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Abstract
Surface displacement measurements of the earth’s crust using GNSS observations are a discrete form and occur at the loca-
tion of stations. Therefore, it is not possible to study crustal deformation as a continuous field. To overcome this problem, 
we propose the idea of using an adaptive neuro-fuzzy inference system (ANFIS) model. In the new method, the geodetic 
coordinates of GPS stations are input vectors, and the components of the displacement field in two-dimensions (Ve, Vn) are 
used as an output. The new method is analyzed using the observations of 25 GPS stations located in the northwest of Iran. 
Due to ample GPS stations and a tectonically active area, this region has been selected for study. The results of the new 
model are compared with the GPS-observed results, and with results produced by three alternative interpolation processes, 
namely artificial neural network (ANN), Ordinary Kriging (OK) and polynomial velocity field. The root-mean-square error 
(RMSE), correlation coefficient and relative error are calculated for all four interpolation processes. In the testing step, the 
averaged RMSE of the ANN, ANFIS, OK, and polynomial models is 2.0, 1.6, 2.7 and 3.2 mm year. The estimated veloc-
ity field by the ANFIS has been converted to a strain field and compared to the strain obtained from GPS measurements. 
Comparing the modeled strains with the ANFIS and GPS output for two control stations shows a correlation coefficient of 
0.94 between the new model and GPS. The results reveal the capability and efficiency of ANFIS in comparison with ANN, 
OK and polynomial models.
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Introduction

Currently, with the development of local and regional global 
navigation satellite system (GNSS) networks with proper 
distribution of stations, the study of tectonic movements 
and displacement of faults has become one of the important 
goals of geodesy. Analyzing and evaluating the velocity of 
geodetic points in a specific time and framework provides 
very valuable information about the tectonic movements of 
the earth’s crust and faults. In active tectonic zones, evaluat-
ing surface displacements of the earth’s crust and studying 
geophysical properties can reveal valuable information about 
geological structures. With GPS, the creation of reference 

points in geodetic networks has gained high speed. The 
important key in creating reference points is to estimate 
and obtain the velocity field and the displacement of these 
points within a reference framework (Djamour et al. 2011; 
Malekshahian and Raoofian-Naeeni 2018). Much research 
has been carried out to study the surface velocity field and 
geodynamic mechanisms of the crust in Iran and the world. 
With information about the velocity field of GPS stations 
in geodetic networks, the kinematics and dynamics of the 
earth’s crust in that area can be modeled (Grafarend and 
Voosoghi 2003; Yilmaz 2013).

Segal and Matthews (1988) used a polynomial approxi-
mation to model the displacement field. They introduced 
a model coordinate solution that fixes the indeterminate 
components of the displacement field by minimizing the 
difference between the computed displacements and those 
predicted by a geophysical model. Chen (1991) modeled 
the 3-d displacement field using geodynamic data as well as 
the finite element method. He found that the strain pattern 
obtained agrees with geological structures and a completely 
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independently determined crustal uplift pattern. Voosoghi 
(2000) used tensor calculations to obtain a 3-d curvature ten-
sor and a displacement field of the earth’s crust. He showed 
surface deformation tensors and their associated invariants 
are being critical for a meaningful study of deformations 
and kinematics of the earth. Moghtased-Azar and Zaletnyik 
(2009) examined the capability of artificial neural networks 
(ANNs) in estimating the velocity field of GPS stations. 
They compared and evaluated the results of the ANN model 
with the polynomial model. Gullu et al. (2011) evaluated an 
interpolation method based on ANNs to estimate the veloc-
ity field. Their results showed that back-propagation ANN 
can be a valuable tool for estimating point velocity in the 
densification networks as a real alternative to the interpola-
tion methods. Hu et al. (2012) used a variance component 
estimation approach to weigh the interferometric synthetic 
aperture radar (InSAR) and GPS measurements in deriving 
3-d surface displacements. Bogusz et al. (2013) used gener-
alized Kriging interpolation to estimate the crustal velocity 
field in the European region. They showed that creating a 
continuous velocity field in Europe will lead to obtaining 
the continuous strain field in future research. Yilmaz and 
Gullu (2014) applied two different types of ANN models 
for geodetic point velocity estimation. They constructed 
ANN models using the multilayer perceptron neural net-
work (MLP-NN) and the radial basis function neural net-
work (RBF-NN). Fernandez et al. (2018) reported, for the 
first time, the 2-d and 3-d displacement field over the study 
area using SAR data from Sentinel-1A images and GNSS 
observations. By modeling this displacement, they provided 
new insights on the spatial and temporal evolution of the 
subsidence processes and on the main governing mecha-
nisms. Liang et al. (2021) proposed a model of annual verti-
cal surface displacements of mainland China based on the 
direct observation of deformation by 234 continuous GPS 
stations and unified data processing using the multi-surface 
function method. Konakoglu (2021) investigated the pre-
dictive capacity of three MLP-NN, generalized regression 
neural network (GRNN) and RBF-NN models in predicting 
geodetic point velocities. He showed that all ANN models 
were able to predict the geodetic point velocity with satisfac-
tory accuracy; however, the GRNN model provided better 
accuracy than the MLP-NN and RBF-NN models.

