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Abstract
A number of studies have attempted to reduce the effect of observation errors on Global Navigation Satellite Systems posi-
tioning through empirical error models. However, due to the complex spatiotemporal characteristics of observation errors, 
the effects of these errors cannot be eliminated, resulting in the unmodeled error in the positioning results. Although many 
studies have been carried out on unmodeled error mitigation, most of which only focus on positioning model optimization 
and fail to make use of historical observation data. We explore the relationship between unmodeled error and observation 
features and develop a new data-driven approach based on machine learning. Historical observations of a specific station 
are used to predict the unmodeled error of a positioning model. Time–frequency analysis is used to evaluate the prediction 
results. The feasibility of applying the method to the precise point positioning (PPP) kinematic positioning is verified by 
using IGS station data. It is clear from the findings that the data-driven model can effectively predict the unmodeled errors in 
GNSS positioning, especially in low-frequency components. In addition, the influencing factors of the method are explored 
in detail and the relevant settings are recommended.
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Introduction

GNSS positioning accuracy is affected by various observa-
tion errors, which seriously deteriorates its application in 
displacement monitoring such as settlement and landslides. 
Many studies have explored possible methods to mitigate 
the effects of these observation errors. To date, however, 
there has been no definitive model that can eliminate these 
errors caused by the complex spatiotemporal characteristics. 
These errors, which cannot be eliminated, are referred to as 

unmodeled errors. There are many unmodeled error mitiga-
tion strategies, a common strategy is to model observation 
errors. For example, Hoque and Jakowski (2008) investi-
gated the higher-order ionospheric effects in precise GNSS 
positioning. Another well-known example is multipath miti-
gation, such as multipath ray-tracing (Lau and Cross 2007), 
multipath sidereal filtering (Choi et al. 2004; Ragheb et al. 
2007; Shen et al. 2020), multipath hemispheric mapping 
(Dong et al. 2016), adaptive tracking of line-of-sight/non-
line-of-sight signals (Chen et al. 2012; Chen et al. 2014; 
Chen et al. 2017) and so on. The effects of unmodeled error 
cannot be fully eliminated due to the complex spatiotempo-
ral characteristics of observation errors.

The second strategy for error mitigation is to select the 
appropriate positioning strategy based on the characteris-
tics of the observation residuals of the original position-
ing results. Most research on GNSS error characteristics 
has been carried out based on observation residuals. Zhang 
et al. (2017) compared and analyzed the unmodeled error in 
Global Positioning System (GPS) and BeiDou signals. The 
residual error analysis of the observation data shows that the 
unmodeled error is present in the positioning time series. 
The short-term correlation of unmodeled error is analyzed 
by correlation analysis, and two empirical models are used 
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to estimate the correlation coefficient. Sequential adjustment 
is used in baseline resolution to take into account the short-
term correlation of unmodeled error. Zhang et al. (2018) 
introduced a real-time adaptive weighting model which can 
mitigate the site-specific unmodeled error of undifferenced 
code observations. The model is a combination of the ele-
vation-based model and the carrier-to-noise power density 
ratio (C/N0) based model, in which the parameters of the 
C/N0 model need to be determined through static obser-
vations of the receiver in a low multipath environment. Li 
et al. (2018a) proposed a procedure to test the significance 
of unmodeled errors and identify their components in GNSS 
observation. In this method, the unmodeled error is divided 
into three categories, and suggestions for processing each 
type of unmodeled error are also given. A recent study by 
Zhang and Li (2020) made use of this procedure to detect the 
significance of observation residuals. Then the unmodeled 
error mitigation method based on multi-epoch partial param-
eterization is adapted to process the observations with sig-
nificant unmodeled error. In this kind of method, the choice 
of function model or stochastic model mainly depends on 
the hypothesis test of residuals (Wang et al. 2013), and other 
observation features are not fully utilized.

Another kind of strategy is the time–frequency analysis of 
geographic coordinate time series. Different trajectory mod-
els are defined to describe coordinate time series. Among 
them, the standard linear trajectory model (SLTM) is defined 
as the sum of three different types of displacements, includ-
ing trend terms, jump terms, and periodic terms (Bevis et al. 
2020). In addition, Bevis and Brown define the extended 
trajectory model (ETM), which adds one or more transients 
to the SLTM (Bevis and Brown 2014). Different parameter 
estimation methods are used to estimate the parameters 
involved in these models, including maximum likelihood 
estimation (Langbein 2017; Bos et al. 2020), Bayesian infer-
ence (Olivares-Pulido et al. 2020), and Kalman filter (Engels 
2020). Usually, the error characteristics of coordinate time 
series are analyzed by the power spectrum, and the param-
eters of each error component can be estimated by the least 
square variance component (Teunissen and Amiri-Simkooei 
2008). However, most of the above methods are for offline 
analysis of coordinate time series, which is not suitable for 
online applications.

