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Abstract
In the Global Navigation Satellite System (GNSS), the satellite clock bias (SCB) is one of the sources of ranging error, and 
its ability to predict directly affects the users' navigation and positioning accuracy. The BeiDou Navigation Satellite System 
(BDS) has three types of satellite orbits: Geostationary Orbit (GEO), Medium Earth Orbit (MEO), and Inclined Geosyn-
chronous Orbit (IGSO). The BDS satellites are equipped with rubidium and hydrogen atomic clocks with different error 
characteristics. Establishing a reliable SCB prediction model is essential for real-time precise point positioning, precise orbit 
determination, and optimization of navigation message parameters. In this research, we apply a long short-term memory 
(LSTM) model for predicting BDS-3 SCB, which uses a multiple single-step predicting method to avoid error accumulation. 
Short- (0–6 h), medium- (6 h–3 days), and long-term (3–7 days) predicting is performed, and the results are compared with 
those of two traditional models to verify the reliability and accuracy of the LSTM method. For the BDS-3 IGSO satellites, 
the short-, medium-, and long-term accuracy is better than 0.5, 1.8, and 19.2 ns, respectively; for the BDS-3 MEO satellites, 
the short-, medium-, and long-term accuracy is better than 0.3, 1.4, and 8.6 ns. For long-term prediction of SCB, LSTM 
improves the accuracy by 72.0 and 64.0% compared to the autoregressive integrated moving average (ARIMA) and quadratic 
polynomial (QP) model, respectively.
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Abbreviations
ARIMA  Autoregressive integrated moving average
BDS  BeiDou Navigation Satellite System
CODE  Center for Orbit Determination in Europe
FDSCB  First differences of satellite clock bias
GEO  Geostationary Orbit
GFZ  German Research Center for Geosciences
GM  Gray model
GNSS  Global Navigation Satellite System
GPS  Global Positioning System
IGS  International GNSS Service
IGSO  Inclined Geosynchronous Orbit
KF  Kalman filter
LP  Linear programming
LSTM  Long short-term memory

MAD  Median absolute deviation
MEO  Medium Earth Orbit
MGEX  Multi-GNSS experiment
PRN  Pseudo-random noise ranging code
QP  Quadratic polynomial
RMSEs  Root-mean-square errors
RNN  Recurrent neural network
SA  Spectral analysis
SCB  Satellite clock bias
SL-LSTM  Supervised learning long short-term memory
TWSTF  Two-way satellite-ground time transfer
WHU  Wuhan University
WNN  Wavelet neural network

Introduction

As a timing base for Global Navigation Satellite Systems 
(GNSS), the performance of satellite-based atomic clocks 
directly affects navigation, positioning, and timing accuracy. 
Since the post-processed satellite clock bias (SCB) prod-
ucts provided by the International GNSS Service (IGS) have 
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higher accuracy than those broadcasted by the broadcast 
ephemeris, it is important to use the IGS SCB product to 
establish a high-precision prediction model and improve the 
prediction accuracy of SCB. The commonly used prediction 
models include linear programming (LP) (Cernigliaro and 
Sesia 2012), quadratic polynomial (QP) (Huang et al. 2011; 
Huang et al. 2018), gray model (GM) (Liang et al. 2015; Lu 
et al. 2008), Kalman filter (KF) (Davis et al. 2012; Zhu et al. 
2008), autoregressive integrated moving average (ARIMA) 
(Xi et al. 2014), and spectral analysis (SA) (Zheng et al. 
2010; Zhao et al. 2021).

