ORIGINAL ARTICLE

Revisiting Doppler positioning performance with LEO satellites

Chuang Shi1,2,3 · Yulu Zhang1,2 · Zhen Li2,3

Received: 4 October 2022 / Accepted: 24 April 2023 / Published online: 8 May 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Recently, the Doppler shifts from Low Earth Orbit (LEO) satellites have been used to augment GNSS and provide navigation services. We propose a Doppler-only point-solution algorithm for GNSS-like navigation systems operated in LEO. The proposed algorithm can simultaneously estimate the receiver clock drift, position and velocity. Then, we analyze the main error sources in Doppler positioning. To achieve the meter-level positioning accuracy, the satellite position and velocity errors should be within several meters and several centimeters per second, respectively. The ionospheric delay rates of C-band signal will cause about 1 m error in Doppler positioning, which can be eliminated using the ionosphere-free combination. The Doppler positioning accuracy will deteriorate sharply by dozens of meters if there are no corrections for the tropospheric errors. Subsequently, we analyze the Doppler positioning performance. The undiferenced Doppler positioning accuracy is at meter level, which is comparable with the pseudorange-based positioning in GNSS. To ensure convergence in the LEO-based Doppler positioning, the initial receiver position error should be less than 300 km when the satellites orbit is at an altitude of 550 km.

Keywords Doppler positioning · Low Earth Orbit (LEO) · Range rate · Doppler dilution of precision (DDOP)

Introduction

Recently, Low Earth Orbit (LEO) communication constellations such as Starlink and OneWeb have rapidly developed. These broadband internet providers plan to deploy thousands of satellites into their constellations. Compared with Global Navigation Satellite System (GNSS) satellites in Medium Earth Orbit, LEO satellites have advantages in received signal strength, rapid change of geometry in ranging and large Doppler shift in received frequency (Reid et al. [2018](#page-12-0)). These desirable attributes would be useful in GNSS-challengeable places like urban canyons and indoors. Therefore, LEO constellations have been considered a promising alternative positioning, navigation and timing (PNT) resource.

Existing applications of LEO satellites in navigation are mainly in two aspects, i.e., augmenting GNSS or providing PNT services independently. In the aspect of GNSS augmentation, LEO satellites can enhance the orbit determination for GNSS satellites with their onboard GNSS observations (Zhao et al. [2017](#page-12-1); Zeng et al. [2018\)](#page-12-2) and broadcast navigation augmentation information (Meng et al. [2018](#page-12-3)). Besides, Joerger et al. ([2010](#page-11-0)) and Li et al. ([2019](#page-12-4)) proposed some combined GNSS/LEO observation models to improve convergence performance for precise point positioning (PPP).

There are mainly two methods to provide standalone PNT services with LEO satellites. One is to design new navigation signals and payloads to support navigation capabilities. For example, research groups in the Satelles company and Iridium NEXT designed a Satellite Time and Location (STL) signal to provide PNT services (Lawrence et al. [2016](#page-12-5)). Reid et al. ([2016](#page-12-6)) studied the approaches of leveraging LEO constellations for navigation. Their results indicate that using the LEO constellation for navigation is feasible. The other is to exploit LEO satellites in opportunistic navigation frameworks. The frst issue to be addressed is how to estimate the states (position, velocity and clock drift) of the satellite and receiver simultaneously, as the orbital elements of LEO satellites are not known precisely. Ardito et al.

 \boxtimes Zhen Li hpulizhen@163.com

School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China

² Key Laboratory of Navigation and Communication Fusion Technology, Ministry of Industry and Information Technology, 37 Xueyuan Road, Beijing 100191, China

Research Institute for Frontier Science, Beihang University, 37 Xueyuan Road, Beijing 100191, China

[\(2019](#page-11-1)) solved this problem using a simultaneous tracking and navigation framework. Khalife et al. [\(2020](#page-12-7)) proposed a diferential framework to deal with this problem. The other challenge is to extract navigation observables from the LEO satellite signals. Farhangian and Landry ([2020\)](#page-11-2), Khalife and Kassas [\(2019a,](#page-11-3) [2019b](#page-12-8)) and Orabi et al. ([2021](#page-12-9)) designed specialized receivers to obtain the pseudorange, carrier phase and Doppler measurements. Among them, the Doppler shift is generally easy to measure from these modulated signals (Khalife et al. [2021;](#page-12-10) Psiaki and Slosman [2019\)](#page-12-11). The feasibility is the main advantage of Doppler measurements, especially for LEO communication satellites. Besides, the Doppler measurement is less affected by multipath effects than pseudorange. The Doppler shifts can also be used for velocity estimation (Chen et al. [2013](#page-11-4)), orbit and attitude determination (Jayles et al. [2010](#page-11-5); Park et al. [2011](#page-12-12)). Thus, the Doppler shift observations have attracted much attention in LEO-based navigation.

In LEO-based Doppler positioning, the pioneering early TRANSIT navigation system is the frst satellite-based Doppler positioning system (Kershner and Newton [1962\)](#page-11-6). This system was introduced for military applications in 1964 and then was released for public use to provide positioning and navigation service in 1968 (Kouba [1983\)](#page-12-13). It had more than 10 satellites in polar orbits at an altitude of about 1100 km. Typically one receiver could observe only one satellite at a time. The point positioning accuracy was around 100–200 m using about 2 min of Doppler shift observations. The positioning accuracy can be further improved with ionospheric delay corrected by dual-frequency (150 MHz and 400 MHz). For stationary receivers, the sub-meter positioning accuracy could be achieved using the precise ephemeris determined by the US Defense Mapping Agency and observations over a period of several days with 30 or more satellite passes (Kouba [1983\)](#page-12-13). The relative position of simultaneously observing stations separated by distances up to 250 km could be computed with an accuracy of better than 40 cm at eight-hour intervals (Anderle [1979](#page-11-7)). With the advent of the Global Positioning System (GPS) and its superior performance, the TRANSIT was decommissioned in 1996.

In recent years, Benzerrouk et al. [\(2019\)](#page-11-8), Tan et al. ([2019](#page-12-14)) and Neinavaie et al. ([2021\)](#page-12-15) have explored the approaches of Doppler positioning using LEO constellations. The positions and velocities of LEO satellites are computed from the Two-line Element (TLE) fles with the Simplifed General Perturbations model 4 (SGP4). However, the position error of the satellite is about 2–3 km as the orbit is predicted 2 days beyond the epoch at which the TLE fle was generated (Vallado and Crawford [2008](#page-12-16)). Besides, Khalife and Kassas ([2019a\)](#page-11-3), Neinavaie et al. ([2021\)](#page-12-15) and Orabi et al. ([2021\)](#page-12-9) assumed that the satellite and receiver clock drifts did not change with time and lumped them into one term in the estimation. Moreover, they ignored the ionospheric and tropospheric delay rates in the measurements due to their negligible amounts compared with the satellite velocity errors. Nevertheless, these error sources should be carefully considered in the LEObased Doppler positioning system, or they will reduce the positioning accuracy (Psiaki [2021\)](#page-12-17).

