caused by the discrete Fourier 
transform (DFT) (Lyons 2015) reflects fluctuations in the 

(21)

G
(

Δf ,Δ�sc,Δf
)
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2
R
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)
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sin
(
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)

sin
(
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)
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�DB
(
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n
M

))
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(

ΔfTp −
n
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Table 1   Analysis of computational complexity. The B1I signal is used as an example

The number of operations required for 20 ms integration is shown in the table

Algorithms Addition ±1 Multiplication (code stripping) Complex multiplication

Conventional PMF-
FFT

B × (ArΥ × (l − DB) + ArΥ ×Mlog
2
M) B × (ArΥ × (l∕DB) × DB + ArΥDB) B × (Ar × l + ArΥ × (M∕2)log

2
M)

4.7363 × 1010 4.6919 × 1010 2.6810 × 108

PScPE PMF-FFT ArΥ × (l − DB) + ArΥB ×Mlog
2
M ArΥ × (l∕DB) × DB + ArΥDB × B Ar × l + ArΥB × (M∕2)log

2
M

2.3682 × 109 2.3786 × 109 2.5722 × 108
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overall amplitude–frequency response of the N-point DFT. 
In the PMF-FFT algorithm, the FFT (fast algorithm of the 
DFT) accomplishes two tasks, one is to complete the coher-
ent integration as the last step and the other is to complete 
the determination of the spectrum peak. To analyze the inte-
gration gain envelope, we are only concerned with the effect 
of Δf  . The envelope gain is shown in the following equation:

where the left factorization is the partial correlation gain 
term and the right factorization in bold font is the FFT gain 
term. When the Doppler precisely lies in the middle of the 
two spectrum lines, the amplitude of the coherent integra-
tion result obtained is cut, and the acquisition sensitivity is 
decreased. At this point, the ΔfTp − n∕M is maximal and the 
gain is minimal.

Zero‑padding FFT

A common solution to reduce the scalloping loss is using 
zero padding. The FFT/DFT is a sampling of the DTFT 
function. By padding zeros in the time domain, the DTFT is 
sampled at smaller intervals in the frequency domain, lead-
ing to a smaller spacing between spectrum lines, effectively 
reducing the scalloping loss. Padding zeros does not add 
more noise or exacerbate spectral leakage. However, zero 
padding means that the number of points involved in the 
FFT operation increases, which causes additional computa-
tion complexity. Therefore, we must choose the appropri-
ate FFT points to balance envelope gain and computational 
complexity.

The B1I signal acquisition is used as an example to ana-
lyze the number of main frequency points and the Doppler 
frequency resolution when various FFT points and zero-
padding numbers are used. The main frequency points are 
set to cover a Doppler frequency range of ± 5000 Hz from 
0. The coherent integration time is 20 ms. In one search 
space, it is necessary to search through 4092 primary code 
phase estimates and 20 estimates of the secondary code 
phase, performing a total of 81,840 128-FFT operations. 

(22)

|||||||

sin
(
�LΔfTs

)

sin
(
�ΔfTs

)
���

(
���

(
Δ��� −

�

�

))

���
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�
(
Δ��� −
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�

))
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The complexity and search time directly increase with add-
ing one search space. Table 2 lists potential segmentation 
and FFT points combinations.

A smaller hardware implementation is achieved by select-
ing fewer FFT points, compromising the acquisition speed. 
We use a 128-point FFT to keep the hardware size small 
when the acquisition speed is adequate. There is an analysis 
of the gain envelope curve of the 128-point FFT. After com-
pleting the partial correlation, 120 partial correlation results 
of 1/6 ms were obtained for a 128-point FFT. Reserving half 
of the FFT spectrum, the maximum gain loss was 4.29 dB, 
with 3.4 dB due to the scalloping loss. Such a significant 
loss would severely deteriorate the acquisition sensitivity 
at this Doppler frequency (shown in Fig. 6). We use the 
zero-padding FFT method. The partial correlation results are 
recombined into 60 partial correlation results, padding zeros 
and performing a 128-point FFT. Reserving half of the FFT 
spectrum, the maximum gain loss is 1.68 dB, with the loss 
due to the scalloping loss being 0.8 dB (shown in Fig. 6).

