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Abstract
Accurate and safety-assured navigation is demanded by future autonomous systems such as automated vehicles and urban 
air mobility (UAM). These systems usually integrate multiple sensors to improve navigation accuracy and require the cor-
responding integrity monitoring architecture to ensure integrity. In response, we implement the Solution Separation-based 
Kalman filter integrity monitoring (SS-KFIM) technique to achieve fault detection and protection level evaluation for multi-
sensor integrated navigation. In our implementation, the filter bank management strategies to handle sensor-in and sensor-
out events are discussed. Besides, we consider the faults in state initialization and propagation phases aside from those at 
the measurement-update stage. Furthermore, our implementation can accommodate the cases where the all-in-view filter 
is not optimal in a least-squares sense. Simulations are conducted with an illustrative example where an inertial navigation 
system, global navigation satellite systems, and visual odometry are integrated for a UAM task. The results prove the high 
effectiveness and extended applicability of our implementation of the SS-KFIM algorithm.

Keywords Multi-sensor integrated navigation · Integrity monitoring · Solution separation · Kalman filter

Introduction

Autonomous systems such as Highly-Automated Vehicles 
(HAVs), Unmanned Aerial Vehicles (UAVs), and Urban 
Air Mobility (UAM) have attracted worldwide interest. 
Accurate and safety-assured navigation is the precondi-
tion for them to achieve autonomous operation. These 
systems usually integrate multiple sensors such as Global 
Navigation Satellite Systems (GNSS) and Inertial Naviga-
tion System (INS) to improve navigation accuracy. Mean-
while, it becomes a solid demand for them to ensure the 
integrity of onboard navigation systems.

Integrity is a key performance metric in Safety–Critical 
Applications (SCAs) such as civil aviation. It measures the 
trust that can be placed in the correctness of a navigation 
output (ICAO 2009). Integrity monitoring ensures naviga-
tion integrity through real-time Fault Detection (FD) and 

Protection Level (PL) evaluation. FD aims at checking 
whether there is any fault in the system, and PL captures the 
probabilistic upper bound on navigation errors.

Although Fault Exclusion (FE) improves navigation 
continuity, it is not always necessary in SCAs. For exam-
ple in civil aviation, although FE is needed in en-route 
phases to meet stringent continuity requirements (e.g., 
 10–6/hour), it is not required in most precision approach 
phases which have loose continuity requirements (e.g., 8 × 
 10–6/15 s) (Zhai et al. 2018). Similarly, continuity require-
ments can be satisfied without FE in specific autonomous 
applications, such as UAM landing and HAV automatic 
parking. This work focuses on these continuity-insensitive 
applications, and thus we implement an FD-only integrity 
monitoring technique.

The well-known integrity solution for GNSS is Receiver 
Autonomous Integrity Monitoring (RAIM) (Brown 1992), 
which has become a key function in airborne receivers. 
Recently, it has evolved into Advanced RAIM (ARAIM) 
with fully refined architectures and algorithms (Blanch 
et al. 2015; Blanch and Walter 2021; Joerger et al. 2014). 
Specifically, ARAIM is established based on Multiple 
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Hypothesis Solution Separation (MHSS) and offers better 
performance than traditional RAIM approaches.

RAIM and ARAIM were originally developed for 
Least-Squares (LS) estimators. Meanwhile, there have 
been various studies focusing on integrity monitoring for 
Kalman Filters (KFs). Some approaches aim at improving 
navigation robustness through Fault Detection and Exclu-
sion (FDE) without quantifying the Integrity Risk (IR). 
For example, various FDE methods were developed to 
protect GNSS/INS tight integration against GNSS faults, 
based on hypothesis tests (Bhatti et al. 2012; Wang et al. 
2016), robust estimation (Wang et al. 2018), or machine 
learning (Zhong et al. 2017). These methods were further 
improved to accommodate both GNSS faults and Iner-
tial Measurement Unit (IMU) failures (Wang et al. 2020). 
Additionally, Jurado et al. (2020) presented a residual-
based multi-filter method to realize FDE and offer per-
formance guarantees for multi-sensor integrated naviga-
tion. And there are also fault-tolerant methods for federal 
Kalman filters (Guo et al. 2019).

There have also been a few techniques capable of evalu-
ating the integrity of KF-based navigation systems, which 
are called Kalman Filter Integrity Monitoring (KFIM) 
hereafter. Lee et al. (2018) employed snapshot innova-
tions for fault detection, but this method has poor detec-
tion capability against slowly growing errors and does 
not consider the risk coming from previously undetected 
faults. Innovation or residual sequence monitors can miti-
gate these issues (Joerger and Pervan 2013; Tanil et al. 
2018a, 2018b), but they are computationally expensive 
due to the search of the worst-case fault profile, especially 
in multi-fault cases.

Attracted by the outstanding performance of MHSS 
ARAIM, researchers started to apply MHSS to KFIM and 
proved that MHSS usually produces lower PLs than tra-
ditional methods (Gunning et al. 2018; Tanil et al. 2019). 
The MHSS-based KFIM, referred to as SS-KFIM, is com-
putationally expensive because it requires running a bank 
of filters. Fortunately, this issue can be addressed by fault 
grouping and/or suboptimal subfilter techniques (Blanch 
et al. 2019).

To enable accurate and safety-assured navigation for 
autonomous systems, we implement the SS-KFIM algorithm 
for multi-sensor integrated navigation. First, the existing SS-
KFIM algorithm is revisited with fault sources analyzed and 
key assumptions laid out. Then, the filter bank management 
strategies to handle sensor-in and sensor-out events are dis-
cussed. Next, we consider the faults in state initialization and 
propagation phases aside from those at the measurement-
update stage. Finally, the SS-KFIM algorithm is modified 
to accommodate the cases where the all-in-view filter is not 
optimal in a least-squares sense. This work is expected to 
extend the applicability of the SS-KFIM technique.

Solution separation‑based Kalman filter 
integrity monitoring: a revisit

We revisit the existing FD-only SS-KFIM algorithm. First, the 
principles of the Kalman filter are given. Then, all sources of 
faults affecting the filter are analyzed. Finally, the basic SS-
KFIM algorithm is presented with key assumptions laid out.