We propose a point-solution algorithm for GNSS-like navigation systems operated in LEO to analyze the error sources of Doppler positioning. LEO satellites could be modified to be equipped with navigation payloads and broadcast signals (e.g., beacon signals, short bursts) to support navigation capabilities (Reid et al. [2016;](#page-12-6) Psiaki [2021](#page-12-17)). The proposed algorithm for these LEO-based navigation systems is of great signifcance as they are becoming reality. In the following sections, we frst describe the principle of Doppler positioning. Then, we analyze the main error sources and the Doppler positioning performance with LEO satellites. We test the sensitivity to the initial position error for the proposed algorithm and discuss the possible diversity between reality and the simulations. Finally, the conclusions are drawn.

Method and algorithm

The existing Doppler positioning methods with LEO satellites usually need to collect sufficient observations over a period of time for a static receiver (Benzerrouk et al. [2019](#page-11-8); Tan et al. [2019;](#page-12-14) Neinavaie et al. [2021\)](#page-12-15). The receiver position is calculated by multiple Doppler measurements of diferent satellites at diferent epochs. However, the researchers assumed that the satellite and receiver clock drifts were constant during the period of observation. Moreover, they used TLE fles to compute the satellites' positions and ignored atmospheric delay rates in the measurements, both of which will decrease the positioning accuracy.

We propose a single-epoch least-square method for Doppler positioning with LEO satellites. Adequate Doppler measurements can be obtained in just one epoch for such a system. The proposed algorithm can simultaneously estimate the velocity, position and clock drift of the receivers, and models are used to correct for the satellite orbital errors, clock drifts and atmospheric delay rates. We introduce the Doppler dilution of precision (DDOP) to evaluate the positioning performance preliminarily.

Undiferenced Doppler positioning

The Doppler effect is caused by the relative movement between the transmitter and receiver and can be described as (Braasch and Dierendonck [1999\)](#page-11-9):

$$
D = f_R - f_T = \pm \frac{v_{\text{los}}}{c} \cdot f_T = \pm \frac{v_{\text{los}}}{\lambda_{f_T}}
$$
 (1)

where *D* is Doppler frequency shift; f_R and f_T are the received and transmitted frequencies, respectively; *c* is the velocity of light; λ_{f_T} is the wavelength of the transmitted signal; and v_{los} is the relative velocity magnitude between transmitter (e.g., satellite) and receiver in line-of-sight (LOS) direction. The Doppler shift is positive if the transmitter and receiver are moving toward, while it is negative if they are moving away. *v*los is also referred to as the pseudorange rate (Braasch and Dierendonck [1999\)](#page-11-9):

$$
v_{los} = (\mathbf{v}^s - \mathbf{v}_r) \cdot \frac{\mathbf{p}^s - \mathbf{p}_r}{\|\mathbf{p}^s - \mathbf{p}_r\|} = \dot{\rho}
$$
 (2)

where $\mathbf{v}^s = \begin{bmatrix} v_x^s, v_y^s, v_z^s \end{bmatrix}$ \int_0^T and $\mathbf{v}_r = \left[v_{r_x}, v_{r_y}, v_{r_z}\right]^T$ are the satellite and receiver velocity vectors, respectively; and $\mathbf{p}^s = [x^s, y^s, z^s]^T$ and $\mathbf{p}_r = [x_r, y_r, z_r]^T$ are the satellite and receiver position vectors, respectively; ρ is the pseudorange rate, i.e., the frst derivative of pseudorange with respect to time. The pseudorange measurement equation is (Li and Huang [2013\)](#page-12-18):

$$
P_r^s = \left\| \mathbf{p}^s - \mathbf{p}_r \right\| + c \cdot (\delta t_r - \delta t^s) + c \cdot dR_r^s + T_r^s + I_{rf}^s + dE_r^s + \varepsilon_p \tag{3}
$$

where P_r^s is pseudorange; δt^s and δt_r are the satellite and receiver clock offsets, respectively; T_r^s and I_{rf}^s are the tropospheric and ionospheric delays, respectively; ε_n is the unmodeled errors including the observational noise and multipath error; and dR_r^s is the relativistic effect correction to satellite clock offset (Petit and Luzum 2010):

$$
dR_r^s = \frac{-2}{c^2} (\mathbf{p}^s \cdot \mathbf{v}^s)
$$
 (4)

 dE_r^s is the Sagnac effect term which concerns the propagation of electromagnetic signals in Earth rotating reference frame (Gulklett [2003](#page-11-10)):

$$
dE_r^s = \frac{w_e}{c} \left(x^s \cdot y_r - y^s \cdot x_r \right) \tag{5}
$$

where w_e is the Earth rotation angular velocity. The pseudorange rate equation is:

$$
-\lambda_{f_T} \cdot D_r^s = \dot{P}_r^s = (\mathbf{v}^s - \mathbf{v}_r) \cdot \frac{\mathbf{p}^s - \mathbf{p}_r}{\|\mathbf{p}^s - \mathbf{p}_r\|} + c \cdot (\delta t_r - \delta t^s) + c \cdot d\dot{R}_r^s + \dot{T}_r^s + \dot{I}_{rf}^s + d\dot{E}_r^s + \varepsilon_\rho
$$
 (6)

where \dot{P}_r^s is the pseudorange rate; δt_r and δt^s are the satellite and receiver clock drifts, respectively; \dot{T}_r^s and \dot{I}_{rf}^s are the

tropospheric and ionospheric delay rates, respectively; $d\dot{R}$ ^{*s*}, is the relativistic efect correction to satellite clock drift; and $d\dot{E}^s$ is the Sagnac effect of the range rate, which can be derived from:

$$
d\dot{R}_r^s = \frac{-2}{c^2} (\dot{\mathbf{p}}^s \cdot \mathbf{v}^s + \mathbf{p}^s \cdot \dot{\mathbf{v}}^s)
$$
 (7)

$$
d\dot{E}_r^s = \frac{w_e}{c} \left(v_x^s \cdot y_r + v_{r_y} \cdot x^s - v_y^s \cdot x_r - v_{r_x} \cdot y^s \right)
$$
 (8)