These prediction models have advantages and disadvan-
tages: LP and QP models have the advantages of straightfor-
ward calculation and better short-term prediction accuracy. 
However, the accuracy and stability deteriorate significantly 
with time (Jonsson and Eklundh 2002). The GM model, 
ARIMA, and KF are affected by the characteristics of atomic 
clocks, the choice of key parameters, and the priori values of 
parameters (Zheng et al. 2009; Huang et al. 2014; Xu et al. 
2013). The SA model requires a long time series of stable 
clock bias to implement its functionality (Heo et al. 2010). 
Since the time-varying properties of satellite-based atomic 
clocks are complex and are affected by many factors, neu-
ral network models have been applied to predict SCB. For 
example, the wavelet neural network (WNN) model (Wang 
et al. 2017) and supervised learning long short-term memory 
(SL-LSTM) model (Huang et al. 2021) have been used to 
predict the SCB of Global Positioning System (GPS) obtain-
ing promising results.

The BeiDou Navigation Satellite System (BDS) dif-
fers from GPS in that its satellites operate on three types 
of orbits. The BDS-3 satellite constellation contains three 
Geostationary Orbit (GEO) satellites, three Inclined Geo-
synchronous Orbit (IGSO) satellites, and 24 Medium Earth 
Orbit (MEO) satellites. BDS provides worldwide basic navi-
gation and satellite-based augmentation services. Two-way 
satellite-ground time transfer (TWSTF) is used for measur-
ing SCB in BDS-2 broadcast ephemeris. BDS-3 increases 
inter-satellite link measurements compared to BDS-2 (Zhou 
et al. 2016; Liu et al. 2020) and generates SCB parameters in 
broadcast ephemeris using a combined short-term and long-
term QP fit. IGS data centers, such as Wuhan University 
(WHU), Center for Orbit Determination in Europe (CODE), 
and German Research Center for Geosciences (GFZ), use 
observations from the multi-GNSS experiment (MGEX) to 
perform precise orbit determination of GPS, GLONASS, 
Galileo, and BDS, and provide precise orbit and clock bias 
products (Steigenberger et al. 2015; Zhao et al. 2013; Chen 
et al. 2014). The basic information on BDS satellites cur-
rently operating in orbit is listed in Table 1.

Neural networks in deep learning have developed rapidly 
(Dong et al. 2021), among which long short-term memory 
(LSTM) network has great potential and effectiveness in 

the prediction of nonlinear non-stationary time series. The 
BDS in-orbit satellite clock bias has complex characteris-
tics whose prediction accuracy can still be improved. In this 
research, we apply the LSTM model for predicting the SCB 
of BDS-3 satellites and analyze the prediction performance 
of different in-orbit satellites over various time scales, to 
establish a reliable SCB prediction model.

In this research, the extraction process is applied to the 
dataset to form the input data and corresponding labels of 
the LSTM model. This method achieves multiple single-step 
predictions with the practical significance of avoiding the 
error accumulation problem caused by multi-step prediction. 
It improves processing speed by reducing matrix transposi-
tion and block division operations. In addition, the hyperpa-
rameters of the LSTM model are given for predicting 7-day 
BDS-3 SCB. Experiments on different types of BDS-3 satel-
lites indicate that the model performance changes little when 
fine-tuning the model hyperparameters. Thus, a relatively 
robust LSTM model suitable for Beidou-3 SCB prediction 
is obtained.

Data sources and data pre-processing are introduced first. 
Next, the LSTM method is explained, and then, the results 
are shown. Furthermore, the results are compared in detail. 
The conclusion is given in the final part.

Data pre‑processing

The 5-min interval high-precision SCB data for 70 days 
are selected as provided by the IGS Data Center of Wuhan 
University from August 30 to November 7, 2021. The SCB 
data of IGSO and MEO are analyzed since most IGS data 
centers do not currently provide the precise ephemeris data 
of BDS-3 GEO satellites.