Principles of the Kalman filter

The KF performs prediction and update steps in one iteration. 
The prediction step is to predict the state and its error covari-
ance using the system model below:

where � denotes the nx-dimensional state vector, �k|k−1 is the 
state transition matrix from epoch ( k− 1) to epoch k , and � 
represents the process noise vector. Accordingly, the predic-
tion step is implemented by:

where � represents the covariance of � , � and �̂ are the 
predicted and updated state estimates in turn, and their error 
covariances are � and �̂ , respectively.

In the update phase, �k and �k are updated to form �̂k and 
�̂k by incorporating the measurements at k . The measurement 
model is expressed by:

where � represents the nz-dimensional measurement vec-
tor, � is the measurement matrix, and � is the measurement 
noise. The state and its error covariance are updated by:

where � denotes the filter gain, � is the measurement noise 
covariance, and � is an identity matrix.

Fault sources and their effects on state estimation

If a filter encounters faults, it will produce a biased state 
estimate. The faults may occur in state initialization, propa-
gation, or update phases, as shown below:
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where �S,0 is the initialization fault vector, �S,k denotes the 
system propagation fault vector, and �M is the Measurement 
Fault (MF) vector. Figure 1 summarizes the fault sources 
for a KF based on its equivalence with a batch Weighted LS 
(WLS) (Joerger and Pervan 2013).

Considering the faults above, the state estimate bias, � , 
can be computed recursively by (Wang et al. 2020; Arana 
et al. 2019)

with �0 = �S,0 . Since initialization faults and propagation 
faults affect the current estimate in similar ways, they are 
grouped to be the System Fault (SF), �S , in this work.

Prior work hardly considered initialization faults and 
propagation faults, but these faults may occur, such as in 
the following situations. (a) An initialization fault occurs 
when the initial state is incorrectly set. (b) For a vehicle with 
a low-cost IMU, IMU faults may occur (see Appendix A), 
which lead to propagation faults in GNSS/INS integration. 
(c) For a filter using aircraft dynamic models, it may encoun-
ter a propagation fault under strong wind disturbances.

Revisiting the existing solution separation‑based 
KFIM algorithm

This subsection presents the principles of the SS-KFIM 
algorithm based on the existing approaches (Gunning et al. 
2018; Tanil et al. 2019) and the following assumptions.

(8)�̂0 = �0 + �̃ + �S,0

(9)�k = �k|k−1�k−1 + �k + �S,k

(10)�k = �k�k + �k + �M,k

(11)
�k =

(
� −�k�k

)
�k|k−1�k−1 +

(
� −�k�k

)
�S,k +�k�M,k

Assumption 1. The state initialization and propagation 
processes are always fault-free.

Assumption 2. The basic assumptions of KFs are all sat-
isfied under nominal conditions, and the noise covariances 
(i.e., �0 , � , and � ) are accurately known.

First, a group of terms are defined as follows. A fault 
mode, ℍ , hypothesizes the health status of each sensor. An 
example fault mode is given by

where j is the index of this fault mode, Mi denotes the event 
that the i th sensor is healthy, and Mi represents the event 
that it is faulted.

Remark 1 The i th sensor is considered faulted once if it is 
faulted at any epoch during operation, i.e., the i th entry of 
�M,k is nonzero for any k. This is justified because (a) a fault 
usually lasts for a period and (b) prior faults can affect cur-
rent estimates.

A fault mode is associated with a prior probability � , a 
sensor subset � , and a filter �  . �(j) is the probability of ℍ(j) 
being true, �(j) contains the healthy sensors under ℍ(j) , and 
� (j) uses the sensors in �(j) to perform state estimation. j = 0 
denotes the all-in-view mode; thus, � (0) is the main filter and 
the others are subfilters.

The input parameters and key steps of the SS-KFIM algo-
rithm are described below. The input parameters include two 
categories: Table 1 shows the parameters describing the 
error and fault characteristics, and Table 2 gives the naviga-
tion performance requirements. In Table 2, � denotes the set 
of indexes that correspond to the states of interest.

Figure 2 presents the flowchart of the basic SS-KFIM 
algorithm. The first step is to determine the fault modes that 
need monitoring. One possible approach to accomplish this 
step is provided below.

(12)ℍ(j) = M1M2 ⋯Mnz

Fig. 1  Graphic illustration of 
the fault sources for a KF in a 
batch WLS form
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It is sufficient to only monitor a subset of the fault modes, 
{ ℍ(j)|j = 0, 1, …, NF }, when we have:

where j indexes the fault mode in descending order of prob-
ability, and PNM is the probability of unmonitored modes. 
To make it clearer, Fig. 3 gives an example of the monitored 
fault modes and the unmonitored ones.

(13)PTHRES ≥ PNM = 1 −
∑NF

j=0
�(j)

The second step is constructing the filter bank, which 
consists of the filters for each monitored fault mode, i.e., 
{ � (j)||0 ≤ j ≤ NF }. At each epoch, the FD test statistics are 
determined by:

where �̂(0)
q

 and �̂(j)q  are the estimates of the q th state from � (0) 
and � (j) , respectively. And their error standard deviations 
are computed by:

where �⟨m,n⟩ denotes the m th-row n th-column element of 
matrix �.

Under Assumption 2, the standard deviation for Δ�̂(j)q  is 
given by (Gunning et al. 2018):

This equation is derived based on the batch WLS form 
of a KF. Then the corresponding test threshold is com-
puted as:

where Q(p) is the (1-p ) quantile of a zero-mean unit-vari-
ance Gaussian distribution.

The navigation system is declared to be healthy only 
if we have

(14)Δ�̂
(j)
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q
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(j)
q , 1 ≤ j ≤ NF, q ∈ �
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)
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Table 1  Parameters describing the error and fault characteristics

Category Parameter Description

Noise � Process noise covariance
� Measurement noise covariance
�0 Initial error covariance

Fault � Prior probability of each fault mode

Table 2  Parameters derived from the performance requirements

Category Parameter Description

Integrity PHMI Total integrity budget
PHMI,q Integrity budget for the q th state, 

q ∈ �

PTHRES Threshold for the integrity risk coming 
from the unmonitored fault modes

Continuity PFA Total continuity budget for false alarm
PFA,q Continuity risk for the q th state, q ∈ �

Fig. 2  Flowchart of the existing 
solution separation-based KFIM 
algorithm
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If any test fails, the user will be warned that the naviga-
tion system is faulted.