Some disadvantages can be considered for previous 
research in modeling and predicting the crustal deformation 
and surface displacement fields using GPS observations. In 
most studies, the estimated displacement field is point-to-
point and is for the location of GPS stations. In other words, 
in places where there is no GPS station, the displacement 
field cannot be accurately checked. The previously presented 
models are based on analytical functions and are mostly 
local, i.e., accurate determination of the coefficients of these 
models will depend strongly on the number of observations 

in the study area. In models based on analytical functions, 
the transformation of a continuous problem into a discrete 
problem leads to a system of unstable equations (Hossain-
ali et al. 2010). In these methods, the use of regularization 
methods to solve the system of equations is inevitable. In 
models based on ANN, the choice of convergence rate to the 
optimal solution, the number of neurons in the hidden layer, 
and the selection of the appropriate cost function strongly 
affect the accuracy of the results.

In order to overcome the limitations in the traditional 
models related to the prediction of the velocity field of 
geodetic points with GPS observations, the use of machine 
learning (ML) methods has been proposed. The adaptive 
neuro-fuzzy inference system (ANFIS) is one of the mod-
els with very high capability and efficiency for modeling 
and predicting the behavior of nonlinear phenomena (Yet-
ilmezsoy 2019). The efficiency and accuracy of this method 
have been evaluated in various geodetic applications (Ghaf-
fari-Razin and Voosoghi 2020; Feizi et al. 2020). Therefore, 
the ANFIS model is proposed as a new model to predict the 
crustal velocity field. The evaluation of the ANFIS is done 
using the observations of 25 GPS stations in the northwest 
of Iran. Also, the results of the new model are compared and 
analyzed with the velocity field obtained from GPS, ANN, 
Ordinary Kriging (OK), and polynomial models. Statistical 
analyses are performed based on the correlation coefficient, 
relative error and root-mean-square error (RMSE). Strain 
analysis is also performed using the ANFIS and is compared 
with the GPS-derived strain field.

Study area and observations

In order to evaluate the ANFIS model, part of northwest-
ern Iran has been selected, which is tectonically active, 
includes many active faults, and has several GPS stations in 
the area. The occurrence of numerous large and devastating 
earthquakes reflects the seismicity of this region. For this 
reason, the study and analysis of crustal deformation and 
its displacement are of special importance. Observations of 
25 GPS stations from 2007 to 2010 have been prepared by 
the Iranian National Cartographic Center (NCC). The mod-
eling area is between 36°–40° N and 44°–49° E. The height 
of these stations varies from 1280 to 1952 m above sea level. 
Also, a choke ring antenna with a 15° cutoff angle has been 
used to overcome the multipath error. Figure 1 shows the 
study area and the velocity fields estimated by the Bernese 
GNSS software. Also, this figure shows the velocity vectors 
on the Iranian plateau relative to the Eurasian plate with a 
95% confidence ellipse.

First, raw observations of all stations are processed 
in the Bernese GNSS software (Dach et al. 2007), and 
after removing various errors, the velocity vectors are 
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calculated for GPS stations. Precise orbit information and 
earth rotation parameters have been taken from the CODE 
(Center for Orbit Determination in Europe). It should be 
noted that to define the coordinate system on the Iranian 
plateau and estimate the velocity vectors of GPS stations, 
three stations of the IGS network (ARUC, TEHN and 
ISBA) have been used in the processing step.

To evaluate the ANN and ANFIS models, three cases 
are considered for training and testing stations. These 
cases are performed in three modes: high, medium, and 
low for training stations, i.e., by reducing the number of 
stations used in model training, their accuracy is evalu-
ated. Table 1 shows the number of training and testing 
stations in three different cases.

It should be noted that the training and testing stations 
were selected completely at random. The spatial distribu-
tion of training and testing stations for the three different 
cases is shown in Fig. 2.

