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Abstract
Emerging applications like autonomous cars and unmanned aerial vehicles demand accurate, continuous and reliable posi-
tioning. The PPP-RTK technique, which could provide a rapid centimeter-accurate positioning service using a single GNSS 
receiver, has been recognized as a promising tool for mass-market and automotive applications. Nevertheless, the position-
ing performance of PPP-RTK degrades in urban environments because of the frequent signal deteriorating and blocking. 
Inertial navigation system (INS) is commonly integrated with GNSS to improve the continuity, accuracy and reliability of 
precise positioning as it has several advantages of all-environment operability and high temporal resolution, but it is limited 
by rapid error accumulation in long-term operation, especially when a microelectromechanical system inertial measurement 
unit (MEMS-IMU) is employed. Fortunately, the camera, another low-cost sensor, which provides rich information about the 
surrounding environment, is expected to improve the navigation performance further. This contribution develops a tightly 
integrated PPP-RTK/MEMS/vision model to achieve continuous and accurate positioning in urban environments. The raw 
data of MEMS-IMU and a stereo camera, as well as the high-precision GNSS phase measurements, are fused based on a 
multistate constraint Kalman filter to fully exploit the complementary properties from heterogeneous sensors. On this basis, 
a fast ambiguity resolution is achievable with the augmentation of the high-precision INS/vision information and the precise 
atmospheric corrections. The proposed integrated system is validated by several vehicle experiments conducted in urban 
areas. Results indicate that a centimeter-level accuracy of 4.1, 2.2 and 7.3 cm in the east, north and up components, respec-
tively, and a high fixing percentage of 96.8% can be achieved for PPP-RTK/MEMS/vision in an urban environment, which 
exhibits comparable performance with respect to the tight integration of PPP-RTK and a tactical IMU. Besides, ambiguity 
refixing can be implemented instantaneously for the integrated system when going under three consecutive overpasses in 25 s.
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Introduction

High accuracy and reliable positioning are increasingly 
significant in emerging technologies such as self-driving 
cars and mobile robots. The PPP-RTK technique (Wubbena 
et al. 2005), which is proposed to achieve centimeter-level 
positioning using a single GNSS receiver by rapid ambigu-
ity resolution (AR), is well recognized as a promising tool 
for high-precision and time-critical applications. Generally, 
the implementation of PPP-RTK includes two sequential 
steps. The state space representation (SSR) corrections, 

such as precise orbits and clocks, phase and code biases, 
as well as atmospheric delays, are estimated first and then 
disseminated to users to enable the precise point positioning 
(PPP) rapid AR for the area covered by reference stations. 
In this way, PPP-RTK shows the same flexibility as PPP and 
achieves higher accuracy by applying ambiguity resolution. 
Moreover, compared with the traditional real-time kinematic 
(RTK) technique using the observational state representa-
tion (OSR), the use of SSR corrections significantly releases 
the real-time communication burden and enables the further 
improvement of positioning performance by precise atmos-
pheric modeling (Li et al. 2014; Yang et al. 2022). In recent 
years, several studies concerning atmospheric modeling 
(Teunissen and Khodabandeh 2015; de Oliveira et al. 2017; 
Psychas and Verhagen 2020; Ren et al. 2021), ambiguity res-
olution (Ge et al. 2008; Laurichesse et al. 2009; Zhang et al. 
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2019) and multi-GNSS fusion (Li et al. 2021a, 2022) have 
been conducted to investigate and improve the performance 
of PPP-RTK. These results indicate that under the open-sky, 
centimeter-accurate positioning can be easily achieved by 
PPP-RTK with the atmospheric corrections augmentation.