The last strategy is based on regional filtering, which 
utilizes the regional correlation characteristics of unmod-
eled error and the reference station network to reduce the 
impact of the unmodeled error. In regional network analysis, 
regional-related errors caused by satellite orbit, earth ori-
entation parameters, atmospheric effects, and other factors 
are called common-mode errors (CME) (Wdowinski et al. 
1997; Dong et al. 2006). Many studies have attempted to 
mitigate the common model error through regional filtering 
techniques. The first detailed regional filtering study was 

carried out to estimate coseismic and postseismic displace-
ments (Wdowinski et al. 1997). This technique assumes that 
the CME is special uniform, which leads to a decrease of 
the calculated CME with the increase in regional network 
size. To handle this problem, the principal component analy-
sis (Wold et al.1987) and the Karhunen–Loeve expansion 
(Kirby and Sirovich 1990) were introduced in the regional 
filtering, in which the nonuniform spatial response of the 
network stations to a CME source is considered (Dong et al. 
2006). The entire network time series are taken into account 
and the time series is decomposed into various spatial and 
temporal coherent orthogonal modes in the regional filter-
ing. Besides, the multiscale principal component analysis 
(PCA) techniques have been introduced into regional filter-
ing (Li et al. 2017, 2018b). The wavelet denoising is applied 
to the coordinate time series before performing the PCA for 
common model error mitigation (Li et al. 2017). Similarly, 
the empirical mode decomposition (EMD) was adopted to 
denoise the coordinate time series before the common model 
error mitigation was performed using PCA (Li et al. 2018b). 
Besides, the multi-channel singular spectrum analysis was 
adopted to estimate common environmental impacts affect-
ing GPS observations (Gruszczynska et al. 2018), and it is 
not suitable for site-related errors, such as multipath. All of 
these methods are based on time series analysis of coordi-
nate residuals, so the features of observation are not fully 
utilized.

The observation features which are derived from the sin-
gle epoch GNSS positioning results, such as satellite eleva-
tion angle, pseudorange residual, carrier-phase residual, sig-
nal strength, etc., are related to the unmodeled error. Some 
machine learning algorithms have been introduced for mul-
tipath detection (Hsu 2017). A convolutional neural network 
(CNN)-based carrier-phase multipath detection method has 
been proposed for static and kinematic GPS high-precision 
positioning (Quan et al. 2018). However, after detection, 
the weight loss or removal strategy needs further research 
(Lau and Cross 2006; Shen et al. 2020), and there is a lack of 
end-to-end unmodeled error removal research. So far, very 
little attention has been paid to the relationship between the 
unmodeled error and the observation features. Previous stud-
ies of unmodeled error mitigation are limited to correcting 
the observation error, positioning strategy, or coordinate 
time series. These studies have failed to demonstrate a link 
between the observation feature and the unmodeled error. 
Using historical observations, we seek to establish the rela-
tionship between the observation features and the unmod-
eled error. The purpose of this paper is to explore a data-
driven unmodeled error prediction method using machine 
learning. The method is divided into offline training and 
online prediction, for which the machine learning algorithm 
is adopted. The research data in this paper is drawn from 
International GNSS Service (IGS) stations. This study offers 
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some important insights into the unmodeled error mitigation 
of a specific positioning model.

The remaining part of the paper proceeds as follows: the 
second section of this paper is concerned with the method-
ology used for this study. The experiments and results are 
presented next, followed by a discussion of the main issues 
of the proposed method and the conclusion.

Methods

This part first provides the principle of an unmodeled error 
mitigation method based on machine learning. Then, the 
machine learning algorithm adopted in the proposed method 
is presented. Finally, the basic principle of the positioning 
model used in the experiment is introduced.

Data‑driven unmodeled error prediction

Similar to other applications based on machine learning, 
unmodeled error prediction is also divided into two pro-
cesses: offline training and online prediction, which are 
introduced below.