The spatial distribution of the training and testing 
stations in the three cases is such that it can provide an 
accurate accuracy assessment of results obtained from the 
ANN and ANFIS models. The following equation shows 
the relationship between input and output of an ANFIS 
and ANN models:

where V is the velocity field, and Lat and Lon are the latitude 
and longitude of GPS stations. In other words, the surface 
deformation analysis is based on geometrical parameters. 
Physical parameters are not used in deformation modeling. 
Figure 3 shows the diagram of the ANFIS and ANN models 
in the training and testing steps.

For the OK and polynomial models, the steps of the 
flowchart in Fig. 3 are performed, but in these two models, 
the least squares method is used to estimate the model 
coefficients. Accurate determination of the coefficients of 
these two models will reduce the output error and also 
prevent the overfitting problem.

(1)V
ANN ANFIS

= f (Lat,Lon)

Fig. 1   Study area showing GPS velocity (green vectors), GPS situa-
tion (black triangles), IGS stations (red triangles), and major active 
faults in the Iranian plateau (blue lines). The velocity fields are fixed 
relative to the Eurasian plate. The bold black line indicates the border 
between the Eurasian and Arabian plates, which start in northwestern 
Iran and continue to the southeast

Table 1   Number of training and testing stations at three different 
cases for ANN and ANFIS models

Number of training stations Number of 
testing sta-
tions

Case # 1 22 3
Case # 2 18 7
Case # 3 15 10

Fig. 2   Three different cases for 
training (black triangles) and 
testing stations (red circles), 
case # 1 (left), case # 2 (middle) 
and case # 3 (right) following 
Table 1
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Methodology

The theory of the ANFIS, Kriging, and polynomial models 
is presented, and their advantages and disadvantages are dis-
cussed. Also, in this section, the evaluation of the results of 
the models is explained. Please refer to Ghaffari Razin et al. 
(2015) for the ANN mathematical model.

Adaptive neuro‑fuzzy inference system

An  adaptive neuro-fuzzy inference system is a kind 
of ANN that is based on the Takagi–Sugeno fuzzy infer-
ence system. The technique was developed in the early 
1990s (Jang 1993). Since it integrates both neural networks 
and fuzzy logic principles, it has the potential to capture the 
benefits of both in a single framework. Its inference sys-
tem corresponds to a set of fuzzy IF–THEN rules that have 
the learning capability to approximate nonlinear functions. 
Hence, ANFIS is considered to be a universal estimator. The 
ANFIS architecture consists of five layers: fuzzy layer, prod-
uct layer, normalized layer, defuzzy layer, and total output 
layer (Cakmakci et al. 2010). Figure 4 shows the mathemati-
cal relationships of the different layers of the ANFIS model.

The error back-propagation (BP) algorithm is used to 
train the ANFIS (Rumelhart et al. 1986). This algorithm cal-
culates the gradient of the cost function (for all the patterns) 
and updates the weights by moving them along the gradient-
descendent direction. The cost function of the ANFIS and 
ANN networks is defined by

Vmodel is the modeled value of surface velocity with ANN 
and ANFIS, VGPS is the observed value of surface velocity 
from GPS, and N is the number of samples.

Kriging interpolation method

The Kriging method is one of the most suitable and 
advanced spatial data analysis techniques. Kriging is an 
optimal interpolation method in which the variables are 
random and do not follow a specific geometric function. 
This method was used in the sixties by the French engineer 
Matheron (1971). Kriging is an unbiased estimator with 
the lowest estimation variance. The unbiased condition is 
also applied in other estimation methods, such as inverse 
distance and inverse distance squared, but the feature of 
Kriging is that it determines the unknown coefficients in 
such a way that the variance of the estimates is also mini-
mal (Joseph 2006). Kriging is based on a constant mean μ 
for the data and random errors ε with spatial dependence 
as follows:

(2)E =

N∑
i=1

(
Vi
model

− Vi
GPS

)2

(3)Z
(
x0
)
= �

(
x0
)
+ �

(
x0
)

Fig. 3   Flowchart of the crustal velocity modeling and prediction 
using ANFIS and ANN models

Fig. 4   Diagram of the mathematical relationships of the different lay-
ers of the ANFIS model
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where Z(x0) is the variable of interest, μ(x0) is the determin-
istic trend and ε(x0) is the correlated error (Erdogan 2010). 
In the ordinary algorithm of Kriging, Eq. (3) can be given 
as follows:

where n is the number of sampled points used for the esti-
mation, λi is the weight assigned to the sampled point (xi), 
and 

∑n

i=1
�i = 1 is a condition (Li and Heap 2008). Kriging 

is one of the most appropriate spatial interpolation methods 
when a spatially correlated distance or directional bias in 
the data is known.