Spectrum interleaving

Another way to reduce the effect of scalloping loss is to 
interleave the spectrum by adding main frequency points at 

Table 2   Potential number of 
partial correlation results and 
FFT points combinations

Number of partial cor-
relation results

FFT points Number of zero 
padding

Main frequency 
points

Spectrum lines 
resolution (Hz)

20 32 12 21 31.25
60 64 4 7 46.875
120 128 8 5 46.875
60 128 68 7 23.4375
120 256 136 5 23.4375
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Fig. 6   Coherent integration envelope gain. A 128-point FFT is per-
formed on 120 partial correlation results (top); a 128-point FFT is 
performed on 60 partial correlation results (bottom). The gain loss is 
reduced by using zero padding
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1/2 spectral resolution next to the original main frequency 
points. There is no conflict between spectrum interleaving 
and zero padding, so we can combine them. A 128-point 
zero-padding FFT on 60 partial correlation results is per-
formed, and spectrum interleaving is used (shown in Fig. 7). 
After interleaving the spectrum lines, the lowest gain point 
of the original curve (blue) is precisely the highest gain point 
of the new curve (red). The higher gain part of the two gain 
curves forms the final gain curve (black). The maximum 
gain loss is 1.09 dB, of which the scalloping loss causes 
0.20 dB. The combination of zero padding and spectrum 
interleaving reduces the loss effectively.

Improved multi‑search code phase compare 
detection (I‑MCCD) method

The MCCD method records multiple maximums from mul-
tiple consecutive searches and compares the phase of the 
primary code between multiple searches to complete the 
detection. Duan et al. (2015) provide an experimental anal-
ysis of the acquisition sensitivity of the MCCD method. It 
shows that, when using the MCCD method, the acquisition 

sensitivity of the L1CA signal is about 2 dB higher than 
using the MTCD method.

Based on the MCCD method, we introduce the compari-
son of the secondary code phase. We denote it as I-MCCD 
( R,NM ), where R denotes the number of searches and NM 
denotes the first NM maximums recorded per search. Unlike 
the primary code phase, which is significantly affected by 
Doppler, the secondary code has a low chip rate, eliminating 
the need for a code Doppler calculation. As the first step in 
detection, we can compare the secondary code phase. Only 
two possibilities exist: phase alignment and phase devia-
tion by one chip. Comparing the primary code phases is 
unnecessary if the requirements are not satisfied. Instead, 
the following cell is compared. Otherwise, the comparison 
of the primary code phase continues, and the code Doppler 
estimates must be determined from the Doppler frequency 
estimates. Introducing a secondary code phase comparison 
can avoid unnecessary primary code Doppler calculations 
while ensuring a low false alarm rate. The algorithm flow 
is shown in Fig. 8.

(1)	 The same satellite is searched R times consecutively. 
Each search starts at time T(1) , T(2) , … T(R).
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Fig. 7   Coherent integration envelope gain (perform 128-point FFT on 60 partial correlation results and use spectrum interleaving). The bottom 
two figures are local enlargements of the curve. The gain loss is significantly reduced by using the ELM
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(2)	 The NM maximal test statistics of each search and the 
corresponding Doppler frequency matrix �R×NM

 , the 
primary code phase matrix �R×NM

 , and the secondary 
code phase matrix ��R×NM

 are recorded. The first value 
fij in �R×NM

 is the object of comparison, and the N ele-
ments of the matrix whose difference is less than fth 
are selected. The corresponding primary code and the 
secondary code phase array constitute V.

(3)	 The first array vi0 in V is compared with the rest of the 
arrays in V. Taking the second array vi1 as an exam-
ple. First, the secondary code phases are compared, 
and when the phases aligned or differ by one chip, the 

code shift is calculated based on the acquisition time 
T
(
i0
)
 and T

(
i1
)
 corresponding to vi0 and vi1 , and then 

the primary code phases are compared. If the differ-
ence between secondary code phases is greater than 
one chip, there is no need to compare the phase of the 
primary code.