Online prediction

The unmodeled error mitigation in this work is achieved 
by training the unmodeled error prediction model of the 
positioning model through historical observation data. The 
trained unmodeled error prediction model is used to predict 
the unmodeled error in the positioning model to improve the 
accuracy of single epoch positioning. The unmodeled error 
mitigation process is shown in Fig. 1.

As shown in Fig. 1, the output of single-epoch positioning 
is the basis for model training and unmodeled error predic-
tion. The GNSS positioning in Fig. 1 is described as

where L represents the positioning information such as 
observation data, navigation message, precise ephemeris, 
etc.; F denotes the GNSS positioning model, which can be 
single-point positioning, precise point positioning, relative 
positioning, etc.; Y  is the unknown parameters to be esti-
mated, and only the coordinates are considered. The coor-
dinate and observation features extracted from single epoch 
positioning are used as the basis for model training and error 
prediction. The data for model training is extracted from his-
torical observations, which will be described in more detail 
in the following subsection. The observation features in the 
model prediction are obtained from the single epoch posi-
tioning of the current epoch. The trained model predicts the 

(1)Y = F(L)

unmodeled error, and the general definition of the prediction 
model in Fig. 1 is as follows

where x denotes observation features, including the origi-
nal observation information and the intermediate process-
ing results of single epoch GNSS positioning result; f  is 
the trained prediction model, which will be described in the 
following subsection; y− is the predicted unmodeled error 
in the current epoch. As shown in Fig. 1, after obtaining 
the original positioning value and the predicted unmodeled 
error, the final position estimation can be obtained by the 
following formula

Offline training

The above description is an online unmodeled error predic-
tion process. However, how to train a reliable prediction 
model f  is the key to online prediction. The problem of 
unmodeled error prediction is essentially a regression prob-
lem in supervised learning. The machine learning algorithm 
is to learn the mapping relationship between input variables 
and output variables through training data. Training data is 
the basis of model training, and the expression of training 
data is given as follows

where xi represents the input of the i th sample, that is, the 
selected observation feature; yi denotes the output of the i th 
sample, that is, the unmodeled error.

(2)y− = f (x)

(3)Ŷ = Y − y−

(4)D = {(x1, y1), (x2, y2)⋯ , (xi, yi)⋯ , (xn, yn)}, yi ∈ R

Fig. 1  Unmodeled error mitigation process
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The selected features can be divided into three catego-
ries: one is the features closely related to unmodeled error 
studied by previous researchers, such as satellite eleva-
tion, signal strength, observation residual, etc.; the other 
is GPS time which reflects the time characteristics of error; 
the last one is the quality features of observation, such 
as valid data flag, cycle-slip flag, cycle-slip count, etc. 
To eliminate the influence of unit and scale differences 
between features and treat all dimensional features equally, 
the features need to be normalized. Min–max normaliza-
tion and z-score normalization are adopted to normalize 
these features. The details of observation features and cor-
responding normalization methods are shown in Table 1.

The features of all GPS satellites are organized in a 
matrix, forming a so-called feature matrix. Each column 
in the matrix represents the satellite, and each row in 
the matrix represents each feature. The size of the fea-
ture matrix is fixed, and the columns corresponding to 
the unavailable satellites will be reserved and filled with 
zeros. The output of the training data, the GNSS position-
ing unmodeled error, is usually obtained by the difference 
between the GNSS single-epoch positioning result and 
the relatively high-precision positioning result. More pre-
cise positioning results are used as reference positioning 
results, but these positioning results have a time delay. 
We used the difference between the positioning result of a 
single epoch and the positioning result of a whole day as 
the training data output. The unmodeled error is obtained 
as follows

where Yi is the result of a single epoch solution and Y  is 
the average value of a single epoch solution within a day. 
After preparing training samples, the key to the prediction of 
unmodeled error is to train a desirable prediction model with 

(5)yi = Yi − Y

these sample data. The machine learning algorithm used in 
this method is given below.

Convolutional neural network

CNN has been widely used in the field of computer vision, and 
it has also performed well in other application fields (Good-
fellow et al. 2016). Therefore, a deep convolutional neural 
network is designed to regress the unmodeled error in GNSS 
positioning.

Network architecture

The network consists of an input layer, 4 convolutional layers, 
a pooling layer, a flattening layer, a fully connected layer, and 
an output layer. The unmodeled error CNN regression model 
is shown in Fig. 2.