The final step is evaluating the PLs, which will be per-
formed only if there is no fault alert. The PL is a statistical 
error bound computed to guarantee that the probability of 
the estimation error exceeding this number is smaller than 
the integrity risk requirement, PHMI . Mathematically, the PL 
for the q th state ( q ∈ �M ) is defined as:

where P(▪) is the probability of the event ▪ occurring, and 
D denotes the event that there is no fault alert. According 
to ARAIM, PLq can be computed by solving the following 
equation with a half-interval search (Blanch et al. 2015):

Remark 2 Equation (16) is valid only if the all-in-view esti-
mator is optimal in a least-squares sense, whereas the other 
equations in this subsection are independent of the estimator.

Filter bank management for handling 
sensor‑in and sensor‑out events

Filter bank management, also called subset management, is 
a key function in the SS-KFIM algorithm. It aims at adding 
and/or removing filters from the filter bank if (a) the meas-
urements of a new sensor arrive, called a sensor-in event, or 
(b) a sensor in use suddenly becomes unavailable, namely 

(18)
|||Δ�̂

(j)
q
||| ≤ T

(j)
q , ∀j ∈ {j|1 ≤ j ≤ NF},∀q ∈ �

(19)PHMI,q = IRq = P
(|||��

(0)
q

− �q
||| > PLq,D

)

(20)

PHMI,q −
PHMI,q

PHMI

PNM = 2Q

(
PLq

�
(0)
q

)
+

NF∑
j=1

Q

(
PLq − T

(j)
q

�
(j)
q

)
⋅ �(j)

a sensor-out event. Using GNSS/INS tight integration as an 
example, a sensor-in event is said to occur when a new satel-
lite becomes visible, and conversely, the case that a satellite 
in view is suddenly blocked is called a sensor-out event.

Gunning et al. (2019a, 2019b) and Tanil et al. (2019) 
developed several subset management strategies for SS-
KFIM FDE, in which a main filter, multiple subfilters, and 
many backup filters are run simultaneously, as shown in 
Fig. 4. However, if FE is not enabled, there is no need to 
always run a large number of backup filters. Therefore, a 
modified subset management strategy is presented below to 
adapt the FD-only SS-KFIM algorithm. This strategy can 
reduce the number of filters while maintaining low PLs.

Filter bank management for a new sensor

When there is a new sensor, actions must be taken to moni-
tor the fault modes associated with this sensor. In Fig. 5, we 
illustrate and compare three subset management strategies 
for this situation by simulating a sensor-in event at epoch k.

In Strategy I (Tanil et al. 2019), a “son” filter and a 
“daughter” filter are branched out from each of the original 
filters by inheriting its parameters. From epoch k, the “son” 
filter will use the new sensor while the “daughter” filter will 
not. This strategy ensures that PNM will not change before 
and after epoch k because we have:

where Mnew denotes the event that the new sensor is healthy, 
and ℍ(j) is the j th fault mode in the original filter bank. How-
ever, this strategy will double the number of filters.

(21)P
(
ℍ(j)

)
= P

(
ℍ(j)Mnew

)
+ P

(
ℍ(j)Mnew

)
,∀j > NF

Fig. 3  Example of monitored and unmonitored fault modes. Each 
filled rectangle is a fault mode, where black numbers indicate used 
sensors and red numbers indicate excluded ones

Fig. 4  Example structure of a filter bank for SS-KFIM FDE
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Unlike Strategy I, Strategy II keeps the number of filters 
unchanged through simply adding the new sensor to each 
of the original filters. However, this will sharply increase 
PNM because all the fault modes associated with the new 
sensor are unmonitored. Assuming that the health status of 
the new sensor is independent of those of other sensors, we 
can compute the increase in PNM by:

Therefore, this strategy is usually not feasible because it 
may make PNM exceed PTHRES.

The analysis above indicates that (a) running all the 
daughter filters is computationally expensive and (b) remov-
ing all the daughter filters may make PNM exceed PTHRES . 
Therefore, a modified strategy is proposed to overcome these 
shortcomings. The basic idea is adding a subset of daughter 
filters to the filter bank given by Strategy II to ensure PNM is 
smaller than PTHRES . Given that the fault modes are sorted 
in descending order of probability, it is sufficient to only add 
the daughter filters that correspond to the first Nd filters in 
the original filter bank when we have:

(22)

PNM,add =

NF∑
j=0

P
(
ℍ(j)Mnew

)

= P
(
Mnew

)
×

NF∑
j=0

𝕡(j) > P
(
Mnew

)
∙ 𝕡(0)

 Compared with Strategy I, this strategy can reduce the num-
ber of filters by ( NF − Nd + 1).

Filter bank management for a sensor‑out event

Subset management is also required when a previously used 
sensor becomes unavailable. Figure 6 shows an example of 
a sensor-out event and illustrates two subset management 
strategies for this event. After a sensor becomes unavailable, 
its previous measurements will still influence the filters that 
ever used it. Therefore, the fault modes associated with this 
sensor still need monitoring. An approach to achieve this 
would be to keep the filter bank unchanged, as Strategy I 
does. However, this strategy has a disadvantage in that the 
number of filters will never decrease even if a sensor has 
been unavailable for a long time.

To address this, we present a three-step subset manage-
ment strategy through modifying the strategies proposed by 
Gunning et al. (2019a, 2019b) and Tanil et al. (2019). Com-
pared with existing approaches, this strategy is more com-
patible with the FD-only SS-KFIM algorithm. Besides, it 
considers multi-fault cases and evaluates the effect of subset 
management on PNM . Our strategy is illustrated as follows.