However, in an urban environment where signals are 
frequently blocked, the performance of PPP-RTK degrades 
rapidly due to the limited satellite number and poor observa-
tion quality. Fortunately, as an autonomic and spontaneous 
system, the inertial navigation system (INS) is free from 
signal deteriorating and blocking, which is commonly inte-
grated with the GNSS to enhance positioning performance. 
Currently, the INS is widely used to integrate with RTK or 
PPP processing. The significant improvement in accuracy, 
continuity and reliability that a combining utilization of 
GNSS/INS brings to precise positioning is carefully ana-
lyzed and evaluated (Rabbou and El-Rabbany 2014, 2015; 
Liu et al. 2016; Gao et al. 2016). Recently, more attention 
has been paid to PPP-RTK/INS, attributing to the superiori-
ties of PPP-RTK. Gu et al. (2021) developed a multi-GNSS 
PPP/INS tightly coupled integration with atmospheric 
augmentation, reaching an accuracy of 0.22 m and 0.45 m 
for dual- and single-frequency users, respectively. Li et al. 
(2021b) proposed a tightly coupled PPP-RTK/INS integra-
tion method with a tactical and a microelectromechanical 
system inertial measurement unit (MEMS-IMU) employed 
to verify the positioning performance, respectively. Results 
indicate that, for a tactical IMU, the horizontal positioning 
accuracy of 5–6 cm can be achieved in an urban environ-
ment, whereas for a MEMS-IMU, positioning accuracy of 
decimeter level or even worse is obtained because of the 
rapid error accumulation during the GNSS outage.

To mitigate the navigation error drifts of INS and further 
improve the positioning performance in complex urban envi-
ronments, some low-cost sensors, such as vehicle odometer 
and visual sensors, have been applied in GNSS/INS integra-
tion to provide redundant measurements for the filter update 
(Gao et al. 2018; Reuper et al. 2018). Compared to the vehi-
cle's internal odometry only providing forward velocity 
information in one dimension, the visual sensor, which is 
capable of capturing abundant surrounding features, has the 
potential to present a better augmentation performance for 
the robust estimation of positioning and velocity parameters. 
Angelino et al. (2012) proposed a loosely coupled GNSS/
INS/vision integration method in order to avoid the diver-
gence of position estimates in a GNSS-denied environment. 
It shows that using visual measurements allows continuous 
meter-level positioning accuracy with a 120-s outage of 
GPS. Lynen et al. (2013) constructed the multi-sensor fusion 
extended Kalman filter (MSF-EKF) framework that achieved 
the seamless sensor-feed loose integration of GNSS, INS 
and visual sensors. Besides, a graph optimization-based 
multi-sensor fusion approach was also employed to fuse the 

local poses from visual inertial odometry and GPS position 
measurements (Mascaro et al. 2018). To avoid information 
loss in the loosely coupled model, Cao et al. (2021) pro-
posed a nonlinear optimization-based approach to tightly 
fuse GNSS pseudorange measurements with visual and IMU 
data, which leads to a majority of meter-level and decime-
ter-level position results in complex environments. Li et al. 
(2019) integrated the single-frequency RTK, MEMS-IMU 
and the monocular camera to improve positioning avail-
ability in GNSS-challenged environments where ambiguity 
resolution is still conducted on the basis of GNSS observa-
tions with the INS-derived position constraint.

In the previous studies, the low-cost MEMS-IMU and 
camera were commonly integrated to GNSS in a loosely 
coupled mode, or only pseudorange observations of GNSS 
were employed for filter updates. Mostly, only meter-level or 
decimeter-level positioning accuracy can be achieved with a 
single GNSS receiver. This contribution develops a low-cost 
navigation system with a tightly coupled PPP-RTK/MEMS/
vision integration method for centimeter-accurate vehicle 
navigation. The GNSS carrier phase observations and the 
raw data of MEMS-IMU and stereo camera are processed 
in a centralized EKF estimator to exploit the complemen-
tary sensors. In addition, rapid AR is achieved with the 
augmentation of the high-precision INS/vision information 
and precise atmospheric corrections. Several experiments in 
different situations of urban environments are designed to 
evaluate the performance of the proposed method.