The dimension of the input layer is 13*32, where 13 repre-
sents the number of features used and 32 represents the num-
ber of GPS satellites. The size of each convolution kernel in 
this network is 3 by 3, and the step size in both directions is 
set to 1. The convolution layer adopts the valid zero-padding 
strategy (Goodfellow et al. 2016), that is, to reject the zero-
padding, resulting in a reduction of the length and width of the 
output data by 2. The number of convolution kernels in each 
convolution layer is set to 64, 64, 32, and 32, respectively, to 
extract multiple types of features.

The convolution operation of the convolution layer l is 
described below (LeCun and Bengio 1998).

where Xl−1
i

 represents the feature matrix of the input of the 
convolution layer on the i th channel; d denotes the number 
of input channels of the convolution layer; Kl

ij
 is the j th con-

(6)Xl
j
= frelu(

d∑
i=1

Xl−1
i

⋅ Kl
ij
+ Bl

j
)

Table 1  Observation features of 
the machine learning algorithm, 
x denotes the original value of 
the feature, x is the mean of 
the original value, � represents 
the standard deviation of the 
original value, DoS is short for 
depends on samples

Name Type Numerical range Normalized method

GPS time Float DoS (x −min (x))∕ (max (x) −min (x))

Satellite azimuth Float DoS (x −min (x))∕ (max (x) −min (x))

Satellite elevation Float DoS (x −min (x))∕ (max (x) −min (x))

Pseudo-range residual Float DoS (x − x)
/
�

Carrier-phase residual Float DoS (x − x)
/
�

Signal strength Float DoS (x − x)
/
�

Valid data flag Integer [0, 1] x

Cycle-slip flag Integer [1, 2] x − 1

Ambiguity flag Integer [0, 1, 2, 3] x∕3

Carrier-lock count Integer [0, DoS] x∕max (x)

Data outage count Integer [0, DoS] x∕max (x)

Cycle-slip count Integer [0, DoS] x∕max (x)

Data reject count Integer [0, DoS] x∕max (x)
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volution kernel of the convolution layer corresponding to the 
i th input channel; ⋅ denotes the convolution operator; Bl

j
 rep-

resents the j th convolution kernel bias of the convolution 
layer; Xl

j
 is the output feature matrix of the j th convolution 

kernel of the convolution layer, also known as feature map 
in the computer vision. After each convolutional layer, an 
activation layer is immediately followed. The activation 
layer essentially adds nonlinear elements to the model 
through the activation function, thereby making up for the 
expressive power of the linear model (Buduma and Locascio 
2017). The activation layer does not change the dimensions 
of the input data. The rectified linear unit (ReLU) is gener-
ally selected as the activation function of the convolution 
layer. The definition of the activation function is as follows 
(Nair and Hinton 2010).

The activation function can reduce gradient vanishment and 
has a fast operation speed. There is a pooling layer after the 
last convolution layer, and the pooling size is set to 2 by 
2. The size of the data passing through the pooling layer 
becomes half of that of the input, and the number of chan-
nels does not change. Convolution and pooling are regarded 
as infinitely strong priors (Goodfellow et al. 2016). The final 
flattening layer is responsible for converting multidimen-
sional data into one-dimensional data.

Back propagation

The output y is obtained through the above process, where 
the input x passes through hidden layers such as a convo-
lutional layer, a pooling layer, and a fully connected layer. 
This process is also called the forward propagation process. 
Through each epoch of the forward propagation, the value 
of the loss function can be obtained. The loss function is 
defined as follows

(7)frelu(x) = max (0, x)

where � is the optimization parameter, and n is the number 
of samples. The mean square error cost is used here. The 
loss function value J(�) can be obtained for each forward 
propagation, and the parameter information is adjusted by 
the gradient of the loss function. The process of spreading 
the loss function information back through the network is 
called backpropagation (Rumelhart et al. 1988). In this work, 
the stochastic gradient descent method is used to calculate 
the gradient.

The minibatch stochastic gradient descent is adopted to 
improve computing efficiency, and the batch size is set to 
32. After obtaining the gradient of the loss function, the 
parameters are updated by the following formula, and the 
network training process enters the next epoch.

where �′ is the updated parameter; � is the learning rate. In 
this work, an adaptive estimation algorithm of learning rate 
named adaptive moment estimation (Adam) is adopted. The 
Adam algorithm dynamically adjusts the parameter’s learn-
ing rate based on the loss function’s first and second-moment 
estimates of the parameters (Kingma and Ba 2015).

