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Abstract
The weighted mean temperature (Tm) is a function of atmospheric temperature and vertical humidity profiles. It plays a crucial 
role in the progress of retrieving water vapor information from the tropospheric delay of GNSS signals. The Tm estimated 
by the empirical models is always used to convert the zenith wet delay (ZWD) to precipitable water vapor (PWV) in GNSS 
meteorology. However, these empirical Tm models used trigonometric functions, making it difficult to describe Tm in detail 
and leading to an obvious accuracy difference with latitude changes. Thus, a global latitude zone augmentation mode was 
adopted for the empirical Tm models; the augmentation coefficients for each latitude zone were obtained by introducing the 
measured surface temperature and using the least-squares method. Using the Tm data of 2011–2015 derived from radiosonde, 
the GPT3 model, UNB3m model, and GWTMD model were augmented and analyzed. The results show that all augmentation 
models can improve the accuracy of the estimated Tm compared with their corresponding original models, and their levels of 
improvement are different. The three augmentation models achieved an average RMSE of 2.79 K, 3.47 K, and 3.22 K, which 
correspond to 22%, 49%, and 8% improvement against the GPT3 model, UNB3m model, and GWTMD model. In addition, 
the comparisons with the Tm linear formula were carried out and showed the superiority of the augmentation models.

Keywords  GNSS meteorology · Weighted mean temperature · Precipitable water vapor · Radiosonde

Introduction

In GNSS meteorology, the GNSS technique is regarded as 
an emerging and robust tool for remotely sensing precipita-
ble water vapor (PWV) with advantages of high accuracy, 

all-weather capability, high spatial–temporal resolution, and 
cost-effective (Bevis et al. 1992; Duan et al. 1996; Chung 
et al. 2014; Yang et al. 2021a). The GNSS-derived PWV 
over a station is obtained by multiplying the zenith wet delay 
(ZWD) with a conversion factor II, which is a function of the 
weighted mean temperature (Tm) (Bevis et al. 1994; Dousa 
et al. 2018; Yang et al. 2021b). Thus, Tm has become a key 
parameter in the research of GNSS meteorology (Wang et al. 
2016; Zhang et al. 2017; Yang et al. 2021c).

The weighted mean temperature, a function of atmos-
pheric temperature and vertical humidity profiles, can be 
determined exactly using radiosonde data (Davis et al. 
1985; Huang et al. 2021). But there is often no collocated 
radiosonde data available for the GNSS site since the radi-
osonde station is sparsely distributed, and the radiosonde 
balloon is launched fixed at several UTC epochs every 
day. The relationship between the surface temperature (Ts) 
and the weighted mean temperature (Tm) was adopted to 
estimate the value of Tm by constructing the Ts–Tm linear 
formula, such as the Bevis formula (Bevis et al. 1992). On 
the other hand, several empirical Tm models based only on 
the coordinates of the site and the time were proposed in 
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recent years to achieve the Tm at any time at any GNSS 
site.

Yao et al. (2012) constructed the global weighted mean 
temperature (GWMT) model using radiosonde data from 
135 global stations from 2005 to 2009. An updated model 
GTm-II was proposed to solve the poor performance in the 
southern Pacific Ocean of the GWMT model (Yao et al. 
2013). Taking into account the semi-annual and diurnal 
variations of Tm and considering the Tm lapse rate as a 
function of coordinates instead of a constant value, the 
GTm-III and GWMT-IV models have been established 
(Yao et al. 2014a; He et al. 2013). Then, the developed 
GTm-X model was built in a global resolution of a 1°*1° 
geographical grid (Chen et al. 2015). Focused on the diur-
nal variation and the lapse rate of Tm, He et al. (2017) pro-
posed a voxel-based Tm model using Tm data over 4 years 
from 2010 to 2013. Huang et al. (2018) established the 
GGT​m model based on a sliding window algorithm. Sun 
et al. (2019) proposed the Gtrop model by considering the 
temporal variations by linear trends, annual, and semi-
annual variations, and spatial variations. By exploring the 
time characteristics of the Tm lapse rate globally, Yang 
et al. (2020) proposed an improved Tm model. In addi-
tion, the empirical tropospheric delay models, such as the 
UNB3m and GPT3 models, can also give the Tm estimates 
at GNSS sites (Leandro et al. 2008; Bohm et al. 2015; 
Landskron et al. 2018). Meanwhile, some regional empiri-
cal models also have been established (Huang et al. 2019; 
Long et al. 2021). However, these empirical Tm models 
based on periodic function are difficult to describe Tm 
in detail, and their accuracy often shows obvious differ-
ences with the latitude changes. Thus, there is still room 
for improving the accuracy of these empirical models in 
Tm estimation.