The original SCB data are subject to anomalies such as 
data discontinuities, jumps, and gross errors (Feng 2009), 
which negatively impact the modeling and prediction of 
SCB. Data jumps are solved by using a moving window 
to find jump points (Zhou et al. 2016); the SCB data jump 
detection algorithm is based on the Hilbert transform (Guo 

Table 1  BDS in-orbit satellites

Generation Orbit PRN (pseudo-random noise ranging code)

BDS-2 IGSO 6,7,8,9,10,13,16
MEO 11,12,14
GEO 1,2,3,4,5,18

BDS-3S IGSO 31,56
MEO 57,58

BDS-3 IGSO 38,39,40
MEO 19,20,21,22,23,24,25,26,27,28,29,30,32,3

3,34,35,36,37,41,42,43,44,45,46
GEO 59,60,61
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2013). For the problem of data discontinuity, a method of 
dividing the time-domain Allan variance by the Barnes devi-
ation function was proposed to deal with data discontinuity 
(Riley and Howe 2008), and there exist methods for process-
ing non-equidistant data (Hackman and Parker 1996). The 
methods described above can deal with these two types of 
problems. Maximum SCB data are selected without inter-
ruptions and jumps in the 70-day cycle. Gross errors are 
detected and eliminated necessarily since they always exist.

As shown in Fig. 1, PRN 35 and PRN 39 are the BDS-3 
MEO and IGSO satellites, respectively. The abscissa 
“Epoch” represents the number of epochs, and the epoch 
interval is 5 min, while the ordinate represents the devia-
tion of the satellite clock in the precise ephemeris relative 
to the ephemeris reference clock, i.e., SCB. The overall 
trend can be observed through the original SCB sequence, 

and the order of magnitude is μs. But the gross errors in 
the sequence are in the order of ns; thus, it is not easy to 
be observed.

One of the most efficient ways to detect gross errors is 
to perform first differences on the original SCB sequence. 
For the SCB sequence L =

{
l1, l2, ..., lj..., ln

}
 , the first-dif-

ference sequence is ΔL =
{
Δl1,Δl2, ...,Δlj...,Δln−1

}
 , where 

Δlj = lj+1 − lj , as shown in Fig. 2. It can be seen that there 
are some obvious abnormal data (in the order of 10 ns) 
called gross errors. The existence of gross errors will 
have a serious negative effect on the prediction accuracy 
of SCB, which has to be eliminated.

The median absolute deviation (MAD) method is taken 
to replace the gross errors, whose mathematical model is 
expressed by

where k = Median{ΔL} is the median of first differences 
of SCB; MAD = Median

{|Δlj − k|∕0.6745} is the absolute 
median deviation; the constant n is determined as needed. 
When Δlj satisfies Eq. (1), it can be considered that Δlj is a 
gross error. When gross errors are detected, the outlier can 
be replaced by a method such as the zeros padding or the 
cubic spline interpolation.

However, the traditional MAD method has limitations 
because the first-difference sequence still has a trend term. 
As shown in Fig. 3, the curve is the result of using the 
traditional MAD method to eliminate the gross errors, in 
which the first-difference sequences of PRN 35 and PRN 
39 have very obvious trend terms. This can be seen from 
the expression:

(1)
|||Δlj

||| > (k + n ×MAD),

Fig. 1  Original SCB sequences of BDS-3 satellites in different orbits. 
Top: SCB of PRN 35 (BDS-3 MEO). Bottom: SCB of PRN 39 
(BDS-3 IGSO)

Fig. 2  First differences of SCB 
sequences of BDS-3 satellites 
in different orbits. Top: First 
differences of PRN 35 (BDS-3 
MEO). Bottom: First differences 
of PRN 39 (BDS-3 IGSO)
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where t0 is the initial moment (ephemeris reference time). 
a0, a1, and a2 are the clock bias, clock speed, and clock drift, 
respectively. Δtr is the random term, whose statistical char-
acteristics are only described by the clock stability. Ignor-
ing the random term, the equation is a quadratic polynomial 
model. In practice, the magnitudes of a0, a1, and a2 are about 
 10−4,  10−10, and  10−20 s. For one satellite, only the influence 
of a1 and a2 remains after the first differencing. Since a2 is 
much smaller than a1 , the traditional MAD method does not 
consider the influence of a2 so that the k value in the algo-
rithm is a fixed constant. According to Eq. (1), data outside 
a certain range near the fixed k value will be eliminated and 
replaced, resulting in a serious loss of original data and a 
great increase in the prediction error, so the influence of a2 
cannot be ignored.