Regularization

To reduce the generalization error of the model, two 
regularization methods were adopted which include 
early stopping, Dropout. Early stopping is to evaluate the 
performance of the model on the validation set during 
the training process, and stop training when the model 

(8)J(�) =
1

2n

n∑
i=1

‖‖yi − f (xi;�)
‖‖2

(9)∇�J(�) = −
1

n

n∑
i=1

(yi − f (xi;�))
�f (xi;�)

��

(10)�� = � − �∇�J(�)

Fig. 2  Unmodeled error CNN 
regression model



 GPS Solutions (2023) 27:77

1 3

77 Page 6 of 16

performance on the validation set starts to decline to avoid 
the problem of overfitting caused by continued training 
(Prechelt 1998). In this work, the early stop criterion is 
to stop training when the validation set error increases 
continuously for 50 epochs. Dropout is another method 
adopted in this work to prevent overfitting. The Drop-
out strategy can randomly inactivate neurons at a certain 
percentage and inactivated neurons do not participate in 
the forward propagation of the network (Srivastava et al. 
2014), and backpropagation only updates the weights of 
activated neurons, that is, the weights of inactive neurons 
are not updated. In this work, Dropout is applied to the 
last hidden layer, and the inactivation ratio is set to 0.25, 
that is, within each minibatch epoch, 192 neurons in the 
last hidden layer are inactivated.

For the implementation of the CNN regression model 
mentioned above, we make full use of the open-source 
software TensorFlow to facilitate our research. Instead of 
implementing the model directly based on TensorFlow 
(Abadi et al. 2016), we adopted another open-source soft-
ware: Keras, which is an encapsulation of TensorFlow 
to support rapid practice so that we can quickly convert 
ideas into results without paying too much attention to the 
underlying details (Gulli and Pal 2017).

Evaluation of predicted results

To evaluate the unmodeled error of predictions, we 
compute the standard deviation (STD) of the difference 
between the original time series and the predicted time 
series. In addition, wavelet tools are utilized to analyze 
the original time series and the predicted time series. 
As an effective time–frequency analysis tool, wavelet is 
widely used in the field of image and audio, and also in 
the field of geodesy. As a time–frequency analysis method, 
the time–frequency resolution of the wavelet transform 
is variable. For example, in wavelet transform, the low-
frequency part has a lower time resolution and higher 
frequency resolution, while the high-frequency part has 
a lower frequency resolution and higher time resolution 
(Ruch and Fleet 2009). The wavelet transform is widely 
used in signal analysis because of its adaptability to the 
signal. The definition of continuous wavelet transform 
(CWT) is as follows (Addison 2017)

where s is the scale factor, t is the translation factor, ψ is the 
mother wavelet, and x is the signal to be analyzed. In the 
experiments, the CWT will be used to analyze the original 
time series and the predicted time series.

(11)CWT
ψ
x
(s, �) =

1√
s ∫

∞

−∞

x(t)ψ
�
t − �

s

�
dt

Precise point positioning (PPP)

In the above, the prediction model of unmodeled error is 
proposed, and the machine learning algorithm is intro-
duced. We will study the prediction of unmodeled error of 
the precise point positioning (PPP) kinematic positioning 
model. The basic principle of PPP is introduced here. PPP 
is a technology that uses a single receiver to achieve global 
high-precision positioning. This technology makes use of 
the precise satellite orbit and clock products provided by 
external organizations such as IGS and takes into account 
the fine modeling of various errors. The ionosphere-free 
(IF) combination of dual-frequency is the most widely 
used observable model in PPP, which can eliminate the 
first-order ionosphere influence. The ionosphere-free com-
bination observation equations of PPP are demonstrated 
as follows (Kouba and H´eroux 2001; Malys and Jensen 
1990),

where fi(i = 1, 2) denotes frequency; Ps
r,i

 and Φs
r,i
(i = 1, 2) 

are pseudorange observations and carrier phase observa-
tions, both in meters; Ps

r,IF12
 is the ionosphere-free combina-

tion observation of pseudoranges; Φs
r,IF12

 is the ionosphere-
free combination observation of carrier phases; �s

r
 is the 

geometric range from the receiver to the satellite; c is the 
speed of light in vacuum; dtr is the receiver clock offset; dts 
is the satellite clock offset; Ts