We adopted an augmentation mode for the empirical Tm 
model, which acquires the augmentation coefficients by 
introducing the measured surface temperature to improve 
the accuracy of Tm estimation. Since the value of Tm 
mainly changes with latitude in space and the performance 
of the empirical Tm models is also affected by latitude (Yao 
et al. 2014b), we constructed the augmentation coefficients 
for different latitude zones. The Tm data of 2011–2015 
derived from radiosonde were divided into twelve lati-
tude zones, and 4/5 and 1/5 of the radiosonde sites in each 
latitude zone were utilized as the modeling and validated 
data. Considering that the ground meteorological sensors 
are becoming more common and economical in the GNSS 
community, surface temperature data are easily available 
along with the GNSS observations. It ensures the above 
augmentation method can be well used and promoted. In 
our experiment, the GPT3 model, UNB3m model, and 
GWTMD model were selected to conduct the augmenta-
tion due to their high grid resolution, open-source, and 

easy operation. The augmentation mode could be applied 
to each Tm empirical model.

Empirical Tm model and the augmentation method

As the latest version of the global pressure and temperature 
(GPT) series models, the GPT3 model established on monthly 
meteorological data of 10-year ERA-Interim can provide the 
surface temperature (Ts) and weight mean temperature I with a 
global resolution of 1° × 1° geographical grid. In this process, 
the mean value, as well as annual 

(
A1,B1

)
 and semi-annual (

A2,B2

)
 variations, are adopted in the following formula:

where doy is the day of the year and r(t) denotes the Ts or 
Tm, respectively.

In the UNB3m model, a look-up table for meteorological 
parameters derived from the U.S. Standard Atmosphere Sup-
plement, 1966 (COESA 1966) is used. The parameters are 
pressure (P), temperature (Ts), relative humidity (Rh), tempera-
ture lapse rate (β), and water vapor pressure height factor (λ). 
Using the look-up table, the annual average and amplitude of 
these parameters can be computed as follows:

where A� stands for the computed average or amplitude, � 
denotes the latitude of interest, i is the index of the nearest 
lower tabled latitude and Lat stands for latitude. After the 
average and amplitude are computed for a given latitude, 
these five parameters can be estimated for the desired day 
of the year according to the following formula:

where X�,doy represents the computed five parameters for 
latitude � and day of the year. Avg� and Amp� are the com-
puted average or amplitude using (2), respectively. Then, the 
Tm is estimated from the following formula:

where �� = � + 1 , T0 , � and � are the meteorological param-
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the atmospheric column centroid in m ⋅ s−2 , and H denotes 
the orthometric height in m.

In the GWTMD model, the annual mean value and the 
coefficients of the annual and semi-annual variations of Tm 
are stored at the four reference height levels and the four 
reference times. To determine the Tm of the target location 
(�, �, h) , four steps are required: (1) to determine the two 
nearest reference height levels close to h and the other four 
vertical surfaces containing the eight voxels closest to (�, �) , 
and to calculate the Tm values for the reference times on the 
eight voxels; (2) the Tm for the four grid points at the height 
of h are linearly interpolated from the Tm values on the two 
nearest reference heights; (3) The Tm at target point is hori-
zontally interpolated by the Tm values on the four corners; 
(4) a spline interpolation in the time domain is carried out to 
find the Tm of the target location for the specific time of the 
day using the Tm values from the previous step.

For the GPT3 and UNB3m models, the Ts can be esti-
mated as well as Tm. Thus, the augmentation mode for the 
two models is shown as the following formula:

where the TM
m

 and TM
s

 are the Tm and Ts values estimated 
by the GPT3 or UNB3m model, Ts is the measured surface 
temperature, Tm is the augmented Tm value, and A represents 
the augmentation coefficients for each model.

For the GWTMD model, only Tm value is estimated. 
Thus, the following formula was tried to conduct the 
augmentation:

where the parameters are similar to those in (5). TM
m

 refers to 
the Tm estimated by the GWTMD model, Ts is the measured 
surface temperature and Tm is the augmented Tm value. After 
achieving the Tm values from radiosonde and corresponding 
models, and Ts from observation data and the models, the 
least-squares method is applied to compute the augmenta-
tion coefficients A.