Polynomial interpolation method

Using a polynomial model with multiple variables is a sim-
ple way to model the behavior of nonlinear phenomena. To 
estimate the velocity field at geodetic points, we used a poly-
nomial with two spatial variables (longitude and latitude). 
The least squares method is also used to obtain polynomial 
coefficients (Ghaderpour et al. 2021). In general, a polyno-
mial with two variables can be represented as follows (Ghaf-
fari Razin et al. 2015):

V is the velocity field, � and � indicate the latitude and lon-
gitude of geodetic point, and aij is the unknown parameter of 
the polynomial. The matrix form of (5) is as follows:

The necessary number of coordinates to calculate a two vari-
ables polynomial is

where r is the order of the polynomial and p is the number 
of the necessary coordinates.

Statistical metrics

Error analysis is performed for both training and testing 
steps. In both steps, the RMSE, correlation coefficient (R), 
and relative error (RE) statistical indicators are used to 
evaluate the error of the models. These three indicators are 
defined as follows:

(4)Z
(
x0
)
= �

(
x0
)
+

n∑
i=1

�i
[
z
(
xi
)
− �

(
x0
)]

(5)V(�, �) =

n∑
i=0

n∑
j=0

aij�
i�j

(6)V(�, �) =
�
1 � � ⋯ �i�j

�⎡⎢⎢⎢⎣

a00
a10
⋮

aij

⎤⎥⎥⎥⎦

(7)p =
(r + 2)(r + 1)

2

where V  is the mean value of velocity field and Vmodel shows 
the estimated velocity field using ANN, ANFIS, OK, and 
polynomial models. If the value of the relative error and the 
RMSE are close to zero, it indicates a high accuracy of the 
model. The correlation coefficient indicates the degree of 
correlation in the output of the two models, i.e., this coef-
ficient shows the similarity of the variations in the output of 
the models. The coefficient is between [0, 1], a value close to 
one indicates a high level of similarity between the outputs 
of the two models.

Results

In this section, the error analysis of the ANN, ANFIS, OK, 
and polynomial models is performed in the training and test-
ing steps. In the training step, with considering the minimum 
RMSE, the optimal structure is selected for the ANN and 
ANFIS models. Also, at this step, the coefficients of the OK 
and polynomial models are estimated by the least squares 
method. After the training, the errors of the models are cal-
culated and evaluated in the testing step.

Error analysis at the training step

Using the velocity field obtained from the training stations 
for three cases (Table 1), the ANN, ANFIS, OK, and polyno-
mial models are trained. The purpose of the training step in 
the ANN and ANFIS is to determine the optimal structure of 
the networks and achieve the minimum cost function value 
(2). Different structures of the ANN and ANFIS are evalu-
ated. RMSE, correlation coefficient, and convergence time to 
the optimal solution are calculated in these structures. Based 
on the minimum RMSE at the training step, the optimal 
structures of ANN and ANFIS models are selected. Figure 5 
shows the results of this study for both the northern (Vn) and 
eastern (Ve) components of the velocity field for ANN and 
ANFIS. The number of inputs and outputs of both models 
is the same, so in Fig. 5, the number of hidden layer neurons 

(8)RMSE =

√√√√ 1

N

N∑
i=1

(
Vi
model

− Vi
GPS

)2

(9)R =

∑N

i=1

�
Vi
model

− Vi

��
Vi
GPS

− Vi
GPS

�
�∑N

i=1

�
Vi
model

− Vi

�2
�∑N

i=1

�
Vi
GPS

− Vi
GPS

�

(10)RE =

((
Vmodel − VGPS

)
VGPS

)
× 100
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(NHLN) of the ANN and the number of IF–THEN fuzzy 
rules (NITFR) of the ANFIS model are displayed on the 
horizontal axis. The green and red bars show the correlation 
coefficient of the models, and the green (dashed) and yellow 
(continuous) curves show the RMSE (mm/year).

It should be noted that the modeling of the velocity 
field for the north and for the east directions has been done 
separately. This mode is also considered for the OK and 
polynomial models. Also, all calculations were done in a 
computer system with similar software and hardware. In 
both the ANN and ANFIS models, with the decrease in the 
number of training stations, the RMSE has increased. The 
minimum RMSE in the ANN and ANFIS in case # 1 is 1.4 
and 1.2 mm, respectively. In the next two cases, the RMSE 
of both models in the training step is higher than that in case 
# 1. In both models, the optimal structure has been selected 
based on minimum RMSE. In the ANN and for case # 1, we 
select 2-9-1 as the optimal network structure. In other words, 
the model with nine neurons in the hidden layer has the low-
est RMSE in the training step. In the ANN optimal structure 
of case # 1, the correlation coefficient is 0.91.