(4)	 The difference between the two primary code phases is 
calculated directly if the secondary code is in phase. If 
the secondary code phases differ by one, the number of 
half-chips in a code period is added to the smaller one, 
and the difference is made. If the absolute value of the 

Fig. 8   Improved multi-search code phase compare detection (I-MCCD) algorithm flow. First, the secondary code phases in several searches are 
compared. Then, the primary code phases are compared
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difference is less than or equal to |B| + 1 , the statistic 
SD is added by one. Otherwise, SD remains unchanged.

(5)	 After all values in V are compared with vi0 , if SD>th , 
fi0,j0 , vi0 is the Doppler and code phase of the auto-cor-
relation peak; SD<th , then the second value in �R×NM

 
is taken for comparison, and processes (3) and (4) are 
repeated.

In the detection process, four parameters need to be set as 
follows: R , NM , fth and th . Taking speed and sensitivity into 
account, we use I-MCCD (3,20), set fth as the resolution of 
the frequency search, and set th = 1.

Simulation results and analysis

Our work focuses on BDS-2 and BDS-3 signals with second-
ary code modulation. But it applies equally to other GNSS 
signals with secondary code modulation (including Galileo 
E1C, E5, and GPS L5). To confirm this, in addition to BDS 
signals, we have also implemented the acquisition of E1C, 
and the acquisition of other signals will be realized in the 
future work.

The algorithm simulation uses software-generated BDS 
B1I, B2I, B3I, B2a, and Galileo E1B/C signal IF data. No 
less than 100 Monte Carlo simulations are performed in each 
condition.

Sensitivity simulation results

The carrier-to-noise ratio ( C∕N0 ) of the signal is controlled 
by the signal amplitude. Under each C∕N0 , the Doppler of 
the IF data is generated separately at the main frequency 
point and the scalloping loss maximum point. The former 
is where the integration gain is highest and has the best 
theoretical sensitivity performance. The latter is where the 
integration gain is lowest and has the worst theoretical sensi-
tivity performance. Counting the acquisition success proba-
bility at both points fully confirms the algorithm's sensitivity 
performance. The properties of signals are listed in Table 3.

The algorithm is implemented by a playback acqui-
sition framework. The envisaged acquisition engine 

implementation uses a 5Mbits storage space for storing 
and playing back the IF data at high speed. The acquisition 
parameters are listed in Table 4. The CodeBlocks in the table 
is (Primary code length) × 2∕2046.

The simulations are performed in a weak signal environ-
ment. The estimation accuracy and acquisition speed that 
can be achieved are shown in Table 5, where the acquisition 
speed is calculated based on the acquire engine working at 
200 MHz.

The probability of correct acquisition at different sig-
nals C∕N0 is shown in Fig. 9. We can see that the IHSPF 
algorithm has extremely good acquisition sensitivity per-
formance, especially for B1I and B2I.

The IHSPF algorithm can complete nine searches of the 
B1I signal in five seconds. Considering the worst case (all 
satellites with Doppler frequency at the gain nadir), the 
probability that four and more satellites (enough for posi-
tioning) can be acquired in five seconds is 98%. It is not a 
bottleneck for TTFF.

Table 3   Properties of the B1I, 
B2I, B3I, and B2a signals

Signal Carrier frequency 
(MHz)

Primary code 
length (chip)

Secondary code 
length (chip)

Primary code rate 
(Mcp/s)

Modulation

B1I 1561.098 2046 20 2.046 BPSK
B2I 1207.140 2046 20 2.046 BPSK
B3I 1268.520 10,230 20 10.23 BPSK
B2a 1176.450 10,230 5 10.23 QPSK

Table 4   Acquisition engine parameters of B1I/B2I/B3I/B2a

Signal B1I B2I B3I B2a

Down-sample rate (MHz) 4.092 4.092 20.46 20.46
Partial coherent time (ms) 1/3 1/3 1/3 1/10
Coherent integration time (ms) 20 20 20 5
Number of non-coherents 15 15 3 12
Number of codeblocks 2 2 2 10
Number of secondary code phases 20 20 20 5
Number of main frequency points 14 14 14 4

Table 5   Acquisition resolution and time required of B1I/B2I/B3I/B2a

Signal Code phase reso-
lution (chips)