After this introduction, the method of tightly coupled 
integration of PPP-RTK/MEMS/vision is described. Then 
the experimental sets and the processing strategies in the 
vehicle-borne experiments are detailed. Hereafter, the exper-
imental results in typical urban situations are investigated 
and the positioning performance of PPP-RTK/MEMS/vision 
tight integration is validated. Finally, the conclusions and 
perspectives are illustrated.

Method

In this section, the implementation of a PPP-RTK method 
is introduced first. Then, with an overview of the PPP-RTK/
MEMS/vision tightly integrated system, the error model of 
all involved sensors in the integrated system is introduced, 
respectively; then, the state model and measurement model 
of the integrated filter are detailed. Finally, a theoretical 
analysis of the benefits of the tightly coupled integrated 
system is presented.

PPP‑RTK method

In our PPP-RTK model shown in Fig. 1, the precise atmos-
pheric corrections, including the ionospheric and the 
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tropospheric delays, are derived from the PPP fixed solutions 
with precise orbit and clock, as well as uncalibrated phase 
delay (UPD) products prepared at the server, and then dis-
seminated to and interpolated at the user stations to enable 
the PPP rapid AR. For a specific description of the proposed 
PPP-RTK model, the methods of atmospheric corrections 
retrieval and modeling at the server, and PPP rapid ambigu-
ity resolution with precise atmospheric constraints at the 
user will be detailed, respectively.

Atmosphere retrieval and modeling at the server

With the real-time orbits, clock and bias corrections deter-
mined using observation streams from the global network in 
advance, PPP AR can be implemented to estimate the pre-
cise atmospheric delays (including the slant ionospheric and 
zenith tropospheric delays). The derived ionospheric and 
tropospheric corrections ( �T

r
 and �Is

r
 ) can be expressed as:

where Zr,w and I
s

r,1
 are estimated zenith tropospheric wet 

delay and slant ionospheric delay, respectively, and b refers 
to the code hardware delay, which in the combined forms 
are absorbed by ionospheric delays in the estimation system.
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After the precise atmospheric corrections at each server 
station are derived, the interpolation method such as the 
modified linear combination method (MLCM) is commonly 
applied to obtain the precise atmospheric information at the 
user station according to the distance between the reference 
and user stations (Li et al. 2011). We employ a grid-based 
atmospheric correction model in our study to improve com-
munication efficiency. Figure 2 shows the implementation 
procedure. After determining the area reference point and 
grid node spacing, the grid node arrangement is imple-
mented following in order from west to east and from north 
to south. With the precise atmospheric corrections available 
at the reference stations, the low-order polynomial functions 
as (3) are used to compute the coefficients of ionospheric 
and tropospheric corrections with the polynomial expansion 
point at the center of the grid. A least-squares method is 
employed for atmospheric coefficients estimation.

where �Ari
 denotes the retrieved atmospheric correction at 

the reference station i ; k is the number of reference stations; 
� and � refer to the geographic latitude and longitude of 
the regional stations, respectively, whereas �0 and �0 are 
counterparts of the polynomial expansion point; and C00 , 
C01 , C02 and C03 are polynomial coefficients to be estimated. 
Once the polynomial coefficients are obtained, the residual 
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Fig. 1   Implementation of PPP-
RTK processing
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between the retrieved and fitting values is computed and 
then interpolated at each grid node based on the MCLM 
method. In this way, the sum of polynomial fitting values 
and interpolated residuals from the surrounding grid nodes 
are the corrections users required.

PPP AR with precise atmospheric constraints at the user

At the user, the PPP model with atmospheric constraints can 
be expressed as:

where ps
r,j

 and ls
r,j

 represent the observed minus computed 
values of the pseudorange and carrier phase observations, 
respectively; �s

r
 symbolizes the unit vector of the component 

from the receiver to the satellite; �� ( �� = [dx, dy, dz] ) indi-
cates the vector of the receiver position increments relative 
to the a priori position; ms

r,w
 stands for the mapping function 

of zenith tropospheric delay; and �
s

r,n
 denotes the float ambi-

guity at frequency n , which is biased by the receiver- and 
satellite-specific hardware delays. The precise atmospheric 
corrections ( ̃Zr1,r2…rk