In case # 1 of the ANFIS model, the optimal value of the 
IF–THEN fuzzy rules is 7. In other words, the 2-7-1 is the 
structure with the lowest RMSE and the highest correlation 
coefficient in the training step. In this structure, the RMSE 
and correlation coefficient of the ANFIS are calculated 
as 1.2 mm and 0.95, respectively. Comparing the RMSE 
and correlation coefficient of the ANN and ANFIS mod-
els in the training step and for three cases shows that the 
ANFIS is more accurate than the ANN model. Even with 
the reduction in the number of training stations in case # 3, 
the ANFIS has less RMSE than the ANN model. Compar-
ing the convergence speed of the two models in the training 
step shows that the ANN converges to the optimal solution 
faster than the ANFIS model. Both models are trained with 

the BP algorithm. The structure of the ANN is simpler than 
the ANFIS model. Therefore, the speed of calculations and 
convergence in this model will be faster than in the ANFIS.

The main idea of Kriging is that the closest sample points 
should have more weight in the prediction to improve the 
estimation. The weights depend on the values of the mean 
and the covariance function. The OK method assumes 
that the variance has a constant value in the entire spatial 
range, but its mean is unknown. The OK covariance func-
tion is valid for all spatial variations. The covariance func-
tion evaluates the quantity variations (this quantity is the 
surface velocity in this research) and shows that the values 
in two close positions have a high correlation. Choosing 
the variogram function is important in forecasting with the 
OK method. Variogram is a suitable tool for spatial data 
analysis. The variogram function models the spatial and 
temporal dependence structure of the data. The shape of 
the variogram function is selected using an empirical and a 
mathematical model based on the spatial variations in the 
data. The spatial variogram function ( �s

(
hs
)
 ) is obtained by 

calculating the variance of the variable in the neighborhood 
radius ( hs ) of each observation point ( Z(s, t) ) from the fol-
lowing equations:

The spatial variations in the velocity field are evaluated in 
this research. Therefore, only the spatial variogram function 
is defined. Using the velocity field observations obtained 
from GPS in three different cases, the covariance matrix 
and coefficients of the OK model are estimated and then the 
RMSE and correlation coefficient of the training step are cal-
culated. The results of this evaluation are shown in Table 2.

In the OK model, the RMSE in case # 1 is less than that in 
the other two cases. In other words, by reducing the number 

(11)�s
(
hs
)
=

1

2
Var

(
Z
(
s + hs, t

)
− Z(s, t)

)

Fig. 5   Correlation coefficient 
(left vertical axis) and RMSE 
(right vertical axis) of ANN 
(top panel) and ANFIS (bottom 
panel) models in three different 
cases at the training step. Green 
and red bars show the correla-
tion coefficient of the models; 
green (dashed) and yellow 
(continuous) curves show the 
RMSE (mm/year)
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of training stations in the OK model, the RMSE increases. 
The important point in Table 2 is that with the reduction in 
the number of training stations in case # 3, the RMSE of the 
OK model has greatly increased. This shows that the OK 
model RMSE depends on the number and distribution of 
training stations.

For the polynomial model, a model with different degrees 
is evaluated in three cases. The degree of the polynomial that 
has the lowest RMSE and the highest correlation coefficient 
is chosen as the optimal model. By evaluating polynomials 
of different degrees, we find that the polynomial of the sec-
ond degree has the minimum RMSE and the highest correla-
tion coefficient in the training step. As a result, in all three 
cases, a quadratic polynomial is used to estimate the compo-
nents of the velocity field. Table 3 shows the RMSE and the 
correlation coefficient of the optimal quadratic polynomials 
for three cases. It should be noted that with the increase in 
polynomial degree, the error value of the model decreases 
and the correlation coefficient increases. But, as the poly-
nomial degree increases, an overfitting problem occurs. The 
overfitting problem causes the modeling to deviate from its 
physical reality. In order to avoid overfitting problem, the 
polynomial model is evaluated in test stations.

The results of Table 3 show that with the decrease in the 
number of training stations, the RMSE of the optimal quad-
ratic polynomial model has decreased and the correlation 
coefficient has increased. This shows that in the polynomial 
model, a large number of training stations cannot increase 
the accuracy of the model. In other words, in this model, 
the distribution of training stations is very important. For 

example, in case # 1, by removing one of the training sta-
tions, which has a greater distance from other training sta-
tions, the amount of RMSE in both northern and eastern 
components has decreased significantly. Therefore, evaluat-
ing the polynomial model at many test points can be the best 
solution to choose its optimal degree. The optimal quadratic 
polynomial coefficients for the eastern and northern compo-
nents of the velocity field in all three cases are as follows:

In these equations, � and � indicate the latitude and longi-
tude of the GPS stations.