r
 is the tropospheric delay; Bs

r,IF12
 

is the carrier phase bias, including the ionosphere-free com-
bination of integer ambiguity and phase delays; dΦs

r,IF12
 is 

ionosphere-free carrier phase corrections, including receiver 
antenna phase center correction, satellite antenna phase 
center correction, earth tide correction, and phase wind-up 
correction; eIF and �IF are measurement noises of pseudor-
ange combined observation and carrier combined observa-
tion, respectively. For the latter method verification, only the 
floating resolution results of the ionospheric-free model are 
used. The satellite clock correction provided by IGS is based 
on the ionosphere-free combination observation, which 
absorbs the ionosphere-free combination of the satellite 
pseudorange hardware delay. The ionosphere-free combina-
tion of receiver pseudorange hardware delay is absorbed by 
the clock error of the receiver. The carrier phase hardware 
delay is absorbed by the carrier phase bias Bs

r,IF12
 defined 

herein. Therefore, in (12), the description of pseudorange 
hardware delay and carrier phase hardware delay is ignored. 
To obtain high-precision centimeter-level positioning results 
using PPP, the error terms in (12) have to be carefully mod-
eled or estimated together with the user position. In this 

(12)

⎧⎪⎨⎪⎩

P
s
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=

f
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2

1
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P
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−
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1
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r
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r
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s

r
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r,IF12
+ �IF12
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work, the open-source software RTKLIB (Takasu 2011) is 
used to realize PPP positioning, and kinematic positioning 
is tried.

Experiments and results

The data used in this study comes from IGS stations. Since 
the model training is very time-consuming, 12 stations 
around the world are randomly selected for training, and 
the distribution of these stations is shown in Fig. 3. The 
observation data of these stations in October 2018 are used, 
and the sampling interval of these observation data is 30 s. 
Only the L1 and L2 observations of GPS in the observation 
data were used in the experiment. RTKLIB, an open-source 
GNSS data processing software, was used for the data pro-
cessing. The positioning mode was set to PPP kinematic 
mode. The filter type was set to forward filter solution, and 
the elevation mask angle was set to 15°. Model correc-
tion items considered in model refinement include antenna 
phase center, phase wind-up, solid earth tide, ocean loading, 
polar tide, and others, as described by the RTKLIB manual 

(Takasu 2011). Despite the addition of the various model 
corrections above, millimeter-scale level daily variations can 
occur due to imperfect ocean tides, other types of loading, 
and temperature effects on station monuments. Therefore, 
we assume that the actual displacement of the station is far 
less than the unmodeled error that we want to correct and 
take certain strategies to exclude the large displacement data 
from the training data.

After obtaining the positioning results according to the 
above processing strategy, we extracted the features and 
labels according to the method described in the methods 
section. To reduce the influence of abnormal training data, 
we discarded the data of days with a large standard deviation 
in the positioning results. Data of days with label stand-
ard deviations greater than 10 cm were removed. Although 
the standard deviation of each day of kinematic positioning 
result of the HKWS station is greater than 10 cm, the pro-
cessing results obtained from these data are also provided. 
We use the data on October 30 and October 31 as the test 
data and use the 8-day data and 18-day data that meet the 
conditions above as the training data, respectively. Besides, 
in the training data, all single epoch data are shuffled and a 
quarter of the data was used as the validation data set.

Unmodeled error prediction of PPP kinematic 
positioning

The STD of the difference between the original time 
series and the predicted time series for the two-day test 
data is exhibited in Table 2. On the whole, the STD in 
the horizontal direction is smaller than that in the verti-
cal direction, mainly because the measurement noise in 
the horizontal direction is smaller than that in the vertical 
direction. In addition, in the unmodeled error predictions 
for the next two days, there is no significant difference 
between the prediction results of day 1 and day 2. Taking Fig. 3  Geographical distribution of IGS stations

Table 2  STD of prediction 
results of different stations

station First day Second day

North (mm) East (mm) Up (mm) North (mm) East (mm) Up (mm)