A straightforward idea is to make the sequence more 
“horizontal” by taking second differences and then take the 
traditional MAD method to eliminate gross errors. However, 
according to the principle of error propagation, it will cause 
the noise mean square error to be 

√
2 times the original.

A dynamic MAD method (Huang et al. 2022) was proposed 
based on ridge regression (a modified least squares estimation 
method), where the trend term is fitted first, and then, the idea 
of MAD is applied to replace the gross errors. In this method, 
the authors redefine the expression for calculating k . When Δlj 
satisfies the following conditions:

(2)Δts = a0 + a1
(
t − t0

)
+ a2

(
t − t0

)2
+ Δtr,

(3)

{ |||Δlj − k
||| > n ×MAD

k = �̂� =
(
XTX + 𝜆I

)−1
XTy

,

it can be judged as a gross error. In Eq. (3), X is the time 
sequence; y is the first difference; I is the unit matrix; � is 
the regularization coefficient, which needs to be determined 
from empirical values; and �̂� is the ridge regression value. 
k is the trend term contained in the first difference. The data 
outside a certain range near the k value are considered gross 
errors, which are eliminated and replaced by the cubic spline 
interpolation method, ensuring that as many original data are 
retained as possible, thus completing the data pre-processing 
step.

Methodology

Deep learning methods have been more widely used in solv-
ing nonlinear problems (Dong et al. 2021), and Recurrent 
Neural Network (RNN) is one of these approaches. RNN is a 
neural network with nodes directed to connect into a ring to 
find the series correlation by using the characteristics of its 
network structure, which is suitable for predictive filtering 
of time series and has been successfully applied in temporal 
data such as text, video, and speech.

Figure 4 shows the schematic diagram of RNN. The 
hidden node would have two parameters: weight and bias. 
However, a recurrent layer has three parameters to optimize: 
weight for the input, weight for the hidden unit, and bias. 
The parameters of the hidden layers in the RNN model 
inherit the output of the previous moment. It makes RNN 
that has the “memory” ability compared with other neural 
networks, so it can process the time series more effectively.

LSTM is a variant of RNN that can solve the gradient 
disappearance and gradient explosion problems during the 
training of RNN models (Yu et al. 2019). A cell in the LSTM 

Fig. 3  Traditional MAD method 
to eliminate gross errors. Top: 
First differences after tradi-
tional MAD of PRN 35 (BDS-3 
MEO). Bottom: First differences 
after traditional MAD of PRN 
39 (BDS-3 IGSO)
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model has four gates, which enables the model to have long 
short-term memory and solves the gradient disappearance 
and gradient explosion problems. By introducing the “gate” 
mechanism, LSTM can give the network stronger memory 
ability and thus obtain better results for longer series. Fig-
ure 5 shows an LSTM neural network model. We provide a 
brief analysis of the applicability of the LSTM model based 
on the characteristics of the SCB sequence.

As the cell structure in the LSTM neural network model 
shown in Fig. 5, a cell has four gates: input gate it , forget gate 
ft , select gate C̃t , and output gate ot , which are expressed as 
follows:

(4)ft = �
(
Wf ⋅

[
ht−1, xt

]
+ bf

)
,

(5)Ct = ft ∗ Ct−1 + it ∗ C̃t,

(6)it = �
(
Wi ⋅

[
ht−1, xt

]
+ bi

)
,

(7)C̃t = tanh
(
WC ⋅

[
ht−1, xt

]
+ bC

)
,

(8)ot = �
(
Wo ⋅

[
ht−1, xt

]
+ bo

)
,

Fig. 4  Schematic diagram of 
RNN. RNN has memory ability 
by using neurons with self-
feedback, so it is suitable for 
processing time-series data

Fig. 5  LSTM neural network 
model. Each cell of the LSTM 
model has four gates, which 
enable the model to have long 
short-term memory and solve 
the gradient disappearance and 
gradient explosion problems in 
RNN
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where � denotes the sigmoid activation function. ht , Ct , and 
xt are the hidden state, the cell state, and the input at moment 
t , respectively. W∗ and b∗ denote the weight matrix and bias 
of the current network layer, respectively. The information 
processing of LSTM is divided into three main stages:

1. Forgetting stage: In Eqs. (4) and (5), the input from the 
previous state node is selectively forgotten, that is, to 
control what needs to be remembered or forgotten in the 
previous state Ct−1 by ft.