(23)

PNM + PNM,add = PNM + P
(
Mnew

)
×

NF∑
j=Nd

�(j) < PTHRES

Fig. 5  Different filter bank management strategies to cope with a sensor-in event
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When a sensor becomes unavailable, the first step is add-
ing some new filters and generating a new filter bank. For 
simplicity, the filters that ever used the lost sensor are called 
son filters and the others are daughter filters. In Fig. 6, the 
original filter bank consists of son-daughter filter pairs and 
individual son filters. For each individual son filter, we add 
the corresponding daughter filter through filter initializa-
tion. All the daughter filters form a new filter bank that is 
unaffected by the lost sensor. The new filter bank includes 
fewer filters and experiences lower PNM than the original 
one. Specifically, the decrease in PNM is given by:

where �ad includes the indexes of the newly added filters in 
the new filter bank, ℍn is the associated fault mode, and Mout 
denotes the event that the lost sensor was ever faulted before.

In the second step, two sets of PLs are, respectively, com-
puted based on the original filter bank and the new one. 
Because the new filter bank includes some newly initialized 
filters, the corresponding PLs will be higher than those from 
the original filter bank. Therefore, at this stage, the original 
filter bank serves as the primary filter bank that outputs the 
PLs to the users. Finally, the third step is triggered when the 
two sets of PLs are sufficiently close. In this step, the original 

(24)PNM,dec =
∑

j∈𝕛ad
P
(
ℍ(j)

n
Mout

)

filter bank is removed, and the new one becomes the primary 
filter bank.

Special attention is needed for the situations where another 
sensor-in or sensor-out event occurs before the third step is 
triggered. Preliminary strategies to address them are provided 
below. If a new sensor becomes available, we can apply the 
proposed strategy in Fig. 5 to both the original and the new 
filter banks. If the lost sensor recovers, directly removing the 
new filter bank is a feasible method. And for the situation 
where another sensor becomes unavailable, a straightforward 
approach would be to follow an event-by-event strategy, i.e., 
to cope with the new sensor-out event after finishing handling 
the current one (Tanil et al. 2019).

Considering the faults in state initialization 
and propagation phases

The existing SS-KFIM algorithm only considers the faults in 
the measurement-update phase. However, the filter may also 
encounter the faults in state initialization and propagation 
phases. Therefore, the existing algorithm is modified as fol-
lows to accommodate all sources of faults.

First, the separability of the system model in (1) is dis-
cussed. A system model is called separable if it can be rewrit-
ten as:

Fig. 6  Different filter bank management strategies to handle a sensor-out event
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where c denotes the number of independent subsystems. If 
a system model is separable, a system fault may only affect 
one of its subsystems, and this kind of system fault is called 
a subsystem fault. Conversely, if the system model is insep-
arable (i.e., c = 1), all the states will be influenced by the 
system fault. Taking system faults into account, an example 
fault mode is given by:

where Si is the event that the i th subsystem is healthy and Si 
is its opposite. Note that a subsystem is considered faulted 
once if it is faulted in state initialization and/or propagation 
phases at any epoch during operation.

For different fault modes, the associated state estimation 
models to compute the fault-tolerant solutions may vary. Fig-
ure 7 illustrates the state estimation models for various types 
of fault modes, and the basic rules are summarized as follows. 
If a measurement fault exists in ℍ(j) , the faulted sensor(s) will 
be excluded by the subfilter � (j) ; if ℍ(j) includes a (sub)system 
fault, � (j) will discard the corresponding (sub)system model.

(25)
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)

Then we present a generalized KF architecture to accom-
modate different types of subfilters. First, let us rewrite the KF 
update equations as follows (Simon 2006):

Based on this, the generalized subfilter equations are given 
by:

where † represents the pseudoinverse operator (see Appendix 
B). Remark 3 explains why pseudoinverse operators are used 
here. �(j)

S
 is a diagonal matrix determined by:

where �S,F includes the indexes of those states associated 
with the faulted subsystems. O⌊�, n⌋ is an operator for n-row 
matrices, and it sets all rows whose indexes belong to � to 
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Fig. 7  Illustration of the state estimation models for different fault 
modes: a fault-free; b measurement fault, c subsystem fault in the 
propagation process; d subsystem fault caused by incorrect state ini-

tialization; e system fault in the propagation phase. Examples (a) ~ (d) 
correspond to a separable system model, while (e) is associated with 
an inseparable one
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Similarly, �(j)

M
 is determined by:

where �M,F includes the indexes of the faulted sensors.
The generalized KF architecture can also apply to the case 

where the system model is fault-free and the case where it is 
completely faulted. In the former case, (32) and (33) become:

In the latter case, the filter becomes a snapshot WLS:

Remark 3 (Usage of pseudoinverse) Pseudoinverse operators 
are applied to (32), (33) and (39) because the corresponding 
matrices are singular. Detailed explanations are given below.

If there is a (sub)system fault, 
(
�

(j)

S
�
(j)

k
�

(j)T

S

)
 will 

become singular. Without loss of generality, let us assume 
that the last subsystem is faulted. In this case, (
�

(j)

S
�
(j)

k
�

(j)T

S

)
 can be rewritten as:

where �h is the covariance matrix of the states associated 
with the healthy subsystems. This yields:

In this way, the state estimates from � (j) will not be affected 
by the subsystem fault.

S i m i l a r ly,  
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)
 may also be singular. This implies that some 

states cannot be estimated by � (j) , and thus a pseudoinverse 
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operator is used to obtain the covariance of the estimable 
states.

Remark 4 (Estimability of the states) For a subfilter, some 
states cannot be estimated. Specifically, the q th state is not 
estimable if the q th diagonal entry of �̂(j) is zero.

Remark 5 (Unobservable fault modes) If any state of interest 
cannot be estimated by � (j) , one should remove ℍ(j) from the 
list of monitored fault modes and add �(j) to PNM.

Addressing the situations 
where the all‑in‑view estimator 
is nonoptimal

According to Remark 2, the existing SS-KFIM algorithm is 
not applicable to the cases where the all-in-view estimator 
is not optimal in a least-squares sense. However, these cases 
may occur, such as in the following situations. (a) The error 
models used for continuity evaluation are different from 
those used for integrity. (b) A forgetting factor-based KF 
or an adaptive KF is used instead of the standard one. (c) 
Users adopt a self-tuning filter gain instead of the optimal 
one. Although ARAIM considers the first case (Blanch et al. 
2015), the associated method only applies to snapshot WLS 
and cannot be used here.