Frequency 
resolution (Hz)

Time required to 
search for a satellite 
(ms)

B1I 0.5 11.72 515.6
B2I 0.5 11.72 515.6
B3I 0.5 11.72 2578.0
B2a 0.5 39.06 736.6
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Analysis

The analysis of the sensitivity gap between the B3I/B2a and 
B1I/B2I signals is provided in the following. Equation (23) 
illustrates the SNR gain of coherent integration compared 
to the 1-ms correlation. By deducting the non-coherent loss 
(25) from the gain, (24) calculates the SNR gain produced 
by the non-coherent integration (Tsui 2005):

where Tcoh is the coherent integration time in milliseconds 
and Nnc is the number of non-coherent accumulations. The 
ideal measurement factor, Dc(1) , is related to the system's 
required probability of detection and the probability of false 
alarms. Here, it is taken to have a typical value of 21.001. 
Due to limited IF storage capacity, the integration time for 
the B3I and B2a signal is much shorter because of the higher 
code rate. The strength of a single channel is -3 dB of the 
total signal strength, with the energy of the B2a signal being 
equally distributed between the data and pilot channels. 
Additionally, the coherent integration time is constrained 
by the secondary code period of B2a. The total integration 

(23)Gcoh

(
Tcoh

)
= 10log

(
Tcoh

)

(24)GNC

(
Nnc

)
= 10log

(
Nnc

)
− L

(
Nnc

)

(25)L
�
Nnc

�
= 10log

�
1 +

√
1 + 9.2Nnc∕Dc(1)

1 +
√
1 + 9.2∕Dc(1)

�

SNR gain of the B1I, B2I, B3I, and B2a signals is calculated 
in Table 6.

Figure 10 shows the statistical results of the Doppler error 
of the acquisition results. For various C∕N0 , the percent-
age of errors less than or equal to the resolution (shown in 
Table 5) is plotted. The signal C∕N0 has little impact on the 
Doppler estimation.
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Fig. 9   Acquisition success probability of B1I/B2I/B3I/B2a at differ-
ent C∕N

0
 . The ‘Best’ denotes the carrier Doppler of the signal lies at 

the main frequency point, and the ‘Worst’ denotes the carrier Doppler 
of the signal lies at the scalloping loss maximum point

Table 6   Integration SNR gain of B1I/B2I/B3I/B2a

Signal Coherent integra-
tion gain/dB

Non-coherent inte-
gration gain/dB

Total gain /dB

B1I 13.01 9.44 22.45
B2I 13.01 9.44 22.45
B3I 13.01 4.18 17.19
B2a 6.99 8.77 15.76

Fig. 10   Probability of Doppler error ≤ Doppler resolution. B1I and 
B2I (top); B3I (middle); B2I (bottom). The acquisition results are 
compared with the actual Doppler. The Doppler of the acquisition 
results was not affected by C∕N

0
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Comparison

The acquisition parameters of the simulation in the last 
subsection are set to exactly simulate the receiver chip in 
the expectation that the best acquisition sensitivity will be 
obtained in the hardware implementation. Here, we com-
pare the acquisition sensitivity of the IHSPF with that of the 
receiver chips and other algorithms.

Comparison 1: Beidou B1I

Table 7 shows two commercial GNSS receiver SOC with 
the highest B1I signal acquisition sensitivity (Unicorecomm 
2022; u-blox 2020). Calculating according to ambient tem-
perature 290 K and RF Front-End loss 3 dB, the simulation 
results are converted to input power (26) to compare with the 
two chips. Correspondingly, the power of the signal input to 
SOC can also be converted to the C∕N0 of the signal input 
to the acquire engine

w h e r e  N0 = kT = 1.38 × 10−23 × 290 = 4.00 × 10−21
= −203.98dBW∕Hz = −173.98dBm∕Hz and LRF = 3dB.