 and Ĩr1,r2…rk
 ) will be taken as the virtual 

observations to impose atmospheric constraints with vari-
ance of �2

Zr,w
 and �2

Ir,1
 (Zhang et al. 2022). It is worth noting 

that the ionospheric corrections absorb the frequency-
dependent code biases from reference stations, which will 
introduce an additional bias for the observations. To avoid 
the effect of this code bias, a frequency-dependent receiver 
code bias ( ̃br,u , Psychas and Verhagen 2020) should be esti-
mated for a PPP-RTK user. Overall, the parameters X to be 
estimated in the PPP-RTK system can be written as:

(4)
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where ��� denotes inter-system bias, which needs to be esti-
mated for multi-GNSS processing with the assumption that 
all systems share the GPS receiver clock ( tG

r
).

With the precise atmospheric corrections and bias cor-
rections, the PPP rapid AR is achieved based on a cascade 
ambiguity fixing strategy using the wide-lane (WL, 
�s

r,1
− �s

r,2
 ) and L1 ( �s

r,1
 ) ambiguities. The WL ambiguities 

are fixed using the round strategy, and the integer WL 
ambiguities will be taken as the virtual observation to 
improve the precision of L1 ambiguity. Finally, the L1 
ambiguity will be fixed by the LAMBDA method (Teunis-
sen 1995).

Tightly integrated PPP‑RTK/INS/vision system

The system architecture of the PPP-RTK/INS/vision tight 
integration is presented in Fig. 3. In the integrated system, 
a multistate constraint Kalman filter (MSCKF) estimator is 
employed to fuse the high-precision GNSS carrier phase 
observations, as well as the raw data of MEMS-IMU and 
stereo camera. After the INS dynamic alignment and ini-
tialization of the integration filter, the state propagation is 
performed by the INS mechanization. The high-precision 
INS-predicted positions will assist in the cycle slip and 
outlier detection in the PPP-RTK processing as well as the 
feature matching and tracking in the image processing. If 
a new image is obtained, the camera pose will be added 
to the state vector with the corresponding covariance aug-
mented. When the GNSS or vision observations are avail-
able, the measurement update will be applied to update the 
state parameters and the corresponding covariance matrix. 
Finally, the estimated gyroscope and accelerometer biases 
will be fed back to correct the next IMU data to restrain 
the INS divergence. Since the PPP-RTK method has been 
detailed above, this section first gives a brief view of the 
INS and vision sensor model and then focuses on the tight 
integration filter algorithm of PPP-RTK, INS and vision.

Fig. 2   Procedure of the grid-
based atmospheric correction 
modeling

Area Reference Point Polynomial expansion point Reference station

Grid node arrangement Polynomial fitting Residual interpolation
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INS error model

The linearized INS dynamic model can be written as (Shin 
2005):

where e , i and b are the earth-centered earth-fixed (ECEF) 
frame, earth-centered inertial and inertial sensor body 
frames, respectively; ��e , ��e and ��e stand for attitude, 
velocity and position error in e-frame, respectively; �e

b
 is 

defined as a rotation matrix from b-frame to e-frame; �b
ib

 
is the specific force output of accelerator in b-frame; �e

ie
 

is rotation angular rate vector of the e-frame with respect 
to the i-frame expressed in e-frame; �� , �v and �r demon-
strate random walk process in attitude, velocity and position; 
and ��b and �ab are the errors of gyroscope and accelerator 
measurements in b-frame, respectively, which usually can be 
described by the first-order Gauss–Markov procedures and 
expressed as follows:

where �� and �a denote the power spectral density (PSD) of 
accelerator and gyroscope, respectively, while �� and �a are 
corresponding correlation time of the random process. It 
should be noted that the coarse values of these parameters 
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can be obtained using the Allan variance analysis technique. 
Therefore, the INS error state vector can be written as:

where the errors of attitude, velocity, position, gyroscope 
and accelerator measurements are estimated as random walk 
process with a proper power density to exhibit their temporal 
characteristics.