To address these situations, we propose a new method to 
compute the solution separation covariance. For both opti-
mal and nonoptimal filters, state prediction is performed 
based on (30), and state update is formulated as:

where �(j)

S
 is defined in (34), and � is the filter gain. The 

determination of � depends on the filter algorithm and the 
error models. Then the state errors are expressed by:
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where �̂ and � are the errors of �̂ and � , respectively. There-
fore, the state error covariances are recursively computed by:

where the left superscript “c” indicates the process, meas-
urement, and state error covariances for continuity evalu-
ation. If the error models { c�k , c�k } are not the same as 
{ �k , �k }, the state error covariances { c�k , c�̂k } will also be 
different from { �k , �̂k}.

Remark 6 A filter is said to be nonoptimal if the gain �k does 
not minimize the unconditional state error covariance, i.e., 
c�̂k , for any k.

The solution separation covariance is defined by:

where cov denotes covariance. According to (45), we have:
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Note that (52) can be proved by:
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Given that �k and �k are independent of each other, �̂(j)

ss,k
 can 

be finally computed by:

 Together with (51) and (52), this equation gives a recursive 
method to compute the solution separation covariance when 
the all-in-view filter is nonoptimal.

Performance analysis with an illustrative 
example

Simulations are conducted around an example application of 
precision navigation for UAM approach to demonstrate our 
implementation of the SS-KFIM algorithm. Protection level 
evaluation is critical in this application. Besides, this appli-
cation poses stringent navigation requirements that are dif-
ficult to satisfy using snapshot GNSS positioning. Therefore, 
this example uses tight integration of INS, code-differential 
GNSS, and Visual Odometry (VO).

Simulation set‑up

An error-state Kalman filter is used to fuse (a) IMU measure-
ments, (b) GNSS pseudoranges, and (c) VO-derived body-
frame velocity information. These sensors are installed in a 
forward-right-down way, and the geometry offsets among 
them are accurately compensated. The state vector consists 
of (a) INS errors in the East-North-Up (ENU) frame, (b) 
IMU sensor biases, and (c) receiver clock offsets. The state 
transition model is identical to that of GNSS/INS tight inte-
gration (Groves 2013), which is not restated here for brev-
ity. The measurement model is obtained by augmenting the 
measurement model of GNSS/INS tight integration (Groves 
2013) with the VO measurement model. Specifically, the 
VO measurement matrix is given by �V =

[
�3×3, �V, �3×11

]
 

where �V is the body-to-ENU transformation matrix.
The simulated flight trajectory is depicted in Fig. 8, 

and the simulation parameters are given in Table 3. In this 
table, the IMU is a tactical-grade one, and the VO velocity 
accuracy is preliminarily set for evaluation purposes only. 
Besides, sensor fault probabilities are set to different values 
to conduct sensitivity analyses. The GNSS elevation mask 
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angle is set to 30°, and Fig. 9 presents the skyplot of the 
visible satellites.

Finally, Table  4 shows the navigation performance 
requirements, which are referring to civil aviation (Blanch 
et al. 2015) and can preliminarily represent the case in UAM 
tasks. The states of interest include the east, north, and up 
positions, and they are, respectively, represented by q = 1, 2, 
and 3 in this table. The associated PLs are denoted by EPL, 
NPL, and UPL in turn.

Evaluating the protection levels in different cases

The PLs of the example multi-sensor navigation system are 
evaluated in different cases. First, Fig. 10 presents the PLs 

of GNSS/INS tight integration under different satellite fault 
probabilities ( Psat ). In this figure, the PLs increase signifi-
cantly as Psat increases from  10–5 to  10–4. This is as expected 
because only single-fault events are monitored for Psat=10–5, 
whereas multi-fault events also need monitoring when Psat 
becomes  10–4. Compared with a single-fault event, a multi-
fault event usually contributes more to the integrity risk.

Then Fig. 11 compares the PLs between GNSS/INS and 
GNSS/INS/VO, and it proves that employing VO measure-
ments can bring a significant performance improvement. 
Next, Fig. 12 demonstrates the sensitivity of the PLs over the 
VO fault probability ( Pvo ). The result shows that the PLs are 
similar for Pvo being  10–8 and  10–5 but experience a notice-
able increase when Pvo becomes  10–3. The increase is caused 
by the newly-monitored events, especially those where VO 
and a GNSS constellation are faulted simultaneously.

In contrast to the previous figures that focus on measure-
ment faults, Fig. 13 reveals the effect of a system fault on 
the PLs by setting the IMU fault probability to  10–5. The 
result suggests that the PLs increase dramatically when the 
fault modes associated with the IMU are monitored. This 
figure also compares the PLs between GNSS/INS and GNSS 
standalone, and it can be seen that GNSS/INS has better 
integrity performance than GNSS standalone even if IMU 
faults are considered.

Demonstrating the filter bank management 
strategies

Simulations are carried out based on GNSS/INS tight inte-
gration to demonstrate the filter bank management strategies, 
in which Psat is set to  10–4 and Pins is  10–8. By setting the sat-
ellite C01 to be invisible before t = 80 s, Fig. 14 compares 

Fig. 8  Simulated flight trajectory of a UAM approach phase

Table 3  Basic simulation parameters

Sensor Parameter Value

IMU (100 Hz) White noise (1 σ) G: 0.2°/ 
√
hr A: 120 μg/

√
Hz

In-run instability G: 2°/ hr A: 15 μg
Correlation time G: 500 s A: 500 s
Initial constant bias G: 10° ∕hr A: 200 μg
Fault probability 10–8 (default),  10–5, or  10–4

GNSS (1 Hz) Pseudorange noise (1 σ) 1.0 m, white noise
Clock bias error noise (1 σ ): 1.0 m
Clock drift error noise (1 σ ): 0.02 m/s; time constant: 200 s
Initial clock error bias: 10 m; drift: 0.1 m/s
Constellation GPS (G01-G32) and BDS-2 (C01-C14)
Fault probability satellite:  10–5 (default) or  10–4; constellation:  10–5

Ephemeris brdm0010.19p
Start epoch 00:00:00, 2019/01/01

VO (1 Hz) Velocity noise (1 σ) 0.3 m/s for each direction
Fault probability 10–8 (default),  10–5, or  10–3
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the performance of the proposed strategy and Strategy I for 
a sensor-in event. The result indicates that as compared to 
Strategy I, the proposed strategy produces similar PLs while 
requiring significantly fewer filters. In other words, the pro-
posed strategy requires less computational load, because 
the computational cost is approximately proportional to the 
number of filters. Note that the PLs cannot be computed with 
Strategy II because it makes the probability of unmonitored 
events exceed the target integrity risk.