 ε_{ρ} denotes all the unmodeled errors. The satellite velocity, position and clock drift can be obtained from the ephemeris. The linearized equation of (6) with the initial receiver value

$$
\mathbf{X}_{0} = \left[x_{r}^{0}, y_{r}^{0}, z_{r}^{0}, v_{r_{x}}^{0}, v_{r_{y}}^{0}, v_{r_{z}}^{0}, \delta t_{r,0}\right]^{T} \text{ is as follows:}
$$
\n
$$
\dot{\rho}_{i} \approx \dot{\rho}_{i}^{0} + \frac{\partial \dot{\rho}_{i}}{\partial x_{r}} \cdot \Delta x_{r} + \frac{\partial \dot{\rho}_{i}}{\partial y_{r}} \cdot \Delta y_{r} + \frac{\partial \dot{\rho}_{i}}{\partial z_{r}} \cdot \Delta z_{r} + \frac{\partial \dot{\rho}_{i}}{\partial v_{r}} \cdot \Delta y_{r} + \frac{\partial \dot{\rho}_{i}}{\partial v_{r}} \cdot \Delta z_{r}
$$
\n
$$
\approx \dot{\rho}_{i}^{0} + \left[\frac{\Delta v_{x_{i}}}{\rho_{i}^{0}} \cdot \left(e_{x_{i}}^{2} - 1\right) + \frac{\Delta v_{y_{i}}}{\rho_{i}^{0}} \cdot e_{x_{i}} \cdot e_{y_{i}} + \frac{\Delta v_{z_{i}}}{\rho_{i}^{0}} \cdot e_{x_{i}} \cdot e_{z_{i}}\right] \cdot \Delta x_{r}
$$
\n
$$
+ \left[\frac{\Delta v_{x_{i}}}{\rho_{i}^{0}} \cdot e_{y_{i}} \cdot e_{x_{i}} + \frac{\Delta v_{y_{i}}}{\rho_{i}^{0}} \cdot \left(e_{y_{i}}^{2} - 1\right) + \frac{\Delta v_{z_{i}}}{\rho_{i}^{0}} \cdot e_{y_{i}} \cdot e_{z_{i}}\right] \cdot \Delta y_{r}
$$
\n
$$
+ \left[\frac{\Delta v_{x_{i}}}{\rho_{i}^{0}} \cdot e_{z_{i}} \cdot e_{x_{i}} + \frac{\Delta v_{y_{i}}}{\rho_{i}^{0}} \cdot e_{z_{i}} \cdot e_{y_{i}} + \frac{\Delta v_{z_{i}}}{\rho_{i}^{0}} \cdot \left(e_{z_{i}}^{2}
$$

where ρ_i^0 and $\dot{\rho}_i^0$ are the initial pseudorange and pseudorange rate, respectively; $\Delta v_{x_i} = v_x^{s,i} - v_{r_x}^0$, $\Delta v_{y_i} = v_y^{s,i} - v_{r_y}^0$ and $\Delta v_{z_i} = v_z^{s,i} - v_{r_z}^0$ are the relative velocities between the satellite and receiver; $[e_{x_i}, e_{y_i}, e_{z_i}]^T = \left[\frac{x^{s,i} - x_i^0}{\rho_i^0}, \frac{y^{s,i} - y_i^0}{\rho_i^0}, \frac{z^{s,i} - z_i^0}{\rho_i^0}\right]$ \int_0^T is the direction cosine of receiver pointing to the satellite; and $\Delta \mathbf{X}_r = \left[\Delta x_r, \Delta y_r, \Delta z_r, \Delta v_{r_x}, \Delta v_{r_y}, \Delta v_{r_z}, \Delta \delta i_r \right]^T$ is a correction to the initial value. Combining the observations of *M* satellites, the least-square iteration equation and the design matrix are:

$$
\mathbf{L} = \mathbf{G} \cdot \begin{bmatrix} \Delta x_r \\ \Delta y_r \\ \Delta z_r \\ \Delta v_{r_x} \\ \Delta v_{r_y} \\ \Delta v_{r_z} \\ \Delta \delta t_r \end{bmatrix} + \begin{bmatrix} \epsilon_{\dot{\rho}_i} \\ \epsilon_{\dot{\rho}_j} \\ \vdots \\ \epsilon_{\dot{\rho}_k} \end{bmatrix} = \mathbf{G} \cdot \Delta \mathbf{X}_r + \epsilon_{\dot{\rho}} \qquad (10)
$$

$$
\mathbf{G} = \begin{bmatrix} \frac{\partial \dot{\rho}_1}{\partial x_r} & \frac{\partial \dot{\rho}_1}{\partial y_r} & \frac{\partial \dot{\rho}_1}{\partial v_r} & \frac{\partial \dot{\rho}_1}{\partial v_{r_y}} & \frac{\partial \dot{\rho}_1}{\partial v_{r_z}} & \frac{\partial \dot{\rho}_1}{\partial \delta \dot{t}_r} \\ \frac{\partial \dot{\rho}_i}{\partial x_r} & \frac{\partial \dot{\rho}_i}{\partial y_r} & \frac{\partial \dot{\rho}_i}{\partial z_r} & \frac{\partial \dot{\rho}_i}{\partial v_{r_y}} & \frac{\partial \dot{\rho}_i}{\partial v_{r_z}} & \frac{\partial \dot{\rho}_i}{\partial \delta \dot{t}_r} \\ \frac{\partial \dot{\rho}_m}{\partial x_r} & \frac{\partial \dot{\rho}_m}{\partial y_r} & \frac{\partial \dot{\rho}_m}{\partial v_{r_x}} & \frac{\partial \dot{\rho}_m}{\partial v_{r_y}} & \frac{\partial \dot{\rho}_m}{\partial v_{r_z}} & \frac{\partial \dot{\rho}_m}{\partial \delta \dot{t}_r} \\ \frac{\partial \dot{\rho}_m}{\partial x_r} & \frac{\partial \dot{\rho}_m}{\partial y_r} & \frac{\partial \dot{\rho}_m}{\partial v_{r_x}} & \frac{\partial \dot{\rho}_m}{\partial v_{r_z}} & \frac{\partial \dot{\rho}_m}{\partial v_{r_z}} & \frac{\partial \dot{\rho}_m}{\partial \delta \dot{t}_r} \end{bmatrix} \tag{11}
$$

where **L** is a column vector of observations; ε_{ρ} is a vector of observation noises. ΔX ^r is the vector of corrections and can be computed by $\Delta \mathbf{X}_r = (\mathbf{G}^T \cdot \mathbf{W} \cdot \mathbf{G})^{-1} \mathbf{G}^T \cdot \mathbf{W} \cdot \mathbf{L}$. W is the weight matrix, which is usually defned as the inverse of the Doppler measurement error covariance matrix. If the Doppler errors are uncorrelated with equal variances, W is a diagonal matrix. Then, the solution is obtained by $X_0 + \Delta X_r$, when the iteration process converges. Using the above method, the receiver velocity, position and clock drift can be solved with at least 7 diferent satellites at the same time.