Experiment

The radiosonde that measured the atmospheric profiles is 
selected to conduct the augmentation mode for these three 
models. The globally distributed radiosonde sites can pro-
vide surface variables and pressure level parameters, includ-
ing temperature, relative humidity, pressure, and other 
meteorological parameters. The daily data can be retrieved 
from the upper-air archive at the website of the University 
of Wyoming (available on http://​weath​er.​uwyo.​edu/​ypper​
air/​sound​ing.​html). The exact Tm value at each epoch of a 

(5)Tm = TM
m
+ A ⋅

(
Ts − TM

s

)

(6)Tm = TM
m
+ A ⋅ Ts

certain site can be exactly calculated using the discretized 
formula as follows:

where i is the ith pressure level, N is the total number of lay-
ers and Δzi is the thickness of the ith layer. e and T represent 
the water vapor pressure and temperature at the correspond-
ing layer, respectively.

The raw measurements of radiosonde are considered out-
liers in the following cases, such as the difference in height 
between two successive levels is greater than 10 km; the 
total number of valid pressure levels is less than 20; the 
height of the top pressure level is lower than 10 km; the 
gap between two successive atmospheric pressure levels 
is greater than 200 hPa; the number of radiosonde records 
in the site of interest is less than half a year (Long et al. 
2021). These outliers were eliminated in a preprocessing to 
achieve the exact Tm value. After excluding the outliers and 
the unqualified sites, a total of 507 radiosonde sites from 
2011 to 2015 were selected to compute the Tm using (7) and 
provide the measured Ts.

Considering that the accuracy of the empirical Tm models 
is affected by latitude, we tried to calculate the augmentation 
coefficients in different latitude zones. According to the dif-
ferences in the distribution of radiosonde in the northern and 
southern hemispheres, twelve latitude zones are divided, i.e., 
90°–70° N, 70°–60° N, 60°–50° N, 50°–40° N, 40°–30° N, 
30°–20° N, 20°–10° N, 0°–10° N, 0°–10° S, 10°–20° S, 
20°–30° S, 30°–90° S. In each latitude zone, the number of 
radiosonde sites is 16, 47, 95, 93, 97, 54, 15, 23, 17, 15, 17, 
18, respectively, and 4/5 of the radiosonde sites are utilized 
to conduct the augmentation mode using (5) and (6), and the 
remaining 1/5 of radiosonde sites are used for validation. 
Figure 1 shows the distribution of the selected radiosonde 
sites, in which the blue circles and red triangles represent the 
sites for modeling and validation, respectively.

Several statistical quantities including bias and root-
mean-square error (RMSE) were chosen as criteria to assess 
the validation. The corresponding equations are described 
as follows:
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where Tmi
 and Tr

mi
 are the Tm values from the different models 

and the reference, respectively. N refers to the number of 
samples.

Validation of the augmentation models

The 412 radiosonde sites were used to conduct the aug-
mentation mode for the three models, and the new models 
are called GPT3-R, UNB3m-R, and GWTMD-R models. 
To assess their performances, the Tm from 2011 to 2015 
derived from (7) at these 95 radiosonde sites were regarded 
as the references. The estimated Tm values derived from the 
six models and the corresponding reference Tm values at 
all validated sites are counted and shown as a scatter dia-
gram in Fig. 2, in which the black dashed line refers to a 
1:1 straight line and the red straight line represents a linear 
fit line between the estimated and reference Tm. It can be 
seen that the UNB3m model performs worst with the most 
scattered distribution of the points before the augmentation. 
The performances of the original three models are effec-
tively improved by the corresponding augmentation models 
with more points concentrated near the fitted line. Specifi-
cally, the slopes of the linear fitting for the three original 
models increased from 0.85 to 0.92, from 0.94 to 0.99, and 
from 0.86 to 0.93 after the augmentation, respectively. Note 
that the scatter diagrams of the three original models are all 
truncated at both ends, indicating that the maximum and 
minimum values of the three models are limited. The GPT3-
R and UNB3m-R model effectively improved this phenom-
enon, but the GWTMD-R model did not.