Fig. 9  Skyplot of the visible satellites

Table 4  Navigation performance requirements on integrity and con-
tinuity

Parameter Value (preliminary)

PHMI 10–7

PHMI,q PHMI,1 = PHMI,2 =  10–9;
PHMI,3 = 9.8 ×  10–8

PTHRES 8 ×  10–8

PFA 3.99 ×  10–6

PFA,q PFA,1 = PFA,2 = 4.5 ×  10–8;
PFA,3 = 3.9 ×  10–6
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Fig. 10  PLs of GNSS/INS tight integration under different satellite 
fault probabilities (Psat)
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Fig. 11  Comparison between the PLs of GNSS/INS and GNSS/INS/
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Similarly, Fig. 15 shows the performance of the proposed 
strategy and Strategy I for a sensor-out event by setting C01 
to be invisible after t = 20 s. This figure helps illustrate the 
procedures of the proposed strategy: first (t = 20 s), a new 
filter bank is constructed with 49 newly-initialized filters; 
then (20 s ≤ t < 100 s), the original filter bank is the primary 
filter bank that outputs the PLs to users, and the new one 
is maintained as the backup; finally (t = 100 s), when the 
backup filter bank produces similar PLs to the primary one, 
the original filter bank is deleted and the new filter bank 
becomes the primary. Compared with Strategy I, which 
takes no action after a sensor-out event occurs, the proposed 

strategy reduces the number of filters, i.e., lightening the 
computational load, at the cost of a slight increase in the 
PLs after the final step.

Evaluating the protection levels 
when the all‑in‑view filter is nonoptimal

Our implementation of SS-KFIM can address the situ-
ations where the all-in-view filter is nonoptimal. To 
test this function, we simulate two cases of GNSS/INS 
integrated systems, namely “Default” and “Nonoptimal” 
cases. In both cases, the error models for integrity are 

Fig. 13  PLs of GNSS/INS tight 
integration under different IMU 
fault probabilities (Pins)
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Fig. 14  Performance of the proposed strategy and Strategy I when a sensor-in event occurs at t = 80  s: a protection levels; b probability of 
unmonitored events (“Pnm”) and the number of filters
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derived from Table 3, and we set Psat to  10–4 and Pins to 
 10–8. In the “Default” case, the error models for continu-
ity are the same as those for integrity, whereas in the 
“Nonoptimal” case, the process and measurement error 
covariances for continuity evaluation are half the corre-
sponding error covariances for integrity.

Figure 16 presents the PLs in these two cases. The PLs 
in the “Default” case are separately computed using the 
existing SS-KFIM algorithm and our implementation, and 
their outputs agree with each other. In the “Nonoptimal” 
case, the PLs are only calculated with our implementation 
because the existing approach is not applicable. This sug-
gests that our implementation extends the applicability of 
the existing SS-KFIM algorithm. If the users who adopt 
the existing approach hope to compute the PLs in the 
“Nonoptimal” case, they have to replace the error mod-
els for continuity with those for integrity. The PLs they 
obtained in this way are the same as those in the “Default” 
case, which are obviously larger than those output by our 
implementation. This indicates the better performance of 
our implementation than the existing one in the “Nonop-
timal” case and other similar situations.

Validating the fault detection capability

Finally, the fault detection capability of the SS-KFIM algo-
rithm is evaluated under the simulated fault scenarios given 
in Table 5. The following figures only show the FD test that 
corresponds to the true fault event, because this test is most 
likely to detect the fault first. Also, as a reminder, the system 
will issue an alarm and quit once a fault is detected.

Figures 17 and 18 demonstrate the FD performance 
against a single-satellite fault and a dual-satellite fault, 
respectively. The results suggest that the fault detector can 
effectively detect GNSS faults in both single- and multi- 
fault cases. Also, they show that the time-to-detect value 
(i.e., the time elapsed from when a fault occurs to when it 
is detected) varies with fault types and magnitudes. Spe-
cifically, the detection time becomes shorter as the fault 

Fig. 15  Performance of the 
proposed strategy and Strategy I 
when a sensor-out event occurs 
at t = 20 s. Note that for these 
two strategies, their PL curves 
are coincident before t = 100 s

Fig. 16  PLs in the “Default” and “Nonoptimal” cases
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Table 5  Simulation 
configurations in different cases

Case System Probability Fault location Duration

Figure 17 GNSS/INS/VO Psat=10–4, Pvo=10–5, Pins=10–8 C01 t ≥ 50 s
Figure 18 C09 and G13
Figure 19 VO, z-axis
Figure 20 GNSS/INS Psat=10–4, Pins=10–4 IMU, z-axis acceleration

Fig. 17  Fault detection performance in the presence of a single GNSS fault. “TH” and “TS” separately represent thresholds and test statistics. 
The time-to-detect values are 27 s, 16 s, 9 s, and 4 s, for the four fault cases, respectively

Fig. 18  Fault detection performance in the presence of two simultaneous GNSS faults. For the four fault cases, the time-to-detect values are 50 s, 
22 s, 13 s, and 8 s, respectively
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rate magnitude increases. More importantly, the results 
prove that the PLs safely bound the Position Errors (PEs) 
before a fault is detected, which indicates the effectiveness 
of the PL evaluation method.