The sensitivity of IHSPF is estimated here based on the 
BD 410034-2022 (2022), an evaluation standard specified 
by China Satellite Navigation Office. The standard states 
that the sensitivity is the minimum input signal power at 
which the receiver can complete positioning within 300 s. 
There are 45 satellites of BDS-2 and BDS-3 in space. The 
IHSPF takes 0.5156 s to complete one search, enabling 12 
rounds of 45 satellites to be searched in 300 s. Considering 
the worst case at 23 dB-Hz (shown in Fig. 9), the successful 
probability that at least one of the 12 searches for a satellite 
is up to 100% − (100 − 74%)12 = 99.9999904% . There are 
about ten BDS satellites visible in the sky. The success prob-
ability is sufficient for acquiring four or more satellites to 
achieve positioning. Therefore, the sensitivity of the IHSPF 
algorithm is 23 dB-Hz.

(26)PR = C∕N0 × N0 − LRF

The Grouping-FFT-2stage algorithm proposed by Liu 
et al. (2018) can actualize the 90% success possibility of the 
B1I signal at a carrier-to-noise ratio ( C∕N0 ) of 23.9 dB-Hz 
with a Doppler accuracy of about 31 Hz. In their work, sev-
eral conventional algorithms were simulated at the same 
time, including the Conventional-NC and DC-with-sign-
recovery. Here, the simulation results of the IHSPF are 
compared with them (shown in Fig. 11).

The proposed IHSPF algorithm can achieve an acqui-
sition success probability of 93% (at the maximum gain 
points) at 23 dB-Hz with a Doppler accuracy of 11.72 Hz. 
The IHSPF algorithm has a better sensitivity performance 
under all conditions except for 22 dB-Hz, where the suc-
cess probability (at the minimum gain points) is lower than 
other algorithms. The Grouping-FFT-2stage algorithm uses 
a two-stage structure. The first stage uses the conventional 
NC method based on circular correlation to obtain a coarse 
estimate of the phase of the main code, and the second stage 
performs an FFT on the sample points stripped off the pri-
mary code to obtain a Doppler estimate.

Complex multiplication is the most computationally 
loaded of the acquisition algorithms and is used in many 
works to evaluate algorithm complexity (Liu et al. 2018; 
Svatoň et al. 2020). In the Grouping-FFT-2stage algorithm, 
the number of complex multiplication operations in corre-
lation and integration is taken as the computational com-
plexity, and the number of addition operations is ignored. 
Meanwhile, the FFT of the local code is calculated and 
stored in the receiver in advance. It is not counted in the 
computational complexity. Here, we compare the compu-
tational complexity of the IHSPF with that of the Group-
ing-FFT-2stage algorithm (as shown in Table 8, Ar = 14 , 
B = 20 , Υ = 4092 , l = 81840 , M = 128 ). The computational 

Table 7   Comparison of B1I acquisition sensitivity with the receiver 
SOC

Receiver SOC 
or algorithm

Manufacturer or proposer Acquisition sensitivity

Input 
power 
(dBm)

C∕N
0
(dB-Hz)

UC6226 Unicorecomm −146 25
NEO-M9N u-blox −145 26
IHSPF This article −148 23

21.5 22 22.5 23 23.5 24 24.5 25 25.5 26 26.5
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Fig. 11   Acquisition success probability of B1I at different C∕N
0
 . The 

‘IHSPF’ denotes our work. The algorithm represented by the dotted 
line is derived from previous work
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complexity of the IHSPF is higher than the Grouping-FFT-
2stage. It is mainly due to using the ELM method, which 
increases the number of main frequency points. However, 
higher acquisition success probability and frequency resolu-
tion are also obtained.

Comparison 2: Galileo E1C

The mSBZP method proposed by Svatoň et al. (2020) per-
formed simulations for E1C acquisition sensitivity at differ-
ent lengths of coherent integration. Our work also performs 
sensitivity simulations for the Galileo E1C signal (the signal 
properties shown in Table 9) to verify adaptability to other 
constellations’ signals. The Doppler of the IF data is also 
generated separately at the main frequency point and the 
scalloping loss maximum point. The acquisition engine uses 

the parameter settings in Table 10. A comparison of the suc-
cess probability of acquisition is shown in Fig. 12.