The Tm values at 95 validated sites are all counted, and 
the statistical results for the six models are listed in Table 1. 
The three augmentation models effectively improved the 

Fig. 1   Distribution of the 
selected radiosonde sites

180o 120oW 60oW 0o 60oE 120oE 180oE
90oS

60oS

30oS

0

30oN

60oN

90oN
Validation site Modeling site

Fig.2   Scatter plots of estimated Tm and reference Tm for the six mod-
els
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statistics of their original models in terms of bias, RMSE, 
and correlation coefficient, respectively. It showed that the 
UNB3m-R model has the most significant improvement 
compared with its original model, with the bias from − 5.05 
to − 0.2 K, the RMSE from 7.89 to 4.06 K, and the cor-
relation coefficient from 0.88 to 0.94. For the RMSE, the 
improvement of the UNB3m-R model is 3.83 K reaching 
approximately 49%, and the value and percentage of the 
improvement are 1.15 K/26% and 0.28 K/7% for the GPT3-R 
and GWTMD-R model, respectively. Although the improve-
ment is not as large as the UNB3m-R model, the GPT3-
R model still achieves the best accuracy for Tm estimation 
among the six models with the three best statistics of 0.07 K, 
3.27 K, and 0.96.

To assess the performances of the six models in different 
regions, the RMSE of Tm for each validated site is computed 
and illustrated in Fig. 3, in which the spatial variation in the 
accuracy of the six models can be seen. The accuracy of the 
three original models is affected by latitude, i.e., the RMSE 
in low latitudes is better than that in high latitudes. The accu-
racy of Tm in each latitude zone for the three augmentation 
models is improved compared with their original models. It 
can still be seen that the RMSE of the three augmentation 
models is slightly related to latitude. This is because the 
variation and fluctuation of Tm are more frequent in high 
latitudes, which is difficult to depict by models. The UNB3m 
model performs worst with most of the sites having RMSE 
greater than 5 K, and the percentage reaches 73%. For the 
UNB3m-R model, the sites with a value of RMSE greater 
than 5 K account only for 16%, and the largest improve-
ment is 12.7 K from 16.2 K to 3.5 K. It is observed that the 
GPT3-R model achieves an accuracy of better than 5 K at 
all site, and the percentage of sites with a value of RMSE 
smaller than 4 K reaches 85%. The values become 39%, 
43%, and 48% for the GPT3, GWTMD, and GWTMD-R 
models, respectively.

The biases of Tm for each validated site are also counted 
and illustrated in Fig. 4. It can be seen that the biases of the 
UNB3m model and the GWTMD model show certain char-
acteristics on a global scale, that is, the biases of the UNB3m 
model and the GWTMD model are negative and positive at 
most of the sites, respectively. The GPT3 model does not 

show this phenomenon and contains sites with warm and 
cold biases. After the augmentation, the large warm/cold 
biases are reduced, and more sites with bias close to 0 appear 
in these three augmentation models. The percentage of sites 
with absolute bias less than 1 K is 68%, 9%, and 45% for the 
three original models, respectively, and these values become 
to 86%, 40%, and 89% for the three augmentation models, 
respectively.

Furthermore, the Tm RMSE of the six models in different 
latitude zones is counted and listed in Table 2. It is observed 
that the performance of each model in high latitudes is 
always worse than that in low latitudes, which is similar 
to Fig. 3. Compared with the UNB3m model, the improve-
ment of the UNB3m-R model reaches the maximum in the 
latitude zone of 70°–90° N, close to approximately 67%, 
and the minimum improvement is 34% in the latitude zone 
of 20°–30° S; the average percentage of improvement by the 
UNB3-R model is 49%. For the GPT3-R and GWTMD-R 
models, the maximum, minimum, and average percentages 
are 33%, 8%, 22%, and 27%, 1%, 8%, respectively.

Table 1   statistical results of all validate sites for the six models

Model Bias (K) RMSE (K) Correlation

GPT3 0.81 4.42 0.93
GPT3-R 0.07 3.27 0.96
UNB3m − 5.05 7.89 0.88
UNB3m-R − 0.20 4.06 0.94
GWTMD 0.98 4.23 0.93
GWTMD-R 0.10 3.95 0.94 90oS

45oS

0o

45oN

90oN

GPT3 GPT3-R

90oS

45oS

0o

45oN

90oN

UNB3m UNB3m-R
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90oS
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GWTMD-R
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K

Fig. 3   Global distribution of Tm RMSE for the six models
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The Tm residuals of all sites for the six models are repre-
sented by a histogram in Fig. 5, which also shows the mean, 
median, standard deviation (SD), and mode value. All the 
indicators of the augmentation models are better than those 
of the corresponding original models. The histograms of all 
models are normally distributed, only the symmetry axis of 
the UNB3m model deviates from the straight line of x = 0. 
The three augmentation models perform better than their 
corresponding original models with more residuals concen-
trated around zero. As for the absolute residuals smaller than 
5 K, the GPT3-R model has the largest percentage of 89%, 
the UNB3m model has the smallest percentage of 49%, and 
the percentages are 76%, 80%, 78%, and 81% for the GPT3, 
UNB3m-R, GWTMD, and GWTMD-R model, respectively.