2. Selective memory stage: In Eqs. (6) and (7), the inputs 
are remembered selectively, which important ones will 
be focused on and which unimportant ones will be 
remembered less. it is the input to the current cell, which 
can be selectively output by C̃t.

3. Output stage: In Eqs. (8) and (9), this stage is controlled 
by ot and scaled using the tanh function on Ct to deter-
mine which outputs are used as the current state.

In Eq. (2), the random term Δtr is affected by the physical 
characteristics of the atomic clock itself, which leads to the 
nonlinear and non-stationary characteristics of the SCB. The 
LSTM cell contains multiparameter nonlinear functions that 
can be automatically adjusted during training. Considering 
this characteristic, an LSTM neural network model is pro-
posed for BDS-3 SCB prediction.

It is a fact that there exists the problem of prediction error 
accumulation. Time-series predicting includes single-step 
predicting and multi-step predicting. Single-step predicting 
refers to predicting one future value using all true values, 
while multi-step predicting refers to predicting multiple 
future values. In this case, numerous values are predicted 
in the future. If the multi-step predicting method is taken, 
the prediction error will be gradually accumulated because 
one predicted value may be affected by the previously pre-
dicted ones. In contrast, the single-step predicting method 
is taken to predict only one value without any error accu-
mulation problem. So, the dataset is processed to make it 
into a multiple single-step predicting problem to avoid error 
accumulation.

For the whole time series 
{
x1, x2, ..., xN

}
 in the training 

dataset, let p be the number of prediction days. In the train-
ing phase, all data are extracted with p as the sampling inter-
val. The positive integer d is the dimension of the input data 
of the LSTM model and needs to satisfy:

then, it produces N − dp sequences:

(9)ht = ot ∗ tanh
(
Ct

)
,

(10)d ≤
N

p
− 1,

The first d data of each sequence are used as input data 
during training, and the last ones are used as labels. Before 
training the LSTM model, all data need to be normalized 
first to improve the accuracy of the training model and 
the speed of model convergence. In the predicting stage, 
the latter d data of each sequence are taken as input to the 
trained LSTM model for predicting, and the output sequence {
x1+(d+1)p, x2+(d+1)p, ..., xN+p

}
 are the values of N − dp single-

step prediction results. Take the last p values, add the cor-
responding trend terms, and get the final SCB predictions 
by inverse difference (generate clock bias series using first 
differences).

By processing the dataset this way, the LSTM model does 
not have the problem of prediction error accumulation dur-
ing predicting SCB, making the results more accurate and 
reliable. The implementation flowchart is shown in Fig. 6: 
(1) perform first differences on the original SCB data and 
take the ridge regression MAD method to eliminate gross 
errors, then subtract the fit trend term to obtain the pre-pro-
cessed first differences of satellite clock bias (FDSCB). (2) 
Before training, the pre-processed data need to be normal-
ized and dimensioned. The model parameters are saved at 
the end of the training. (3) Use the trained model for predict-
ing. (4) The model outputs need to go through the reverse 
process of data pre-processing to obtain the final prediction 
results.

In this research, gross errors which will decline the pre-
diction accuracy are detected first by performing first differ-
ences on the original SCB data, and then, the MAD method 
based on ridge regression is taken to replace the gross errors. 
Then, a more stable FDSCB series is obtained by subtracting 
the trend term, which is suitable as the input to the LSTM 
model. Next, it avoids the accumulation of the prediction 
error problem from multi-step predicting by processing the 
dataset and turning it into a multiple single-step predict-
ing problem. Finally, the average root-mean-square errors 
(RMSEs) of all experimented satellites are calculated, and 
the SCB prediction accuracy of LSTM is compared with that 
of two traditional models (ARIMA and QP).