Doppler dilution of precision

The positioning error of standard single point positioning can be expressed as (Guan et al. [2020](#page-11-11)):

$$
\sigma_{3D} = \text{GDOP} \cdot \sigma_{\text{URE}} \tag{12}
$$

where σ_{URE} is the user ranging error, including clock error, atmospheric efect, etc. GDOP is the geometric dilution of precision and can refect the positioning error caused by the geometry of visible satellites. Similarly, the relation between positioning error and DDOP is (Morales-Ferre et al. [2020](#page-12-19)):

$$
\sigma_{3D, Doppler} = DDOP \cdot \sigma_{URE, Doppler}
$$
\n(13)

where $\sigma_{URE, Doppler}$ is the user Doppler ranging error, which is related to the clock drift, atmospheric delay rate, etc. In the DDOP calculation, for the sake of simplicity, the identity weighting is used, i.e., the Doppler measurement weight matrix is diagonal with all the diagonal elements equal to 1. Thus, DDOP can be computed using DDOP = $\sqrt{\text{trace}[(G^T \cdot G)^{-1}]}$. According to (13), reducing the DDOP is a way to improve the Doppler positioning

accuracy. The velocity and altitude of GNSS satellites are about 3.9 km/s and 20,200 km, respectively, making the item $\Delta v_{x_1} \cdot (e_{x_1} \cdot e_{x_1} - 1) / \rho_1$ of matrix **G** in the order of 10⁻⁴ and the GNSS-DDOP in the order of $10⁴$. For LEO satellites, the item $\Delta v_{x_1} \cdot (e_{x_1} \cdot e_{x_1} - 1) / \rho_1$ increases to 10^{-2} and the LEO-DDOP reduces to 10^2 . The LEO-DDOP is less than GNSS-DDOP by 2 orders; thus, the accuracy of LEO Doppler positioning should be 100 times better than GNSS. When there are many visible satellites, one feasible way to reduce DDOP is selecting a group of satellites from all the visible satellites to improve the structure of **G** matrix and minimize DDOP.

Simulation and experiment

Since most LEO constellations are designed for communication and are still under construction, no public data are released for navigation applications. Thus, we have to simulate the ephemeris and ground observations for LEO satellites. First, we describe the data simulation and positioning processing strategies. Then we analyze the main error sources and the performance of undiferenced Doppler positioning, and discuss the possible diversity between reality and the simulations.

Data simulation and positioning processing strategies

Among all LEO constellations, Starlink is a typical heterogeneous mega-constellation consisting of diferent orbital shells (Cakaj [2021\)](#page-11-12). An orbital shell is a walker constellation (Walker [1984\)](#page-12-20); the total number of satellites, the number of orbital planes, the orbital altitude and inclination describe its geometric confguration. In order to investigate the infuence of diferent constellations on positioning, two Starlink-like LEO constellations are simulated and their orbital shells' parameters (Zhang et al. [2022](#page-12-21)) are shown in Table [1.](#page-3-0) The 1584 satellites of Constellation A are evenly distributed on the frst orbital shell. Constellation B has 4408 satellites and consists of 5 orbital shells. These satellites orbit at altitudes

Table 1

of 540–570 km. With orbital inclinations of 53°, 53.2°, 70° and 97.6°, Constellation B can guarantee global coverage.

In the simulation, the initial orbital elements of satellites are calculated according to the parameters in Table [1](#page-3-0). Then, the satellite position and velocity at any time are propagated using orbital force models. The N-Body perturbation employs JPL DE405 (Earth, Sun, Moon, etc.) (Standish [1998\)](#page-12-22). The other orbital force models include Earth gravity of degree 100 and order 100 (Reigber et al. [2005](#page-12-23)), solar radiation pressure (Ziebart [2004\)](#page-12-24), DTM94 model for atmospheric density (Berger et al. [1998](#page-11-13)), tides and relativistic efects (IERS 2010 convention) (Petit and Luzum [2010](#page-12-25)). Finally, some random errors are added to simulate the orbital errors. The satellite position and velocity coordinates are simulated in the Earth-centered inertial (ECI) frame and then transformed into the Earth-centered Earth-fxed (ECEF) frame.

In early times, LEO satellites are equipped with crystal oscillators or GPS receivers to provide the frequency standard. However, their clock offsets and drifts significantly depend on the hardware. Rybak et al. [\(2021](#page-12-26)) recently proposed using the Clip Scale Atomic Clocks (CSACs) for small satellite navigation systems. The CSACs' clock stability at an average time of 100 min is about 10^{-12} s/s

Fig. 1 Distribution of 648 stations with a spatial resolution of 10°

(Reid et al. [2016\)](#page-12-6). Using the polynomial model proposed by Tavella ([2008](#page-12-27)), the clock offset and drift of every LEO satellite are simulated with standard deviations of 1 us and 10^{-12} s/s, respectively.

Then, 648 stations with a spatial resolution of 10° are chosen and their distribution is shown in Fig. [1.](#page-4-0) The data simulation and positioning processing strategies are shown in Table [2](#page-4-1). The receiver is assumed to measure a valid Doppler shift if the satellite lies above a 5° elevation angle. The C-band signal frequencies are chosen because they sufer from smaller ionospheric effects than VHF/L-band and lower attenuation (e.g., free space loss, rainfall attenuation) than Ku/Ka/V-band (Irsigler et al. [2004](#page-11-14)).

In the observation simulation, the geometric distance between the station and the satellite is first calculated. Then, the simulated Doppler observation is obtained by adding various error terms. Among them, the atmospheric delay rates are derived from the atmospheric delays by taking diference between epochs. The tropospheric delay is determined using the Saastamoninen model, the global pressure and temperature model 3 (GPT3) and the Vienna mapping functions 3 (VMF3) (Landskron and Böhm [2018](#page-12-28)). The ionospheric delay is obtained from NeQuick-G model (Aragon-Angel et al. [2019](#page-11-15)). Finally, some random errors are added to approximate the real observation. Previous studies (Neinavaie et al. [2021;](#page-12-15) Psiaki and Slosman [2019\)](#page-12-11) show that the Doppler shifts can be measured precisely. Jiang et al. ([2022\)](#page-11-16) set the accuracy of the measured Doppler shift to be 0.1 Hz. Thus, the Doppler measurement noise is simulated by a zero-mean Gaussian distribution with a standard deviation of 0.1 Hz.

In the following sections, the receiver position and velocity are solved in ECEF coordinate and then converted into a north–east–up frame centered at the true receiver position. The root mean square (RMS) is used to evaluate the positioning accuracy.

Table 2 Data simulation and Doppler positioning processing strategies

Items	Simulation strategy	Processing strategy	
Date	April 1, 2022		
Signal frequency	C-band: $f_1 = 5$ GHz, $f_2 = 7$ GHz		
Cutoff elevation angle	5°		
Satellite position and velocity	Initial orbital elements $+$ orbital force models $+$ random error	From ephemeris	
Satellite clock drift	$CSACs + polynomial model$	From ephemeris	
Receiver position	Stationary	Estimated as constant	
Receiver clock drift	Randomly simulated with a magnitude of 10^{-6} s/s	Estimated as white noise process	
Tropospheric delay rate	Saastamoninen + GPT3 + VMF3, take difference between epochs	Corrected	
Ionospheric delay rate	NeQuick-G model, take difference between epochs	Corrected	
Relativistic effect	(7)	Corrected	
Sagnac effect	(8)	Corrected	

GPS Solutions (2023) 27:126

Error analysis

LEO satellites travel at high speeds, rapidly changing their positions and elevation angles. This makes the LEO-based positioning more sensitive to satellite-related errors, i.e., the satellite position and velocity errors. Besides, the ionospheric and tropospheric delay rates become signifcant and should be considered in detail. Therefore, the main error sources in LEO-based Doppler positioning should be discussed.