Visual measurement model

For a single static feature fj observed at the time step i by a ste-
reo camera, the visual measurement �j

vis,i
 on the normalized pro-

jective plane of the left and right cameras can be expressed as:

where the subscripts l and r denote left camera and right 
camera, respectively; uj

i
 and vj

i
 denote the is the normalized 

pixel coordinates that are provided by the camera; Xci,n

j
 , Yci,n

j
 

and Zci,n

j
(n ∈ l, r) are feature positions in the camera frame; 

and �j
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 refers to the measurement noise. Here, Xci,n
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Fig. 3   System architecture of 
the PPP-RTK/INS/vision tight 
integration
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where �e
Ci,l

 and �e
Ci,l

 represent the attitude rotation matrix and 
position of the left camera frame with respect to the ECEF 
frame, which can be initialized by position, velocity and 
attitude information from the INS mechanization; �Ci,r

Ci,l
 and 

�
Ci,r

Ci,l
 are the attitude rotation matrix and position of left cam-

era frame with respect to right camera frame, which can be 
accurately calibrated offline (Furgale et al. 2013); and �e

j
 and 

�
Ci,l

j
 represent feature positions in e-frame and left camera 

frame, respectively.
In a typical visual method, the positions of the features 

are included in the state vector and estimated together with 
camera poses (Mur-Artal and Tardós 2017; Qin et al. 2018). 
However, in a complex environment, a large number of fea-
tures will be tracked, which will make the dimension of the 
state vector become very large. We compute the feature posi-
tions are computed through least-squares multi-view trian-
gulation based on the currently estimated camera poses (Sun 
et al. 2018). Moreover, we adopt the MSCKF algorithm that 
maintains several previous camera poses in the state vector 
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and uses visual measurements of the same feature across 
multiple camera views to form a multi-constraint update, 
which is efficient in avoiding dimension explosion. In this 
model, the visual state vector is described as:

where ��e
ci
 and ��e

ci
 are the attitude and position error of the 

left camera in different moments, respectively; and k denotes 
the total number of poses in the sliding window.

The corresponding visual observation model can be 
expressed as:

where �vis and �̂vis denote the observed and estimated image 
measurements on the normalized projective plane of camera; 
and �vis is the Jacobian of involved camera states which are 
given in “Appendix 1”.

Tight integration filter of PPP‑RTK/INS/vision

As mentioned previously, an MSCKF estimator is employed 
to fuse the high-precision GNSS carrier phase observations 
and the raw data of MEMS-IMU and stereo camera. Here, 
the state vector of the filter is defined as:

The optimal state vector estimates from the Kalman filter 
can be obtained through processing time updates and measure-
ment updates. The time update process of the PPP-RTK/INS/
vision system is written as:
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where � indicates the number of parameters of PPP-RTK 
model; and � and 0 denote the 3 × 3 identity and 3 × 3 zero 
matrices, respectively.

It is worth noting that every time a new image is recorded, 
the state and covariance matrix will be augmented with a 
copy of the current camera pose estimate. The initial value 
of camera pose is derived from the INS mechanization and 
the augmented covariance can be expressed as:

where �i|i and �′
i|i are the covariance matrices before and 

after the camera state augmentation, respectively.
When there are GNSS or visual observations available, 

the corresponding measurement update shown as follows is 
employed to update the state estimates:
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summarized as follows: (1) The high-frequency visual fea-
tures and IMU data assist to GNSS cycle slip detection and 
outlier detection, which will alleviate the effects of non-line 
of sight (NLOS) and multi-path in urban areas (Li et al. 
2021b). (2) The position and attitude information derived 
from INS mechanization offer accurate initial guesses for 
visual feature tracking and outlier detection. Accordingly, 
the visual features observed consecutively are expected to 
provide periodic corrections for reducing the error accumu-
lation of INS bias, which makes it possible for the low-cost 
MEMS/vision system to obtain comparable performance to 
a tactical IMU (Qin et al. 2019). (3) The tightly coupled 
integration filter fully uses each sensor's complementariness 
and avoids the possible information loss in loosely coupled 
integration. The GNSS measurement still works in a tight 
integration system and contributes to providing continuous 
and accurate solutions when the available satellites are less 
than four. In addition, both PPP-RTK and visual measure-
ment updates contribute to the estimation of IMU biases 
and restraining INS divergence in a tight integration filter. 
(4) The inclusion of vision and INS (VINS) is capable of 