Results

The original SCB data are downloaded from the IGS Data 
Center of Wuhan University. The FDSCB data are gener-
ated after eliminating the gross errors as the input of the 

(11)

⎡
⎢⎢⎢⎢⎢⎣

�
x1, x1+p, x1+2p,… , x1+(d−1)p, x1+dp

�
�
x2, x2+p, x2+2p,… , x2+(d−1)p, x2+dp

�

…�
xN−dp, xN−(d−1)p, xN−(d−2)p,… , xN−p, xN

�

⎤
⎥⎥⎥⎥⎥⎦

,
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LSTM model to obtain the model output. The final SCB 
prediction data are obtained after data post-processing. 
All processing results for two satellites in different orbits 
during each step are shown.

Data pre‑processing results

As shown in Fig.  7, the blue line represents the fit-
ted results of the trend term k , and the red one repre-
sents the fitted residuals, which are more stable and 
easier to fit and suitable to input into the LSTM model 

Fig. 6  Implementation flow-
chart. The whole process is 
divided into three parts, data 
pre-processing (obtaining a 
stationary sequence), model 
training and predicting, and data 
post-processing (reconstructing 
the clock difference sequence)

Fig. 7  Fitting the trend term by 
ridge regression MAD (in blue) 
and pre-processed FDSCB (in 
red). Top: The fit trend term 
values and fitted residuals after 
ridge regression MAD of PRN 
35 (BDS-3 MEO). Bottom: The 
fit trend term values and fitted 
residuals after ridge regres-
sion MAD of PRN 39 (BDS-3 
IGSO)
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to predict. It completes the data pre-processing step. 
The range of FDSCB after pre-processing falls mostly 
between ± 0.5 ns, which means that the gross errors have 
almost been eliminated and replaced.

LSTM model output results

The LSTM model is established based on the Keras 2.7.0 deep 
learning environment with the specific parameters in Table 2. 
The 70-day FDSCB can be obtained through data pre-pro-
cessing, after which 63 days of data are input as training data 
into the above-designed LSTM model for training. Some final 
losses during training are shown in Table 3.

Then, the trained model is used for predicting, and the 
output series of the LSTM model is inverse normalized to 
obtain the FDSCB predictions. Figure 8 shows the compari-
son between the FDSCB predicted and true values for the next 
7 days.

SCB prediction results based on different models

The SCB prediction accuracy of the LSTM model is compared 
with two baseline models, ARIMA and QP. Figure 9 shows 
the deviations of the SCB predictions of BDS-3 satellites in 
short (0–6 h), medium (6 h–3 days), and long (3–7 days) terms 
based on LSTM, ARIMA, and QP.

Table 4 shows the statistical results of the average RMSE 
( RMSE ) of BDS-3 SCB predictions with good data continuity 
and no obvious jumps using the three models (results with 4 
decimal places). For a single satellite i , the RMSE is calculated 
as follows:

where x̂k and xk are the predicted and true values of SCB 
at the moment k , respectively, and p is the number of 

(12)RMSEi =

√
1

p

∑p

k=1
(xk − x̂k),

Table 2  List of the LSTM model parameters

No. Parameter Value

1 Loss function MSE
2 Optimizer Adam
3 Number of LSTM layers 2 layers (64 

units + 64 
units)

4 Number of dense layers 1
5 Number of training rounds 2000
6 Input dimension size 8
7 Output dimension size 1
8 Size of batch 16
9 Validation split rate 20%
10 Learning rate 0.01

Table 3  Final training error statistics based on the LSTM model for 
some satellites

PRN Orbit Training loss

35 BDS-3 MEO 2.1208 ×  10–4

39 BDS-3 IGSO 6.5023 ×  10–4

Fig. 8  LSTM prediction output 
results. The blue curve is the 
true value of FDSCB, and the 
red one is the corresponding 
prediction. Top: The model out-
put of PRN 35 (BDS-3 MEO). 
Bottom: The model output of 
PRN 39 (BDS-3 IGSO)
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predictions. For satellites of the same orbit, the RMSE is 
calculated as follows:

where m is the number of satellites in the same orbit.