To analyze the improvement of the augmentation mod-
els to the Tm accuracy at different times, the RMSE for all 
sites is calculated daily and their time series are shown in 
Fig. 6. It is observed that the RMSE of six models has obvi-
ous annual cycles and seasonal changes, which experience a 
decrease from winter to summer and then an increase from 
summer to winter. The maximum RMSE appears gener-
ally in winter and the minimum values are in summer. The 
UNB3m model performs worst almost every day, its aug-
mentation model achieves the greatest improvement. Among 
the six models, the GPT3-R model has the best performance 
and effectively improves the accuracy of its original model, 
while the daily improvement of the GWTMD-R model is 
not obvious compared to its original model. Note that the 
augmentation models have an effective improvement on the 
seasonal difference, especially the GPT3-R and UNB3m-R 
models.

To further show the distribution of daily RMSE, the 
empirical distribution function of Tm RMSE for the six 
models is depicted in Fig. 7. Compared with the results of 
the three original models represented by the black, cyan, 

90oS

45oS

0o

45oN

90oN

GPT3 GPT3-R

90oS

45oS

0o

45oN

90oN

UNB3m UNB3m-R

90oW 0o 90oE
90oS

45oS

0o

45oN

90oN

GWTMD

90oW 0o 90oE

GWTMD-R

-4 -2 0 2 4
K

Fig. 4   Global distribution of Tm biases for the six models

Table 2   Statistical results of 
Tm RMSE for the six models in 
different zones

Latitude zones RMSE (K)

GPT GPT3-R UNB3m UNB3m-R GWTMD GWTMD-R

70°–90° N 4.41 3.29 12.85 4.23 4.20 3.94
60°–70° N 5.15 3.83 10.67 5.27 5.47 4.98
50°–60° N 4.61 3.42 9.81 4.59 4.80 4.37
40°–50° N 5.09 3.80 7.51 4.32 4.82 4.54
30°–40° N 4.44 3.45 5.95 3.88 4.02 3.88
20°–30° N 4.01 2.80 5.95 3.38 3.32 3.28
10°–20° N 2.17 1.97 4.30 2.28 2.34 2.11
0°–10° N 2.15 1.73 3.58 1.88 2.11 1.85
0°–10°S  1.86 1.72 3.49 1.91 2.15 1.80
10°–20° S 2.67 1.78 4.81 2.45 2.11 1.55
20°–30° S 2.70 2.39 4.68 3.11 2.63 2.53
30°–90° S 3.73 3.24 7.36 4.38 4.01 3.77
Average 3.58 2.79 6.75 3.47 3.50 3.22
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and green curves, the corresponding blue, red and yellow 
curves are closer to the position of 0 K and cover a rela-
tively smaller range of the horizontal axis, showing a bet-
ter distribution of the results of the augmentation model. 
The UNB3m model performs worst with most of the daily 
RMSE greater than 6  K, and its augmentation model 
effectively improves this phenomenon. When setting the 
daily RMSE with a value greater than 4 K, the cumula-
tive probabilities are 65%, 9%, 100%, 41%, 53%, and 40% 
for the GPT3, GPT3-R, UNB3m, UNB3m-R, GWTMD 
and GWTMD-R model, respectively, which indicates the 
performance and improvement of each model in daily Tm 
estimation.
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Comparison with the Ts‑Tm linear formula

Considering that the surface temperature is required in the 
augmentation methods, it is necessary to compare the accu-
racy of the proposed augmentation models with the Ts–Tm 
linear formulas. Therefore, the radiosonde sites used to con-
struct the augmentation coefficients were again adopted to fit 
the Ts–Tm linear formula for each latitude zone, and the Tm 
values of the validated sites in each latitude zone were calcu-
lated based on these fitted formulas. In addition, the widely 
used Bevis formula was also added to this comparison.