Error analysis at the testing step

After training the ANN, ANFIS, OK, and quadratic polyno-
mial models in three different cases and evaluating the error 
of the training step, it is possible to estimate and evaluate 
the velocity field in the test stations (red circles in Fig. 2) 
with the trained models. For comparison and evaluation, the 
velocity field obtained from GPS is considered the reference. 
Figure 6 shows the relative error (%) and RMSE (mm/year) 
of the models in different cases. The blue and red bars show 
the relative error of the models, and the black (continuous) 
and green (dashed) curves show the RMSE.

Figure 6 shows that all four models in case # 1, which has 
more training stations, have less error in the testing step. In 
cases # 2 and 3, the error of all four models has increased. 
This shows that the error in the testing step increases by 
reducing the number of training stations. Comparing the 
error of four models shows the higher accuracy of the ANFIS 
compared to other models. The maximum and minimum rel-
ative error of the ANFIS is 6 and 10%, respectively. For the 
quadratic polynomial model, maximum and minimum rela-
tive errors have been calculated 14 and 24%, respectively. In 
the testing step and all three cases, the RMSE of the ANFIS 
model in both northern and eastern components is less than 
2.4 mm/year. The RMSE of the ANFIS in case # 3 is lower 
than the RMSE of the OK and quadratic polynomial models 
in all three cases. In other words, the ANFIS model, with 
fewer training stations, has higher accuracy than the OK and 
quadratic polynomial models. The evaluation of the OK and 
quadratic polynomial models in some test stations shows that 

(12)

Ve(�, �) = −2708 + 34.91� + 84.55� − 0.05�2 − 0.58�� − 0.66�2

Vn(�, �) = 3996 − 62.55� − 119.4� − 0.21�2 + 1.65�� + 0.60�2

(13)

Ve(�, �) = −2238 + 5.88� + 88.04� + 0.31�2 − 0.56�� − 0.71�2

Vn(�, �) = 3156 − 32.89� − 107.5� − 0.52�2 + 1.54�� + 0.52�2

(14)

Ve(�, �) = −1542 − 10.38� + 71.38� + 0.46�2 − 0.46�� − 0.57�2

Vn(�, �) = 1839 − 8.37� − 70.55� − 0.69�2 + 1.28�� + 0.23�2

Table 2   RMSE (mm/year) and correlation coefficient of OK model at 
three cases for northern (Vn) and eastern (Ve) components

RMSE (mm/year ) Correlation coef-
ficient

Ve Vn Ve Vn

Case # 1 1.89 2.08 0.87 0.85
Case # 2 2.69 2.86 0.80 0.78
Case # 3 4.71 4.94 0.75 0.73

Table 3   RMSE (mm/year) and correlation coefficient of the quadratic 
polynomial model at three cases for northern (Vn) and eastern (Ve) 
components

RMSE (mm/year) correlation coef-
ficient

Ve Vn Ve Vn

Case # 1 2.93 3.11 0.84 0.80
Case # 2 2.56 2.89 0.85 0.81
Case # 3 2.14 2.24 0.86 0.83
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as the test station moves away from the training stations, the 
RMSE increases greatly. In other words, in these two mod-
els, the distribution of training stations should be uniform 
and homogeneous so that high accuracy can be expected 
from the models.

Spatial interpolation of surface velocity

After evaluating the accuracy of the ANFIS, ANN, OK, 
and polynomial models in the training and testing steps, the 
velocity field can be estimated at different geodetic points 
and compared with the velocity field obtained from GPS. 
Based on the results of the testing step, the ANFIS model 
is more accurate compared to other models. Therefore, this 
section compares the results for the velocity field obtained 
from this model. Figure 7 shows the velocity field estimated 
by the ANFIS model in the studied area in the grid of 0.5 
degrees of longitude and latitude, i.e., the velocity field has 

been estimated with half-degree steps in latitude and lon-
gitude using ANFIS. Also, in this figure, the GPS veloc-
ity field is shown in the position of the stations with black 
vectors.

In the testing step, the ANFIS model in case # 1 has the 
lowest RMSE and relative error. As a result, the estimating 
velocity vectors, in this case, are expected to be similar to 
GPS velocity fields in terms of direction and magnitude. In 
cases 2 and 3, the magnitude and direction of the velocity 
vectors obtained from the ANFIS are different from GPS.