ALIC 20.61 20.15 54.51 19.16 16.02 55.70
BAKE 47.17 25.85 53.75 46.80 25.02 46.15
BJFS 23.96 15.40 44.16 22.20 14.73 41.93
MELI 45.82 27.06 28.35 43.84 25.98 23.35
PENC 25.74 22.78 50.55 23.23 20.38 51.38
PICL 49.93 19.53 28.76 47.87 22.77 26.51
POVA 28.30 30.91 57.25 30.24 20.74 62.47
SCH2 45.83 19.18 27.32 40.54 19.55 28.77
NRIL 21.20 14.15 54.81 21.74 16.53 51.48
TIXI 19.09 15.11 60.28 19.02 16.70 53.27
YAKT 23.25 17.42 54.05 22.54 17.66 51.24
HKWS 38.96 21.07 86.92 39.29 19.93 79.81
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the ALIC station as an example, the time–frequency analy-
sis results of the predicted results of the north, east, and 
up coordinate components on the first day are shown in 
Figs. 4, 5, 6, respectively. In these figures, the top panel 
shows the original and the predicted time series, and the 

bottom-left and bottom-right panels show the wavelet 
analysis results of the original and the predicted time 
series, respectively. It can be seen from Fig. 4 that both 
the original and the predicted time series of the north 
coordinate component have spectral components with a 

Fig. 4  Prediction results of the 
north coordinate component at 
the ALIC station

Fig. 5  Prediction results of the 
east coordinate component at 
the ALIC station
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period of about 8 h, especially between 10 and 20 h. The 
spectral components with a period of about 10 h in the 
unmodeled error of the east coordinate component have 
been effectively predicted, and it can be seen from Fig. 5 
that it is mainly concentrated between 0 and 15 h. It can 

be seen from Fig. 6 that the unmodeled error of the up 
coordinate component is noisier than in the other two 
directions, and its spectral composition is more complex. 
Nonetheless, the time–frequency analysis of the original 
and the predicted time series also show a certain degree of 

Fig. 6  Prediction results of the 
up coordinate component at the 
ALIC station

Fig. 7  Prediction results of the 
north coordinate component at 
the SCH2 station
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similarity. Time–frequency analysis results of the SCH2 
station are also given, as shown in Figs. 7, 8, 9. Unlike the 
previous station, the STD of the north component of this 
station is larger than that of the other two components. As 
can be seen from Figs. 7, 8, 9, the original time series of 

the north component is noisier than that of the other two 
components.

Fig. 8  Prediction results of the 
east coordinate component at 
the SCH2 station

Fig. 9  Prediction results of the 
up coordinate component at the 
SCH2 station
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Unmodeled error prediction of the combined 
filtering mode

In the above experiments, the forward filtering mode is used, 
and the prediction results corresponding to the combined 

filtering mode are given below. Using 8 days’ data from 
the ALIC station, the STD of the difference between the 
original time series and the predicted time series on the first 
day are 18.12 mm, 16.59 mm, 52.58 mm, and the STD on 
the second day are 17.41 mm, 15.55 mm, 48.56 mm. The 

Fig. 10  Prediction results of the 
north coordinate component 
using the combined filtering 
mode at the ALIC station

Fig. 11  Prediction results of 
the east coordinate component 
using the combined filtering 
mode at the ALIC station
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STD of combined filtering is smaller than that of the for-
ward filtering, which is mainly because the noise is further 
suppressed in combined filtering. Wavelet analysis results 
of the predicted and original time series of the ALIC sta-
tion are also given, as shown in Figs. 10, 11, 12. Compared 
with the forward filtering mode, the wavelet analysis results 
of the combined filtering mode are more similar to those 
of the original time series. It can be seen from the above 
experiments that the unmodeled error of the low-frequency 
component is effectively predicted.

Discussions

In the previous section, experiments of data-driven unmod-
eled error prediction, the number of days of training data 
was set to 8. The discussion of the number of days of train-
ing data on the prediction result is given here. Besides, the 
influence of different features on prediction is explored, and 
the corresponding STD is given when a different feature is 
excluded.

Influence of more training data on unmodeled error 
prediction

To further verify the influence of training data of differ-
ent days on the prediction results, the prediction results 
of different training data of the ALIC station are provided 
in Figs. 13, 14. In these figures, the X-axis represents the 

number of training days, the Y-axis represents the STD of 
the difference between the original time series and the pre-
dicted time series. From the results, it can be seen that as 
the number of days increases, the STD decreases and then 
stabilizes. After using more than about 14 days of data, the 
STD stabilized. For all stations, the predicted results of 
8-day training data and 18-day training data are compared as 
shown in Figs. 15, 16. It can be seen from these figures that 
the prediction results of most stations have been improved 
after using more training data. The main reason is that PPP 

Fig. 12  Prediction results of the 
up coordinate component using 
the combined filtering mode at 
the ALIC station

Fig. 13  First-day prediction results of different days of training data 
for PPP kinematic mode at the ALIC station
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positioning results show low-frequency characteristics as 
well as high-frequency characteristics, and the 8-day train-
ing data is not enough to meet the training requirements of 
the model, that is, the model is under-fitting. Therefore, in 
PPP kinematic positioning mode, more training data is more 
conducive to the prediction of unmodeled error.