Then the FD capability in a VO-faulted case is evalu-
ated in Fig. 19. Since the pitch angle of the air vehicle is 
almost zero, the injected fault mainly affects the vertical 
position component. Therefore, Fig. 19 only presents the 
result of this component, and it proves that the SS-KFIM 
algorithm can also protect the GNSS/INS/VO system 
against VO faults.

Finally, Fig. 20 shows the behavior of the fault detector 
in the presence of system faults. In this figure, the sys-
tem faults are caused by IMU failures. Specifically, the 
step fault reflects a sudden change in the accelerometer 
bias, and the ramp fault represents an event that there is an 
anomalous bias drift. As shown in this figure, IMU faults 
could cause significant navigation errors, and this high-
lights the importance of protecting multi-sensor navigation 
systems against system faults. Also, the results suggest 
that our implementation of SS-KFIM is effective in detect-
ing system faults and quantifying its effect on navigation 
integrity.

Conclusions

We implement the Solution Separation-based Kalman Filter 
Integrity Monitoring (SS-KFIM) technique to realize fault 
detection and Protection Level (PL) evaluation for multi-sensor 

navigation systems. In our implementation, the filter bank 
management strategies to handle sensor-in and sensor-out 
events are discussed. Besides, we consider the faults in state 
initialization and propagation phases aside from those at the 
measurement-update stage. Furthermore, our implementation 
can address the situations where the all-in-view filter is not 
optimal. Simulations are conducted for an urban air mobility 
navigation application where global navigation satellite sys-
tems, an inertial navigation system, and visual odometry are 
tightly coupled using a Kalman filter. The results suggest that 
(a) the modified filter bank management strategy is benefi-
cial to reducing the number of filters while maintaining low 
PLs, (b) our implementation is effective in protecting multi-
sensor navigation systems against all sources of faults, and (c) 
it extends the applicability of the existing SS-KFIM algorithm 
through enabling the handling of nonoptimal all-in-view fil-
ters. Future work will focus on implementing the SS-KFIM 
technique with an efficient fault exclusion scheme and mitigat-
ing the computational issue.

Appendix A: : Quantitative analysis 
on the IMU fault probability

An IMU may be faulted if any one of its components is in 
an abnormal condition (Bhatti et al. 2007). IMU failures 
have led to several civil aviation accidents (Crispoltoni 
et al. 2018). Compared with civil aircraft, future autono-
mous systems are more vulnerable to IMU failures because 
they usually employ low-cost IMUs. By showing the 

Fig.19  Fault detection results in the vertical direction in various VO-
faulted cases. The time-to-detect values are 37 s, 17 s, 15 s, and 6 s 
for the four fault cases, respectively

Fig. 20  Fault detection results in the vertical direction in various 
IMU-faulted cases. For the four fault cases, the time-to-detect values 
are 38 s, 29 s, 19 s, and 10 s, respectively
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Mean-Time-Between-Faults (MTBF) values of five tacti-
cal-grade IMUs, Table 6 implies that their fault probabili-
ties are about  10–4 ~  10–5 per hour. Therefore, it is neces-
sary to monitor IMU faults in safety–critical applications.

Appendix B: Implementation 
of the pseudoinverse operator

A real symmetric singular matrix � can be factorized as:

Then the pseudoinverse of � is given by:

(56) and (57) can be implemented using the pinv function 
in MATLAB.

Acknowledgements This work was supported by the National Key 
Research and Development Program of China (2021YFB3901501) and 
the National Natural Science Foundation of China (62103274).

Data Availability The simulation data are available from the corre-
sponding author upon reasonable request.

References

Arana GD, Hafez OA, Joerger M, and Spenko M, (2019) Recursive 
integrity monitoring for mobile robot localization safety. In: 
Proceedings ICRA 2019, Montreal, Canada, May 20–24, pp. 
305–311

Bhatti UI, Ochieng WY, Feng S (2007) Integrity of an integrated 
GPS/INS system in the presence of slowly growing errors Part 
I: a critical review. GPS Sol 11(3):173–181

Bhatti UI, Ochieng WY, Feng S (2012) Performance of rate detector 
algorithms for an integrated GPS/INS system in the presence of 
slowly growing error. GPS Sol 16(3):293–301

Blanch J, Walter T, Enge P (2010) RAIM with optimal integrity 
and continuity allocations under multiple failures. IEEE Trans 
Aerosp Electron Syst 46(3):1235–1247

(56)� = ���� =
[
�� ��

][ �
�

][
��

�

��
�

]

(57)�† = ���
−1�T

�

Blanch J et al (2015) Baseline advanced RAIM user algorithm and 
possible improvements. IEEE Trans Aerosp Electron Syst 
51(1):713–732

Blanch J, Gunning K, Walter T, de Groot L, Norman L (2019) Reduc-
ing computational load in solution separation for Kalman filters 
and an application to PPP integrity. In: Proceedings ION ITM 
2019, Institute of Navigation, Reston, Virginia, USA, January 
28–31, pp. 720–729

Blanch J, Walter T (2021) Fast protection levels for fault detection with 
an application to advanced RAIM. IEEE Trans Aerosp Electron 
Syst 57(1):55–65

Brown RG (1992) A baseline GPS RAIM scheme and a note on the 
equivalence of three RAIM methods. Navigation 39(3):301–316

Crispoltoni M, Fravolini ML, Balzano F, D’Urso S, Napolitano MR 
(2018) Interval fuzzy model for robust aircraft IMU sensors fault 
detection. Sensors 18(8):2488

Groves P (2013) Principles of GNSS, inertial and multi-sensor inte-
grated navigation systems(2nd Edition). Artech House, London

Gunning K, Blanch J, Walter T, de Groot L, and Norman L (2018) 
Design and Evaluation of Integrity Algorithmsfor PPP in Kin-
ematic Applications. In: Proceedings of the 31st International 
Technical Meeting of The SatelliteDivision of the Institute of 
Navigation (ION GNSS+ 2018), Miami, Florida, September 
24–28, pp. 1910–1939

Gunning K, Blanch J, Walter T, de Groot L, Norman L (2019a) Integ-
rity for tightly coupled PPP and IMU. In: Proceedings ION 
GNSS+ 2019a, Institute of Navigation, Miami, Florida, Septem-
ber 16–20, pp. 3066–3078