Satellite position and velocity errors

One of the main error sources that reduce positioning accuracy is satellite position and velocity errors. The orbit determination of GNSS satellites has been widely studied, and the precision is at the centimeter level or better. However, this may be challenging for LEO satellites without onboard GNSS receivers and atomic clocks (Morales et al. [2019](#page-12-29)). Blindly using the positions of LEO satellites extrapolated by the TLE and SGP4 will reduce the positioning accuracy. The impact of satellite orbital errors in Doppler positioning should be considered in detail. In the simulation, random errors with diferent orders are added to the satellite position or velocity. The positioning results are shown in Table [3](#page-5-0), where N, E and U denote north, east and up directions, respectively.

The results show that the satellite position error of several meters and velocity error of several centimeters per second will reduce the positioning accuracy. Afterward, when the satellite orbital error increases by one order of magnitude, the positioning error also increases by one order of magnitude. The 30 m per-axis position error and 30 cm/s per-axis velocity error reduce the positioning accuracy by 5.28 and 7.77 times, respectively. The 300 m position error and 3 m/s velocity error increase the positioning error by 50–77 times.

Worse still, the errors of 3 km and 30 m/s will cause about 3 km positioning errors.

Ionospheric delay rates

The ionospheric delay rate can be accessible through the frst derivative of ionospheric delay with respect to time or simply taking the diference between epochs:

$$
\dot{I}_{r,f}^{s}(t) = \frac{I_{r,f}^{s}(t + \Delta t) - 2I_{r,f}^{s}(t) + I_{r,f}^{s}(t - \Delta t)}{2\Delta t}
$$
(14)

where *t* is the current epoch; Δt is the sampling interval; and *̇* I_{rf}^s is the ionospheric delay rate. This formula actually calculates the average ionospheric delay rate over a period of time. When Δt is small enough, \dot{I}_{rf}^s can be considered as the instantaneous ionospheric delay rate. Since the ionospheric delay rates are related to signal frequencies and solar activities, we simulate the ionospheric delay rates of diferent signal frequencies under diferent solar activities. The simulation strategies are shown in Table [4.](#page-6-0)

The results (see Fig. [2\)](#page-6-1) show that the ionospheric delay rates in high solar activity are the largest, while medium and low solar activities follow. The ionospheric delay rates of LEO satellites (350–2000 km altitudes) are much greater than that of satellites at 5000–30,000 km altitudes. Thus, the ionospheric delay rates of LEO satellites should be discussed in detail. Take Orbcomm satellites (825 km altitude and VHF-band) as an example, its ionospheric delay rate ranges from 9 to 29 m/s under diferent solar activities. If the LEO satellites broadcast signals in L-band, there will be 3–21 cm/s ionospheric delay rates, which will cause 6–42 m errors in Doppler positioning. These indicate that the VHF/L-band signals ionospheric delay rates cannot be neglected in LEO positioning. The ionospheric delay rate is inversely proportional to the square of the frequency. Thus, the higher the frequency, the lower the ionospheric delay

Table 3 Doppler positioning accuracy with diferent orbital errors

Fig. 2 Ionospheric delay rates of diferent signals under diferent solar activities and orbital attitudes

rate. If the C-band signal is used for LEO navigation, there will be $0.3-2$ cm/s ionospheric delay rates, which will cause 0.6–4 m errors in Doppler positioning. For Ka/K/Ku-band signals, their ionospheric delay rates are less than 0.21 cm/s.

Then, we add the C-band signal ionospheric delay rates into the observation simulations. The results in Fig. [3a](#page-7-0) ionospheric errors are not corrected. The 3D RMS of positioning results in Fig. [3](#page-7-0)a is 1 m, and the 3D RMS of positioning results in Fig. [3b](#page-7-0) is 2.1 m. This is consistent with the above theoretical value in Fig. [2](#page-6-1). For dual-frequency receivers, the ionospheric delay rate can be eliminated using

and b show that there will be errors in all directions if the

Fig. 3 Doppler positioning errors caused by C-band signal ionospheric delay rates (without orbital errors); three rows represent the positioning accuracy for N, E and U directions, respectively

the ionosphere-free (IF) combination of pseudorange rate measurements:

$$
\dot{P}_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \cdot \dot{P}_1 - \frac{f_2^2}{f_1^2 - f_2^2} \cdot \dot{P}_2
$$
\n(15)

where \dot{P}_1 and \dot{P}_2 are pseudorange rates at f_1 and f_2 , respectively. The 3D RMS of positioning errors for the IF combination (in Fig. [3](#page-7-0)c) is about 1.9 m. This is about 2 times as large as the results in Fig. [3a](#page-7-0). The reason is that IF combination amplifes the measurement noise (0.1 Hz) and infuences the positioning performance (Bolla and Borre [2019](#page-11-17); Collins [1999;](#page-11-18) Zhang et al. [2010\)](#page-12-30).

Tropospheric delay rates

In the simulation, the tropospheric delay rates are derived by taking the diference between epochs. The sampling interval is also set to be 0.1 s. The tropospheric delays are calculated using the Saastamoninen model, GPT3 meteorological parameters and VMF3 mapping function. Among them, the mapping function is related to the elevation angle. The time, station and orbital altitude are the same as the ionospheric delay rates simulation strategies shown in Table [4](#page-6-0).

The results of tropospheric delay rates with diferent satellite orbital altitudes are shown in Fig. [4.](#page-7-1) For LEO satellites with altitudes of 350–550 km, the tropospheric

Fig. 4 Tropospheric delay rates with diferent satellite orbital altitudes

delay rates are 21–25 cm/s, which, if not corrected, will cause 42–50 m errors in Doppler positioning. As for GNSS satellites with altitudes of about 20,000 km, the tropospheric delay rate is decreased sharply to 1 cm/s. The tropospheric delay rates with satellite altitudes below 1000 km are far greater than those above 2000 km. This phenomenon may be caused by the rapid change of elevation angles when LEO satellites travel at high speeds.

Then, the tropospheric errors are added to the observation simulations. The tropospheric delay rates are derived by taking the diference between the tropospheric delays at diferent epochs. The tropospheric delays along the signal paths are obtained through the simulated zenith total delay (ZTD) with the VMF3 mapping function. The ZTD is calculated by adding the zenith hydrostatic delay (ZHD) into zenith wet delay (ZWD), which are obtained using the Saastamoninen model and GPT3 meteorological parameters. The positioning results of 21 stations with (red bars) or without (yellow bars) tropospheric errors are shown in Fig. [5](#page-8-0). These stations are composed of three evenly selected stations at 7 lines of latitude (45W, 30W, 15W, 0, 15N, 30N and 45N). The blue bars are the positioning results after corrections using the Saastamoninen model and its mapping function (which difers from VMF3). The red bars in Fig. [5](#page-8-0) show that the positioning accuracy will sharply deteriorate without corrections for the tropospheric errors. The positioning errors in U direction are increased by 20–60 m. This is consistent with the above theoretical value in Fig. [4](#page-7-1). The positioning results after corrections (blue bars in Fig. [5\)](#page-8-0) show a bit diferent from the results without tropospheric errors (yellow bars in Fig. [5](#page-8-0)). This probably is because the mapping functions we used in the observation simulation and positioning process is diferent.