Influence of different features on prediction results

To further explore the influence of different features on the 
predicted results, we try to exclude features one by one. Tak-
ing two stations ALIC and BAKE as examples, the STD 
of the difference between the original time series and the 
predicted time series obtained when the different feature is 
excluded are shown in Tables 3 and 4. When GPS time is 

excluded from the feature, the STD of the difference between 
the original time series and the predicted time series of the 
ALIC station changes obviously, and some components of 
the BAKE station also increase. Sidereal filtering is one of 
the proposed methods in multipath mitigation of sites, where 
time is a crucial parameter. When the satellite altitude, satel-
lite azimuth, and signal-to-noise ratio are excluded, there is 
also an increase in the STD of some components. The mul-
tipath hemispheric mapping model is a multipath mitigation 
method based on the satellite elevation and satellite azimuth 
of the station, and many stochastic models for positioning 
depend on the satellite elevation and the signal-to-noise 
ratio. Observation residuals have a significant impact on the 
prediction results because the residuals reflect the suitability 
of the stochastic model. Besides, the STD is also influenced 
by the features of the flag type such as the valid data flag, 
which reflect the quality of the current positioning.

Different features have different effects on the prediction 
results, and the same feature has different effects on different 
stations. The influence of these features on the prediction 
results is nonlinear, and its regularity cannot be obtained 
intuitively. Therefore, in the feature design, it is recom-
mended to include as many features as possible that may 
have an impact on the unmodeled error, and the determina-
tion of the weight of each feature is handed over to a large 
amount of training data.

Conclusions

This study set out to develop a data-driven method for 
unmodeled error prediction of a specific positioning model. 
An unmodeled error prediction method based on machine 
learning has been proposed and the convolution neural 

Fig. 14  Second-day prediction results of different days training data 
for PPP kinematic mode at the ALIC station

Fig. 15  Comparison of the first-day prediction results of 8-day train-
ing data and 18-day training data

Fig. 16  Comparison of the second-day prediction results of 8-day 
training data and 18-day training data
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network is adopted as the regression model. The effective-
ness of this method applying to the PPP kinematic posi-
tioning is verified by the historical observation data of IGS 
stations distributed all over the world. Wavelet analysis was 
employed to evaluate the prediction results. The most obvi-
ous finding from this study is that the data-driven model can 
effectively predict the unmodeled error in the GNSS posi-
tioning, especially in the low-frequency component. More 
training data to complete the training is more conducive to 
obtaining better prediction results. However, the prediction 
results do not keep improving with increasing training data 
but started to stabilize after reaching about 14 days of train-
ing data. In addition, we have investigated 13 training fea-
tures and found that for various stations, different features 
have different importance in the neural network time series 

prediction. The impact of these features on the prediction 
results is nonlinear and complex, and it is recommended to 
include as many features as possible that may have an impact 
on unmodeled error. This is the first study that has evaluated 
the effectiveness of the GNSS unmodeled error prediction 
method based on historical data. Although only the PPP kin-
ematic positioning was used in the experiment, this method 
should apply to other positioning strategies, which will be 
carried out in future research.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10291- 023- 01411-x.
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Table 3  STD of the ALIC 
station when the different 
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Excluded feature First day Second day
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Table 4  STD of the BAKE 
station when the different 
feature is excluded

Excluded Feature First day Second day

North (mm) East (mm) Up (mm) North (mm) East (mm) Up (mm)

None 47.17 25.85 53.75 46.80 25.02 46.15
GPS time 48.11 23.55 52.33 40.64 23.44 43.89
Satellite azimuth 45.26 24.75 51.09 44.03 23.65 43.33
Satellite elevation 50.95 26.14 53.31 45.84 26.53 46.18
Pseudo-range residual 45.87 24.20 51.99 42.67 25.28 44.66
Carrier-phase residual 45.55 31.52 54.24 44.63 32.40 50.88
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