The RMSE distribution in each latitude zone of the three 
augmentation models as well as those of the Bevis and the 
fitted Ts–Tm linear formula is shown in Fig. 8. The shapes 
with different colors represent these models and formulas, 
and the dashed lines refer to the average value of the RMSE 
for the corresponding methods. It can be seen that the Bevis 
formula performs the worst with an average RMSE of 3.80 K 
and a larger RMSE in each latitude zone. The fitted Ts–Tm 
linear formula achieved a better performance than the Bevis 
formula, with an average RMSE of 3.37 K. It illustrates that 
the Bevis formula is not suitable for the global application 
and accurate Ts–Tm linear formula needs to be fitted in the 
corresponding region of interest. Note that the UNB3m-R 
model outperforms the Bevis formula but is slightly worse 
than the fitted Ts–Tm linear formula, which may be due to the 
poor accuracy of UNB3m itself. The average RMSE of the 
other two augmentation models is smaller than those of the 
Bevis and the fitted Ts–Tm formula, indicating that using the 
augmentation model to calculate Tm is more accurate com-
pared to using the Ts–Tm linear formula when the surface 
temperature is provided. Especially for the GPT3-R model, 

its RMSE in each latitude zone is significantly smaller than 
that of the Bevis and fitted Ts–Tm linear formula, and the 
improvement of the average RMSE reaches 27% and 17%, 
respectively. Specifically, the RMSE of Tm calculated by the 
Bevis formula and the fitted Ts–Tm linear formula in each 
latitude zone is counted and listed in Table 3, which can be 
compared with Table 2.

Conclusion

The Tm, which acted as a key parameter in converting ZWD 
to PWV in GNSS meteorology, is generally estimated by 
using the global empirical models, such as GPT3, UNB3m, 
and GWTMD model, which are considered to be more con-
venient and more suitable for global application compared 
to the Bevis formula and the regional empirical models. 
These empirical Tm models are based on periodic function, 
they are difficult to describe Tm in detail and their accuracy 
often shows obvious differences with the latitude changes. 
Therefore, a global latitude zone augmentation mode was 
adopted for the three empirical Tm models, and their aug-
mentation coefficients for each latitude zones were obtained 
by introducing the measured surface temperature and using 
the least-squares method.

The comprehensive comparisons between the three aug-
mentation models and their corresponding original models 
were conducted using the 5 years of data derived from the 
radiosonde. The numerical results show that all the aug-
mentation models can improve the accuracy of the Tm esti-
mation compared with their corresponding original model, 
but their improvement degree is different. The UNB3m 
model performs the worst of the six models in terms of the 
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Fig. 8   RMSE distribution of the augmentation models and the linear 
formulas for each latitude zone

Table 3   Statistical results of Tm RMSE for the Bevis and fitted Ts–Tm 
linear formula in different latitude zones

Latitude zones Bevis formula Fitted Ts–Tm 
linear formula

70°–90° N 4.07 3.68
60°–70° N 4.95 4.32
50°–60° N 3.97 3.71
40°–50° N 4.32 4.28
30°–40° N 4.17 4.15
20°–30° N 3.91 3.31
10°–20° N 3.70 2.64
0°–10° N 2.24 1.91
0°–10° S 2.61 1.93
10°–20° S 4.00 3.70
20°–30° S 3.46 2.72
30°–90° S 4.18 4.13
Average 3.80 3.37
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scatter plots, the spatial distribution of RMSE and bias, the 
Tm residual analysis, and the results of daily Tm RMSE. 
After the augmentation, the slope of the linear fitting for the 
UNB3m-R model increased from 0.94 to 0.99, the average 
RMSE of different latitude zones for the UNB3m-R model 
decreased from 6.75 to 3.47 K, the SD of the Tm residuals for 
the UNB3m-R model decreased from 6.12 to 4.12 K, and the 
average value of daily Tm RMSE for the UNB3m-R model 
decreased from 7.78 to 4.03 K. It has the greatest improve-
ment among the three augmentation models. The improve-
ment of the GPT3-R model is not as large as the UNB3m-R 
model, but it achieves the best accuracy for Tm estimation in 
all types of comparisons. The GWTMD-R model only has 
a slight improvement in Tm estimation compared with its 
original model, since the GWTMD model cannot provide 
Ts estimates in the construction of the augmentation model. 
Moreover, the Bevis and the fitted Ts–Tm linear formula were 
compared with the proposed models, which demonstrated 
that it is more reasonable to use the augmentation model to 
calculate Tm than to use the Ts–Tm linear formula directly 
when the surface temperature is available. In the follow-up 
research, more detailed augmentation coefficients need to 
be explored, such as solving the augmentation coefficients 
at each model grid of the empirical Tm model.
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