Discussion

Table 3 shows that the training loss values of the trained 
LSTM model using the MSE loss function for the data 
within 63 days are all less than  10–3, which tells us that the 

(13)RMSE =
1

m

∑
i

RMSEi,

LSTM model has successfully performed regression fitting 
on the training dataset.

The 63-day pre-processed FDSCB is input into the trained 
LSTM model to predict the data for the next 7 days. It can 
be seen from the comparison results of the 7-day predicted 
values and the true values in Fig. 8 that the predicted curve 
is in good agreement with the true curve and reflects the 
trend and cycle characteristics of the true data. Therefore, 
the strong nonlinear fitting ability of the LSTM model is 
verified.

As shown from Fig. 9, the prediction accuracy of PRN 
35 (BDS-3 MEO) in the short, medium, and long term is no 
more than 0.8, 8, and 27 ns, respectively. When it comes to 
PRN 39 (BDS-3 IGSO), they are no more than 3.2, 30, and 
80 ns, respectively. The LSTM model has no obvious advan-
tage in short-term predicting and is slightly worse than QP 
on satellite 35 and slightly worse than ARIMA on satellite 
39. In medium- and long-term predicting, LSTM has the best 
effect, followed by QP, and ARIMA is the worst.

In Table 4, for all orbit types and all models, the SCB 
prediction errors increase as the prediction time increases. 
Compared with the other two models, the prediction abil-
ity of the LSTM model for the satellite clock errors of the 
two orbit types is optimal in the short, medium, and long 
term. For the BDS-3 IGSO satellites, the short-term predic-
tion accuracy of LSTM is 0.4310 ns, which is 71.2% higher 
than ARIMA and 80.2% higher than QP; the medium-term 

Fig. 9  Deviation diagram of short-, medium-, and long-term SCB predictions based on LSTM, ARIMA, and QP. Top: PRN 35 prediction error. 
Bottom: PRN 39 prediction error. Left: 0–6 h. Middle: 6 h–3 days. Right: 3–7 days. It means the prediction error at different stages

Table 4  RMSE of SCB predictions of BDS satellites based on differ-
ent models

Orbit Model 0–6 h (ns) 6 h–3 days (ns) 3–7 days (ns)

IGSO LSTM 0.4310 1.7874 19.1598
ARIMA 1.4985 21.1576 68.4734
QP 2.1796 9.8175 53.2732

MEO LSTM 0.2316 1.3899 8.5490
ARIMA 0.4231 11.6385 60.3322
QP 2.0192 10.4359 46.2189
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prediction accuracy is 1.7874 ns, which is 91.5% higher than 
ARIMA and 81.7% higher than QP; and the long-term pre-
diction accuracy is 19.1598 ns, which is 72.0% higher than 
ARIMA and 64.0% higher than QP. For the BDS-3 MEO 
satellites, the short-term prediction accuracy of LSTM is 
0.2316 ns, which is 45.3% higher than ARIMA and 88.5% 
higher than QP; the medium-term prediction accuracy is 
1.3899 ns, which is 88.1% higher than ARIMA and 86.6% 
higher than QP; and the long-term prediction accuracy is 
8.5490 ns, which is 85.8% higher than ARIMA and 81.5% 
higher than QP.

Table 5 shows the accuracy improvement of the LSTM 
model compared with QP and ARIMA. As shown in Fig. 9, 
for the same type of single satellite, the short-term predic-
tion accuracy may be slightly inferior to the other two tradi-
tional models, but after statistical processing of the experi-
mental results, it can still show the advantage of the LSTM 
model in the performance of SCB prediction, especially in 
the long-term predicting.