Gunning K, Blanch J, Walter T (2019b) SBAS corrections for PPP 
integrity with solution separation. In: Proceedings ION ITM 
2019b, Institute of Navigation, Reston, Virginia, January 28 – 
31, pp. 707–719

Guo S et al. (2019) Fault tolerant multi-sensor federated filter for AUV 
integrated navigation. In: Proceedings 2019 IEEE underwater 
technology, Kaohsiung, Taiwan, April 16–19, pp. 1–4

International Civil Aviation Organization (ICAO) (2009) Annex 10, 
Aeronautical telecommunications, volume 1 (radio navigation 
aids), amendment 84, Montreal, QC, Canada

Joerger M, Pervan B (2013) Kalman filter-based integrity monitoring 
against sensor faults. J Guid Control Dyn 36(2):349–361

Joerger M, Chan FC, Pervan B (2014) Solution separation versus 
residual-based RAIM. Navigation 61(4):273–291

Jurado J, Raquet J, Schubert Kabban CM, Gipson J (2020) Resid-
ual-based multi-filter methodology for all-source fault detec-
tion, exclusion, and performance monitoring. Navigation 
67(3):493–510

Lee J, Kim M, Lee J, and Pullen S (2018) Integrity assurance of 
Kalman-filter based GNSS/IMU integrated systems against IMU 
faults for UAV applications. In: Proceedings ION GNSS+ 2018, 
Institute of Navigation, Miami, Florida, USA, September 24–28, 
pp. 2484–2500

Simon D (2006) Optimal state estimation: Kalman, H∞, and nonlinear 
approaches. Wiley, Hoboken, NJ, USA

Tanil C, Khanafseh S, Joerger M, Pervan B (2018a) An INS monitor to 
detect GNSS spoofers capable of tracking vehicle position. IEEE 
Trans Aerosp Electron Syst 54(1):131–143

Tanil C, Khanafseh S, Joerger M, and Pervan B (2018b) Sequential 
integrity monitoring for Kalman filter innovations-based detec-
tors. In: Proceedings ION GNSS+ 2018b, Institute of Navigation, 
Miami, Florida, USA, September 24–28, pp. 2440–2455

Tanil C, Khanafseh S, Joerger M, Kujur B, Kruger B, de Groot L, 
Pervan B (2019) Optimal INS/GNSS coupling for autonomous 
car positioning integrity. In: Proceedings ION GNSS+ 2019, 
Institute of Navigation, Miami, Florida, USA, September 16–20, 
pp. 3123–3140

Table 6  MTBF values of five tactical-grade IMUs (the data are avail-
able on the Internet)

No IMU Company MTBF (hours)

1 STIM 210 Sensonor 70,000
2 HG 4930 Honeywell 59,000
3 LN 200 Northrop Grumman 20,000
4 VN 110E VectorNav 45,000
5 ISA-100C Northrop Grumman 46,100



 GPS Solutions (2023) 27:103

1 3

103 Page 18 of 18

Wang R, Xiong Z, Liu J, Xu J, Shi L (2016) Chi-square and SPRT 
combined fault detection for multisensor navigation. IEEE Trans 
Aerosp Electron Syst 52(3):1352–1365

Wang S, Zhan X, Pan W (2018) GNSS/INS tightly coupling system 
integrity monitoring by robust estimation. J Aeronaut Astronaut 
Aviat 50(1):61–80

Wang S, Zhan X, Zhai Y, Liu B (2020) Fault detection and exclusion 
for tightly coupled GNSS/INS system considering fault in state 
prediction. Sensors 20(3):590

Zhai Y, Joerger M, Pervan B (2018) Fault exclusion in multi-constella-
tion global navigation satellite systems. J Navig 71(6):1281–1298

Zhong L, Liu J, Li R, Wang R (2017) Approach for detecting soft faults 
in GPS/INS integrated navigation based on LS-SVM and AIME. 
J Navig 70(3):561–579

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

Shizhuang Wang received his 
B.S. in Aerospace Engineering 
from Shanghai Jiao Tong Uni-
versity (SJTU), China, in 2018. 
He is currently a Ph.D. candidate 
at the School of Aeronautics and 
Astronautics, SJTU. His research 
interests focus on navigation 
integrity and multi-sensor 
integration.

Yawei Zhai obtained his Ph.D. in 
Mechanical and Aerospace Engi-
neering from the Illinois Institute 
of Technology, USA, in 2018. 
He is currently a post-doctoral 
researcher at Shanghai Jiao Tong 
University. His research focuses 
on Advanced Receiver Autono-
mous Integrity Monitoring 
(ARAIM) and multi-sensor 
integration. 

Xingqun Zhan received his Ph.D. 
from Harbin Institute of Tech-
nology, China, in 1999. He is 
currently a professor and the 
associate dean of the School of 
Aeronautics and Astronautics at 
Shanghai Jiao Tong University. 
He is an associate editor of Aero-
space Science & Technology and 
an AIAA associate fellow. His 
research interests focus on navi-
gation integrity multi-sensor 
integration, and cooperative 
navigation.


	Implementation of solution separation-based Kalman filter integrity monitoring against all-source faults for multi-sensor integrated navigation
	Abstract
	Introduction
	Solution separation-based Kalman filter integrity monitoring: a revisit
	Principles of the Kalman filter
	Fault sources and their effects on state estimation
	Revisiting the existing solution separation-based KFIM algorithm

	Filter bank management for handling sensor-in and sensor-out events
	Filter bank management for a new sensor
	Filter bank management for a sensor-out event

	Considering the faults in state initialization and propagation phases
	Addressing the situations where the all-in-view estimator is nonoptimal
	Performance analysis with an illustrative example
	Simulation set-up
	Evaluating the protection levels in different cases
	Demonstrating the filter bank management strategies
	Evaluating the protection levels when the all-in-view filter is nonoptimal
	Validating the fault detection capability

	Conclusions
	Appendix A: : Quantitative analysis on the IMU fault probability
	Appendix B: Implementation of the pseudoinverse operator
	Acknowledgements 
	References