The 'mSBZP' method in Fig. 12 results from the proposed 
improved algorithm in Svatoň et al. (2020). The acquisition 
success probability of the IHSPF outperforms the 'mSBZP' 
method. The advantage of IHSPF is also in the reduction of 
computational complexity. Table 11 shows the comparison 
of the computational complexity of the search for 8184 pri-
mary and 25 secondary code phases at one main frequency 
point using 100  ms integration (where Ar = 1 , B = 25 , 
Υ = 8184 , l = 8184 × 25 , M = 128 ). The complexity of the 
IHSPF is only about 1/15 of the mSBZP. This is because the 
mSBZP method uses a serial search for the secondary code 
phase. The IHSPF does not need to repeat the correlation 
operations thanks to parallel search in the secondary code 
domain.

Table 8   Computational complexity of the search for 2046 primary 
and 20 secondary code phases using 20 ms integration

*Nf  is the frequency units to be tested, and its representative value 
is 41. Vc = 20 and N

2
= 16368 × 20 denote the secondary code chips 

and the number of samples covered by the window. N = N
2
∕Vc = 

16,368 is the number of samples in a primary code period

Algorithms Complex Multiplication

Grouping-FFT-
2stage

Vc×Nf × 2 × (N∕2)log
2
N + Vc ×

(
N
2
∕2

)
log

2
4N *

2.4026 × 108

IHSPF Ar × (l + ΥB × (M∕2)log
2
M)

5.1444 × 108

Table 9   Properties of E1B/C signal

Signal Carrier 
frequency 
(MHz)

Primary 
code 
length 
(chip)

Second-
ary code 
length 
(chip)

Primary 
code rate 
(Mcp/s)

Modulation

E1B 1575.420 4092 − 1.023 BOC
E1C 1575.420 4092 25 1.023 BOC

Table 10   Acquisition engine parameters of E1B/C

Signal E1C

Down-sample rate (MHz) 2.046
Partial coherent time (ms) 2
Coherent integration time (ms) 100
Number of non-coherents 1
Number of codeblocks 4
Number of secondary code phases 25
Number of main frequency points 40

26 27 28 29 30 31 32 33 34 35
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Fig. 12   Acquisition success probability of E1C at different C∕N
0
 . The 

‘IHSPF’ denotes our work. The algorithm represented by the dotted 
line is derived from previous work

Table 11   The computational complexity of the search for 8184 pri-
mary and 25 secondary code phases at one main frequency point 
using 100 ms integration

*T = 8184 is the number of sampling points covered in one primary 
code period. And the sample points in one primary code period are 
divided into N = 4 blocks. NSC = 25 is the number of SC bits

Algorithms Complex multiplication

mSBZP 6NTlog
2
(T∕N)N2

SC
 *

1.3501 × 109

IHSPF Ar × l + ArΥB × (M∕2)log
2
M

9.1865 × 107
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Conclusion

The IHSPF algorithm is proposed based on the PMF-FFT. 
The conventional 2-D parallel search in the primary code 
phase and Doppler frequency is extended to a 3-D parallel 
search in the primary code phase, secondary code phase, 
and Doppler frequency using the PScPE. The envelope loss 
problem of the FFT is analyzed, and the integration gain 
envelope is improved by the ELM method, which combines 
zero padding and spectrum interleaving. An improved detec-
tion method, the I-MCCD, is introduced to improve the 
acquisition sensitivity further.

Simulations show that the proposed IHSPF algorithm 
has superior acquisition sensitivity performance to the 
BDS-2 and BDS-3 signals with secondary code modulation. 
The acquisition sensitivity of the B1I signal is effectively 
improved up to 23 dB-Hz. The success probability can get 
93% at the maximum gain points and 74% at the minimum 
gain points. Theoretically, when the algorithm is imple-
mented using hardware and the circuit works at 200 MHz, 
the time to complete a search is 515.6 ms. The IHSPF can 
also be applied to other GNSS signals, and the acquisition 
of E1C signals is implemented in our work.

In future, we will validate the IHSPF algorithm on 
FPGAs. The total integration time and the number of 
searches in the I-MCCD can be further researched to bal-
ance the acquisition sensitivity and speed in different appli-
cations. The IHSPF algorithm was designed with multi-
constellation and multi-frequency compatibility in mind. It 
can be extended to a full-constellation and full-frequency 
acquisition algorithm.
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