Undiferenced Doppler positioning performance

The data simulation and positioning processing strategies are shown in Table [2](#page-4-1). The undiferenced Doppler positioning RMS and DDOP are shown in Figs. [6](#page-9-0) and [7.](#page-9-1) The RMSs and DDOPs of stations in mid latitude zones are the smallest, followed by the low- and high-latitude zones. This phenomenon is thought to be related to the constellation confguration (Reid et al. [2018;](#page-12-0) Zhang et al. [2022](#page-12-21)). Then, we calculate the average RMSs of global stations. The average RMSs in N, E and U directions are 1.48, 2.73 and 2.83 m with Constellation A and 0.89, 1.53 and 2.19 m with Constellation B. The positioning accuracy is at the meter level which is comparable to the pseudorange-based positioning in GNSS.

Besides, the results show that the spatial distribution of DDOPs are consistent with the RMSs. We calculate the correlation between DDOPs and U-RMSs of stations in the 5°N latitudinal zone. The correlation coefficient is 0.907 (Fig. [8](#page-9-2)).

Fig. 5 Doppler positioning errors caused by tropospheric errors (without orbital errors)

Fig. 6 Undiferenced Doppler positioning results with Constellation A (left) and Constellation B (right). The white-colored zones indicate that there are no solutions for these stations

Fig. 7 DDOPs of global stations with Constellation A (**a**) and Constellation B (**b**)

This indicates that the DDOP can refect the positioning accuracy of undiferenced Doppler positioning.

Sensitivity of initial position error

The nonlinear least-square method needs an appropriate initial position value to ensure convergence. In GNSS, even if the initial receiver position value is set to be 0, the solution can still converge. However, the situation is diferent with LEO satellites due to their low orbital altitudes. Thus, the LEO-based Doppler positioning algorithm should be tested for its sensitivity to initial position error. The actual receiver position is (6,123,320.353,−136,480.099, 1,773,905.419) km in ECEF. The initial errors are added

Fig. 8 DDOPs and U-RMSs of stations in the 5° N latitudinal zone

Table 5 Positioning results with diferent initial receiver position errors

Initial error (km)	$RMS-N(m)$	$RMS-E(m)$	$RMS-U(m)$	Solution epochs
Ω	2.451	0.449	1.488	2521
10	2.451	0.449	1.488	2521
100	2.451	0.449	1.488	2521
300	2.452	0.448	1.489	2511
350	2.446	0.449	1.477	1824
400	2.507	0.378	1.548	82
405	2.509	0.538	1.716	5
410	No solution			
450	No solution			

in all directions. The simulation time is from 1:30 to 22:30 with an interval of 30 s. Thus, there are 2521 epochs in total. The positioning results with diferent initial position errors are shown in Table [5.](#page-10-0)

The results show that with an initial position error of 300 km or larger, the iteration process may be divergent. With an initial error of 410 km, the iterative algorithm cannot converge to the actual position, resulting in no solution. These indicate that the LEO-based Doppler positioning is sensitive to the initial position error. The initialization of the receiver position should be paid more attention and an appropriate initial position value must be given in LEO-based Doppler positioning.

Diversity between reality and the simulations

We examine the performance of the proposed methods on simulated data. The possible diversity between reality and the simulations must be discussed in detail to make the proposed methods work in practice.

First, the proposed methods assume that the receiver can see many LEO satellites simultaneously. Generally, the number of visible satellites from one earlier constellation (e.g., Iridium, Orbcomm) is 1–2 for communication purposes. In recent years, the rapidly developed broadband mega-constellations have enabled many satellites to be visible. Among them, the Starlink already has over 3200 satellites in orbit by February 2023 [\(https://satellitemap.space/?constellation=](https://satellitemap.space/?constellation=starlink) [starlink](https://satellitemap.space/?constellation=starlink)). Neinavaie et al. ([2021\)](#page-12-15) explored the frst Doppler tracking and positioning results with six real Starlink LEO satellites over a period of 800 s. In the near future, more than 7 satellites could be visible at the same time with these broadband LEO constellations.

In the simulation, we assumed that the satellite positions could be determined with an error of several meters. In fact, this can be achieved with a GNSS receiver onboard the LEO satellites (Reid et al. [2018](#page-12-0)). Furthermore, if the real-time precise positions for the GNSS satellites are provided, the position errors of LEO satellites could be in several centim-eters (Montenbruck et al. [2005\)](#page-12-31). The satellite clock offset and drift are simulated with standard deviations of 1 us and 10^{-12} s/s, respectively. This can be easily achieved for LEO satellites with onboard GNSS receivers and CSACs, which has been used for small satellite navigation systems (Reid et al. [2016](#page-12-6); Rybak et al [2021\)](#page-12-26).

It must be noted that a mismatch may exist between the true atmospheric efects and the models used in the simulation. However, little is known about the infuence of tropospheric or ionospheric modeling errors on Doppler measurements of LEO satellites. Graziani et al. ([2009\)](#page-11-19) estimated and corrected the tropospheric efect on Doppler shift for deep space probe navigation purposes. Their results showed that the residual uncalibrated tropospheric and/or antenna mechanical noise dominated the range rate residuals. Our simulation results also showed that the Doppler positioning accuracy would be reduced by dozens of meters if there are no corrections for tropospheric delay rates. The accuracy of tropospheric delays estimation using the precise point positioning (PPP) method with LEO-enhanced GNSS (LeGNSS) observations can be at the millimeter level, although this result is based on simulation and not for the tropospheric delay rates (Zhang et al. [2023\)](#page-12-32). This provides evidence that the tropospheric delay rates of LEO satellites can also be estimated and corrected precisely.

Klobuchar ([1996](#page-12-33)) briefly discussed the ionospheric efects on the Doppler shift and pointed out that the ionosphere could change rapidly by at least one order of magnitude each day. Since most LEO satellites operate within the ionosphere, the classic thin-shell ionospheric model cannot correct ionospheric errors. The NeQuick model, the altimetry data from the JASON/TOPEX satellite and the occultation data from COSMIC may be suitable for LEO satellites (Li et al. [2018;](#page-12-34) Wang et al. [2017;](#page-12-35) Yao et al. [2018](#page-12-36)). Li et al. ([2022](#page-12-37)) proposed a regional bottom-side ionospheric map (RBIM) using the LEO navigation augmentation signals and validated their product based on the NeQuick-G model. Our simulation results based on the NeQuick-G model showed that the ionospheric delay rates of Ka/K/Ku-band signals are less than 0.21 cm/s. This means that the ionospheric delay rates are negligible for the Ku-band Starlink signals and can be removed from the Doppler data.