Experiments show that the LSTM model is comparable 
to the other two in short-term (within 6 h) prediction and 
performs better above 6 h. The average total time to process 
each satellite, i.e., train the model using 63 days of data and 
use the fitted model to predict SCB in the next 7 days, is 
about 20 min. With the same input data, the LSTM model 
takes longer to predict. This is a common problem of basic 
deep learning; that is, obtaining a neural network model 
through data-driven offline learning requires more comput-
ing time than traditional algorithms. Our operating environ-
ment is CPU R7 5800H and graphics card RTX3060. The 
time it takes about 20 min to predict SCB for the next 7 days 
is acceptable. In long-term predicting, when real-time broad-
cast ephemeris and precise ephemeris cannot be obtained in 
some cases, it is meaningful work to use the historical data 
of post-processed high-precision clock products to train the 
model to predict SCB.

While traditional QP and ARIMA models have achieved 
relatively good results in short-term predicting, prediction 
errors will diverge over time, resulting in poor predicting 
effects in medium- and long-term predictions. To date, 
there are relatively few studies on applying the LSTM neu-
ral network model to BDS-3 SCB prediction. The LSTM 

model in the field of deep learning realizes long sequence 
processing through a gating mechanism, which has consid-
erable advantages in medium- and long-term predicting. 
Undeniably, the complexity of the deep learning neural 
network model is higher than that of traditional methods, 
but the LSTM method in this research can achieve better 
accuracy than QP and ARIMA in medium- and long-term 
SCB predicting.

Conclusions

This research applies an LSTM model for predicting BDS-3 
SCB, including the data pre-processing and the cross-sec-
tional comparison and analysis with two traditional models. 
To address the problem that the time series in engineering 
are nonlinear and non-smooth, which leads to the low accu-
racy of the predicting models in the traditional methods, we 
used a deep learning method to establish a multiple single-
step predicting LSTM model using the precise ephemeris 
provided by the IGS Data Center of Wuhan University. The 
results are summarized and analyzed, which show that:

1. No matter which model is used, the clock difference pre-
diction error will disperse with time. The LSTM model 
performs the short-, medium-, and long-term accuracy 
better than 0.5, 1.8, and 19.2 ns for the BDS-3 IGSO 
satellites. Meanwhile, it performs the short-, medium-, 
and long-term accuracy better than 0.3, 1.4, and 8.6 ns 
for the BDS-3 MEO satellites.

2. For satellites in the same orbit, the LSTM is the best, 
the ARIMA is the second best, and the QP is the worst 
for short-term SCB predicting in most cases; the LSTM 
is the best, the QP is the second best, and the ARIMA 
is the worst for medium- and long-term SCB predicting 
on all experimental satellites.

Basic deep learning is equivalent to the problem of func-
tion approximation, that is, the fitting of functions. Differ-
ent from polynomial, B-spline, trigonometric, and wavelet 
functions used in traditional mathematics, nonlinear neu-
ral network functions are used as basis functions in deep 
learning. Among them, the LSTM neural network model is 
suitable for relatively long sequence prediction tasks, which 
improves the prediction accuracy of BDS-3 SCB. It posi-
tively impacts the reduction in positioning errors and is also 
expected to be applied to precise orbit determination.

Due to the limitation of the LSTM structure, the accu-
racy is not stable in short-term predicting. In future stud-
ies, the more popular attention-based transformer in recent 
years will be considered to model SCB prediction to achieve 
higher prediction accuracy.

Table 5  Accuracy improvement table of LSTM model compared with 
QP and ARIMA in percentage

Orbit Model 0 ~ 6 h (%) 6 h ~ 3 days (%) 3 days ~ 7 
days (%)

IGSO LSTM:ARIMA 71.2 91.6 72.0
LSTM:QP 80.2 81.8 64.0

MEO LSTM:ARIMA 45.3 88.1 85.8
LSTM:QP 88.5 86.7 81.5
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