In order to more accurately evaluate the output of the 
ANFIS model, the east–west component and north–south 
component of the estimated velocity field are shown in 
Fig. 8. This figure shows the earth’s crust movement direc-
tion in the north–south and east–west directions.

Figure 8 shows the east–west and north–south compo-
nents of the interpolated velocity field relative to the fixed 
frame of Eurasia. According to the figure, the amplitude of 
the east–west component is positive in the north, negative 
in the south, and zero in the center of the studied area. Also, 
the amplitude of the north–south component decreases from 
the south to the north. In the north–south component of the 
velocity field near the fault belt of Iran (the bold black line at 
the southwest), where the Arabian and Eurasian plates col-
lide, the magnitude of the velocity field component is greater 
than that in other regions. In other words, in this area, the 
earth’s crust bears a lot of pressure. Also, an increase in the 
velocity field can be seen in the north–south component in 
the northeast of the figure. In other words, the earth’s crust 
in the northeast of the studied area tends to move toward 
the northeast. This result is in agreement with the result 
of Fig. 7 (velocity vectors obtained from the ANFIS), as 
well as the Raeesi et al. (2017) and Rastbood and Voosoghi 
(2012) studies.

After estimating the velocity field using the ANFIS (case 
# 1), the estimated velocity vectors are converted into the 
strain field and compared with the strains obtained from 
GPS. Figure 9 shows the comparison between the strains 
estimated by the ANFIS and OK models in the control sta-
tions AHAR (38.28° N, 47.06° E) and MNDB (36.74° N, 
46.01° E) with the strain obtained from GPS. In this figure, 
co-directional vectors represent compressive strain and non-
co-directional vectors represent tensile strain. For a clearer 
display, the strain vectors are displayed with 20 × zoom.

The compatibility of the strain field obtained from the 
ANFIS with the GPS strain is more than that of the OK 
model. The average correlation coefficient of the result of 
the ANFIS model at two control stations is 0.94, whereas 
for the OK model, the average correlation coefficient has 
been calculated at 0.88. In other words, the ANFIS has 
modeled the strain field variations with higher accuracy 
relative to the OK model. In both control stations, the com-
pressive strain is dominant over the tensile strain, i.e., there 

Fig. 6   Relative error (%) and RMSE (mm/year) of ANN, ANFIS, 
OK, and quadratic polynomial models in three different cases at the 
testing step. The blue and red bars are the relative error; black (con-
tinuous) and green (dashed) curves are the RMSE
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Fig. 7   Comparison of GPS 
velocity field (black vectors) 
and estimated velocity field 
using the ANFIS model (green 
vectors) for the three cases

Fig. 8   East–west component (left panel) and north–south component (right panel) of estimated velocity field using ANFIS model at case # 1
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is strain accumulation in these two stations. The history of 
earthquakes in this area after the time span of observations 
(2007–2010) shows that an earthquake occurred in 2012 
near the AHAR control station. In other words, strain accu-
mulation can indicate movements in the earth’s crust in the 
near future. The strains calculated by GPS are at the location 
of GPS stations.

While with the ANFIS model, the strain field can be 
estimated at other geodetic points of the studied network. 
The strain tensor components in each geodetic point within 
the studied network can be converted into surface dilata-
tion, shear, and rotation rate. Then, based on these calcu-
lated parameters, the movement of the earth’s crust can be 
interpreted.

Discussion

For a more accurate evaluation, the velocity vectors obtained 
by Raeesi et al. (2017), along with GPS and ANFIS velocity 
fields, are shown in Fig. 10.

Raeesi et al. (2017) used historical data from major earth-
quakes and GPS geodetic data to compute seismic strain 
rate, geodetic slip deficit, static stress drop, the magnitude 
frequency distribution parameters, and geodetic strain rate 
in the Iranian plateau to identify seismically mature fault 
segments and regions. The results of this research have been 
evaluated and confirmed with the velocity vectors obtained 
from GPS as well as with the geodynamic features of the 
Iranian plateau. Also, based on Rastbood and Voosoghi 
(2012), the Arabian plate exerted pressure on the Eurasian 
plate in the northeastern direction, and as a result, the overall 
movement of the Iranian plateau is in the north and north-
east direction. The direction of the velocity vectors obtained 
from the ANFIS model in Fig. 10 is toward the north and 

northeast of the studied area. This result is consistent with 
that of Raeesi et al. (2017) and Rastbood and Voosoghi 
(2012).