Conclusion

We propose a point-solution algorithm for a GNSS-like navigation system operated in LEO based on the assumption that LEO satellites could be modifed to support navigation capabilities. The proposed algorithm can estimate the state of the receiver solely using Doppler shifts. Then, we discuss the main error sources in LEO-based Doppler positioning. As one of the main error sources, the satellite position and velocity errors should be within several meters and several centimeters per second, respectively, to ensure meter-level positioning accuracy. Otherwise, the positioning results will sharply deteriorate. The ionospheric and tropospheric delay rates for LEO satellites are far greater than that for GNSS satellites due to the rapid change of LEO satellites' positions. The positioning accuracy will deteriorate sharply by dozens of meters if there are no corrections for the atmospheric errors. Subsequently, we analyze the performance of LEO-based Doppler positioning. The accuracy of undiferenced Doppler positioning is at meter level with a global average RMS better than 3 m. Afterward, the LEO-based Doppler positioning method is tested for its sensitivity to the initial receiver position value. If the initial position error exceeds 300 km, the solution may diverge terribly from the actual position. Thus, an appropriate initialization must be provided to ensure convergence.

Owing to the fact that there are sufficient visible satellites with LEO constellations, the satellite selection algorithm will be developed to improve positioning accuracy. Besides, given the encouraging results shown in this study, additional work should focus on designing the navigation payloads and signals to enable LEO satellites to support navigation capabilities.

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s10291-023-01466-w>.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant No. 41931075, Grant No.42204033). The authors are grateful to CelesTrak for providing TLE fles and the International GNSS Service (IGS) for providing Galileo navigation broadcast messages.

Author contributions All authors contributed to the conception and design of the study. Material preparation, data collection and analysis were performed by CS, YZ and ZL. The frst draft of the manuscript was written by YZ, and all authors commented on previous versions of the manuscript. All authors read and approved the fnal manuscript.

Data availability All ephemeris and observations used in this study are simulated. The Starlink orbital parameters are obtained from the SpaceX non-geostationary satellite system Attachment A: technical information to supplement Schedule S ([https://www.fcc.report/IBFS/](https://www.fcc.report/IBFS/SAT-MOD-20181108-00083/1569860.pdf) [SAT-MOD-20181108-00083/1569860.pdf.](https://www.fcc.report/IBFS/SAT-MOD-20181108-00083/1569860.pdf)) and verifed using TLE fles and SGP4 model ([https://celestrak.org/norad/elements/table.](https://celestrak.org/norad/elements/table.php?GROUP=starlink&FORMAT=tle) [php?GROUP=starlink&FORMAT=tle\)](https://celestrak.org/norad/elements/table.php?GROUP=starlink&FORMAT=tle) in our early work (Zhang et al. [2022](#page-12-21)). The a_{i0} , a_{i1} and a_{i2} coefficients used in NeQuick-G model are obtained from the Galileo navigation broadcast message.

Declarations

Competing interests The authors declare no competing interests.

GPS Solutions (2023) 27:126

References

- Anderle RJ (1979) Accuracy of geodetic solutions based on Doppler measurements of the Navstar global positioning system satellites. Bull Géod 53(2):109–116
- Aragon-Angel A, Zürn M, Rovira-Garcia A (2019) Galileo ionospheric correction algorithm: an optimization study of NeQuick-G. Radio Sci 54(11):1156–1169
- Ardito CT, Morales JJ, Khalife JJ, Abdallah A, Kassas ZM (2019) Performance evaluation of navigation using LEO satellite signals with periodically transmitted satellite positions. In: Proc ION ITM 2019, Institute of Navigation, Reston, Virginia, USA, January 28–31, 306–318
- Benzerrouk H, Nguyen Q, Fang X, Amrhar A, Rasaee H, Landry RJ (2019) LEO satellites based Doppler positioning using distributed nonlinear estimation. IFAC-PapersOnLine 52(12):496–501
- Berger C, Biancale R, Ill M, Barlier F (1998) Improvement of the empirical thermospheric model DTM: DTM94: a comparative review of various temporal variations and prospects in space geodesy applications. J Geod 72:161–178
- Bolla P, Borre K (2019) Performance analysis of dual-frequency receiver using combinations of GPS L1, L5, and L2 civil signals. J Geod 93:437–447
- Braasch MS, Dierendonck AJ (1999) GPS receiver architectures and measurements. Proc IEEE 87(1):48–64
- Cakaj S (2021) The parameters comparison of the "Starlink" LEO satellites constellation for diferent orbital shells. Front Comms Net 2:1–15
- Chen X, Gao W, Wan Y (2013) Revisiting the Doppler flter of LEO satellite GNSS receivers for precise velocity estimation. J Electron 30(2):138–144
- Collins JP (1999) An overview of GPS inter-frequency carrier phase combinations. Techn Memo 18:1–15
- Farhangian F, Landry R (2020) Multi-constellation software-defned receiver for Doppler positioning with LEO satellites. Sensors 20(20):5866–5883
- Graziani A, Bertacin R, Tortora P, Schiavone A, Mercolino M, Budnik F (2009) A GPS based Earth troposphere calibration system for Doppler tracking of deep space probes. In: Proc ION GNSS 2009, Institute of Navigation, Savannah, GA, September 22–25, 2575–2583
- Guan M, Xu T, Gao F, Nie W, Yang H (2020) Optimal walker constellation design of LEO-based global navigation and augmentation system. Remote Sens 12(11):1845
- Gulklett M (2003) Relativistic efects in GPS and LEO. University of Copenhagen, Department of Geophysics, The Niels Bohr Institute, Denmark
- Irsigler M, Hein GW, Schmitz-Peifer A (2004) Use of C-Band frequencies for satellite navigation: benefts and drawbacks. GPS Solut 8(3):119–139
- Jayles C, Chauveau JP, Rozo F (2010) DORIS/Jason-2: better than 10 cm on-board orbits available for near-real-time altimetry. Adv Space Res 46(12):1497–1512
- Jiang M, Qin H, Zhao C, Sun G (2022) LEO Doppler-aided GNSS position estimation. GPS Solut 26:31
- Joerger M, Gratton L, Pervan B, Cohen CE (2010) Analysis of Iridium-augmented GPS for foating carrier phase positioning. Navigation 57(2):137–160
- Kershner R, Newton R (1962) The transit system. J Navig 15(2):129–144
- Khalife JJ, Kassas ZM (2019a) Receiver design for Doppler positioning with LEO satellites. In: 2019a IEEE international conference on acoustics, speech and signal processing (ICASSP), Brighton, UK, May 12–17, 5506–5510
- Khalife JJ, Kassas ZM (2019b) Assessment of diferential carrier phase measurements from Orbcomm LEO satellite signals for opportunistic navigation. In: Proc ION GNSS+ 2019b, Institute of Navigation, Miami, Florida, USA, September 16–20, 4053–4063
- Khalife JJ, Neinavaie M, Kassas ZM (2020) Navigation with differential carrier phase measurements from megaconstellation LEO satellites. In: Proc IEEE/ION PLANS 2020, Institute of Navigation, Portland, OR, USA, April 20–23, 1393–1404
- Khalife JJ, Neinavaie M, Kassas ZM (2021) Blind Doppler tracking from OFDM signals transmitted by broadband LEO satellites. In: 2021 IEEE 93rd vehicular technology conference (VTC2021-Spring). IEEE, Helsinki, Finland, April 25–28, 1–5
- Klobuchar JA (1996) Ionosphere efects of GPS. In: Parkinson B, Spilker JJ (Eds.) Global positioning system: theory and applications, Volume 1, pp 485–515
- Kouba J (1983) A review of geodetic and geodynamic satellite Doppler positioning. Rev Geophys 21(1):27–40
- Landskron D, Böhm J (2018) VMF3/GPT3: refned discrete and empirical troposphere mapping function. J Geod 92(4):349–360
- Lawrence D, Cobb HS, Gutt G, Tremblay F, Laplante P, O'Connor M (2016) Test results from a LEO-satellite-based assured time and location solution. In: Proc ION GNSS+ 2016, Institute of Navigation, Monterey, California, USA, January 25–28, 125–129
- Li Z, Huang J (2013) GPS surveying and data processing. Wuhan University Press, Wuhan
- Li M, Yuan Y, Wang N, Li Z, Huo X (2018) Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data. GPS Solut 22:55
- Li X, Ma F, Li X, Lv H, Bian L, Jiang Z, Zhang X (2019) LEO constellation-augmented multi-GNSS for rapid PPP convergence. J Geod 93(5):749–764
- Li T, Wang L, Fu W, Han Y, Zhou H, Chen R (2022) Bottomside ionospheric snapshot modeling using the LEO navigation augmentation signal from the Luojia-1A satellite. GPS Solut 26:6
- Meng Y, Bian L, Han L, Lei W, Yan T, He M, Li X (2018) A global navigation augmentation system based on LEO communication constellation. In: Proceedings of the 2018 European Navigation Conference (ENC), Gothenburg, Sweden, May 14–17, 65–71
- Montenbruck O, Van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271
- Morales JJ, Khalife JJ, Cruz US, Kassas ZM (2019) Orbit modeling for simultaneous tracking and navigation using LEO satellite signals. In: Proc ION GNSS+ 2019, Institute of Navigation, Miami, Florida, USA, September 16–20, 2090–2099
- Morales-Ferre R, Lohan ES, Falco G, Falletti E (2020) GDOP-based analysis of suitability of LEO constellations for future satellite-based positioning. In: Proc of the 2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Vicenza, Italy, October 12–14, 147–152
- Neinavaie M, Khalife JJ, Kassas ZM (2021) Acquisition, Doppler tracking, and positioning with Starlink LEO satellites: frst results. IEEE Trans Aerosp Electron Syst 58(3):2606–2610
- Orabi M, Khalife JJ, Kassas ZM (2021) Opportunistic navigation with Doppler measurements from Iridium Next and Orbcomm LEO satellites. In: 2021 IEEE Aerospace Conference, IEEE, Big Sky, MT, USA, March 06–13, 1–9
- Park B, Jeon S, Kee C (2011) A closed-form method for the attitude determination using GNSS Doppler measurements. Int J Control Autom Syst 9(4):701–708
- Petit G, Luzum B (2010) IERS Conventions (2010). IERS technical note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany
- Psiaki ML (2021) Navigation using carrier Doppler shift from a LEO constellation: transit on steroids. Navigation 68(3):621–641
- Psiaki ML, Slosman BD (2019) Tracking of digital FM OFDM Signals for the determination of navigation observables. In: Proc. ION GNSS+ 2019, Institute of Navigation, Miami, Florida, USA, September 16–20, 2325–2348
- Reid TG, Neish AM, Walter T, Enge PK (2018) Broadband LEO constellations for navigation. Navigation 65(2):205–220
- Reid TG, Neish AM, Walter TF, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigating. Proc. ION GNSS+ 2016, Institute of Navigation, Portland, Oregon, USA, September 12–16, 2300–2314
- Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity feld model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39(1):1–10
- Rybak MM, Axelrad P, Seubert J, Ely T (2021) Chip scale atomic clock-driven one-way radiometric tracking for low-earth-orbit cubesat navigation. J Spacecraft Rockets 58(1):200–209
- Standish EM (1998) JPL planetary and lunar ephemerides, DE405/ LE405. JPL Interoffice Memorandum IOM 312. F-98-048
- Tan Z, Qin H, Cong L, Zhao C (2019) Positioning using IRIDIUM satellite signals of opportunity in weak signal environment. Electronics 9(1):37
- Tavella P (2008) Statistical and mathematical tools for atomic clocks. Metrologia 45(6):183–192
- Vallado D, Crawford P (2008) SGP4 orbit determination. In: Proceedings of AIAA/AAS astrodynamics specialist conference and exhibit, Honolulu, Hawaii, August 18–21, pp 6770
- Walker JG (1984) Satellite constellations. J Br Interplanet Soc 37(12):559–571
- Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21:605–615
- Yao Y, Liu L, Kong J, Zhai C (2018) Global ionospheric modeling based on multi-GNSS, satellite altimetry, and formosat-3/COS-MIC data. GPS Solut 22:104
- Zeng T, Sui L, Jia X, Lv Z, Ji G, Dai Q, Zhang Q (2018) Validation of enhanced orbit determination for GPS satellites with LEO GPS data considering multi ground station networks. Adv Space Res 63(9):2938–2951
- Zhang B, Ou J, Yuan Y, Zhong S (2010) Precise point positioning algorithm based on original dual-frequency GPS code and carrierphase observations and its application. Acta Geod Cartogr Sin 39(5):478–483
- Zhang P, Ding W, Qu X, Yuan Y (2023) Simulation analysis of LEO constellation augmented GNSS (LeGNSS) zenith troposphere delay and gradients estimation. IEEE Trans Geosci Remote Sens 61:1–12
- Zhang Y, Li Z, Shi C, Fang X (2022) Analysis of positioning performance and GDOP based on Starlink LEO constellation. In: Proceedings of the China Satellite Navigation Conference (CSNC) 2022, Beijing, China, May 25, 47–55
- Zhao Q, Wang C, Guo J, Yang G, Liao M, Ma H, Liu J (2017) Enhanced orbit determination for BeiDou satellites with Feng-Yun-3C onboard GNSS data. GPS Solut 21(3):1179–1190
- Ziebart M (2004) Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecr Rockets 41(5):840–848

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Chuang Shi is currently a Profes sor at the School of Electronic and Information Engineering at Beihang University, China. He has over 30 years of research experience in the theory and applications of space-based PNT technology and authored 230 research papers and over 30 pat ents. His research interests include network adjustment and precise orbit determination of GNSS satellites and LEOs.

GPS Solutions (2023) 27:126

Zhen Li holds a Ph.D. in astrody namics and space geodesy. He works at Beihang University as an assistant professor. His research interests include nonconservative force modeling for spacecraft with very complex shapes, space-based positioning technology and space object identifcation. He is now working on the development of positioning techniques using megaconstellations from Low Earth Orbit.

Yulu Zhang is pursuing her mas ter's degree at the School of Electronic and Information Engi neering at Beihang University. She works at the Laboratory of Navigation and Communication Fusion Technology, Ministry of Industry and Information Tech nology of China. Her current research interests include posi tioning and navigation with LEO satellites, precise positioning technology and the Doppler positioning algorithm.