According to the analysis, the averaged RMSE for the 
ANFIS, ANN, OK, and polynomial models in case # 1 (with 
the most training stations) is 1.6, 2.0, 2.7 and 3.2 mm/year, 
respectively. Also, the average relative error of models in 
case # 1 was computed at 6, 8, 13 and 15%, respectively. 
Comparing the RMSE and relative error of the ANFIS with 
other models in case # 1 showed that the accuracy of the 
proposed model is higher than other models. In cases 2 and 
3, the RMSE of the proposed model was lower than other 

Fig. 9   Comparison of estimated 
strain field using ANFIS (left 
panel) and OK (right panel) 
models with GPS-derived strain 
field at two control stations 
AHAR and MNDB. Black vec-
tors are the GPS strain and blue 
vectors show the ANFIS and 
OK strain fields

Fig. 10   Comparison of GPS velocity field (black vectors), estimated 
velocity field using ANFIS model (green vectors), and Raeesi et  al. 
(2017) velocity field (yellow vectors)
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models. However, the error of all four models increased 
compared to case # 1. In other words, all analyzed models 
show larger errors with decreasing number of training sta-
tions. The increase in the RMSE of the OK and polynomial 
models in cases 2 and 3 was more than that in case # 1. This 
shows that these two models require more training points in 
the training and parameter estimation steps.

After the training step of the ANFIS model, the velocity 
vectors are estimated at different points inside the network 
and compared with the GPS velocity field. The compari-
sons showed that in case # 1, the magnitude and direction 
of the velocity vectors estimated by the new model are in 
good agreement with the velocity vectors obtained from 
GPS. Also, comparing the velocity vectors estimated with 
the ANFIS with the velocity vectors obtained from this 
research conducted in the region shows their correct direc-
tion. The direction of the velocity vectors estimated with 
the new model is toward the northeast and consistent with 
the region’s tectonic structure. After converting the veloc-
ity vectors into the strain field in the test stations AHAR 
and MNDB, a comparison was made with the strain field 
obtained from GPS. In this comparison, the strains estimated 
with the ANFIS agreed with GPS and correctly showed 
compression and tension directions. The estimated strains 
in two control stations with the new model represent strain 
accumulation. Strain accumulation can indicate the occur-
rence of an earthquake or strong displacement of a fault. 
Therefore, by estimating and studying the strains in different 
geodetic points, it is possible to discuss and investigate the 
accumulation of strains and the possibility of an earthquake 
or displacement of the earth’s crust. This issue shows the 
effectiveness of the new model in geodynamic issues and 
earth’s crust displacement analysis.

Conclusion

The idea of using the adaptive neuro-fuzzy inference system 
(ANFIS) to estimate the displacement field of the earth’s 
crust was studied and analyzed as a new model. The novelty 
of this research was presenting a new idea for the continu-
ous modeling of the velocity field of the earth’s crust and, 
subsequently, the estimation of the strain field at different 
geodetic points within the network. Machine learning (ML) 
models have high computational speed, less mathemati-
cal complexity and high accuracy. As a result, the ANFIS 
model, which is a combination of artificial neural networks 
(ANN) and fuzzy logic, was used to model and estimate the 
displacement field. In order to evaluate the new method, the 
observations of 25 GPS stations in the northwest of Iran 
from 2007 to 2010 were used. Due to the availability of a 
complete set of GPS observations, as well as the active tec-
tonic zone, this network was selected for evaluation. In the 

first step, the raw observations of the stations were processed 
in Bernese GNSS software and GPS velocity vectors were 
produced, fixed relative to the Eurasian plate. The velocity 
vectors obtained from GPS were considered as output to 
ANFIS, and the geodetic position of the GPS stations was 
the input variables of the model. In three cases with a differ-
ent number of training and testing stations, the new model 
was evaluated. Also, at the test stations, the results of the 
ANFIS were compared with the GPS, ANN, Ordinary Krig-
ing (OK), and polynomial velocity field.

The results showed that the ANFIS model has a high 
accuracy in estimating the velocity field of the earth’s crust. 
This model can be the alternative of the OK and polynomial 
models to estimate the earth’s crust velocity field continu-
ously. Also, due to the high accuracy of the results of the 
ANFIS model in estimating the strain field, this model can 
be used in geodynamic research and analysis of fault move-
ments in earthquakes. The need for a lot of training data is 
one of the disadvantages of the new model. Also, the speed 
of convergence to the optimal solution becomes extremely 
slow with increasing training data. In the continuation of this 
research, the geophysical parameters of the earth’s crust can 
also be considered in the input vector, and the training of the 
model can be done with geometric and physical parameters.
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