[ ]Tothersp N xδ=X p NHδ λ ε+= +l

1( )N N N p p p
T

N NQQ HQ Q Q QHδ δ δ ε+ − − − − − −+ += −

, , ,: p VINS p INS p codeif Q Q Qδ δ δ
− − −> > , , ,N VINS N INS N codeQ Q Q+ + −< <

Fig. 4   Aiding effects of VINS in the ambiguity parameter estimation 
during GNSS outages. H is a matric describing the satellite geometry; 
Q+ and Q− refer to the posterior and priori covariance, respectively

Theoretical analysis of the benefits of the tightly 
coupled integrated system

This section addresses the benefits of the tightly coupled 
integrated PPP-RTK/INS/vision system, which can be 

where the �̂s
ins,n

 and �̂s
ins,n

 denote the INS-predicted GNSS 
carrier phase and pseudorange measurements, respectively. 
Since the IMU center has a different reference point to the 
GNSS antenna phase center, the lever-arm correction ( �b ) 
should be considered.

(18)with �ppp - rtk =

[
I 0 ms

r,w
−�n 0 �1 �2

I I ms
r,w

�n I 0 0

]
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ambiguity ( Q+ ). Based on the good quality of float ambi-
guities provided by VINS, the ambiguity dilution precision 
(ADOP) and the size of integer ambiguity search space are 
reduced, which will facilitate the rapid identification of the 
correct integer candidates (Geng and Shi 2017; Zhang et al. 
2018).

Experimental validations

In order to validate the proposed integrated system and 
evaluate its performance in typical urban situations, sev-
eral road vehicular tests were conducted in Wuhan, China. 
For a detailed assessment, a typical experiment from 
8:22:51 to 8:59:31 on October 13, 2021, including both 
open-sky and complex urban environments, is presented. 
The vehicle's trajectory and the distribution of six refer-
ence stations are presented in Fig. 5, respectively.

The experimental setup consists of a Septentrio 
PolaRx5 GNSS receiver together with a GNSS antenna 
(NovAtel GPS-702-GG), a tactical grade IMU (StarNeto 
XW-GI7660), a MEMS-IMU (ADIS-16470) and a stereo 
camera (FLIR BFS-PGE-31S4C), which is placed on the 
top of a car (Fig. 6). The raw GNSS observations collected 
at 1 Hz, the registering images of resolution 1024 × 768 
pixels at 20 Hz from a camera and an inertial measurement 
at a rate of 100 Hz from MEMS-IMU are employed for 
tightly integrated system validation. The technical speci-
fications of IMU sensors are provided in Table 1. The ref-
erence trajectory is calculated by a tightly coupled multi-
GNSS RTK/INS solution with a bidirectional smoothing 

Fig. 5   Trajectory of the vehicle experiment (left panel) and regional augmentation stations employed to generate atmospheric corrections (right 
panel)

Tac�cal IMU

MEMS IMU

GNSS receiver

Camera

Fig. 6   Illustration of the experimental equipment

providing initial float ambiguity with superior accuracy than 
GNSS-only and enables fast ambiguity refixing when GNSS 
signals are recaptured. As shown in Fig. 4, for the ambiguity 
parameter, the higher the precision of initial float ambigu-
ity ( Q− ) is, the better the precision of the estimated float 
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algorithm based on commercial Inertial Explorer (IE) 8.9 
software.

Presented in Table 2 is the detail of the multi-GNSS 
PPP-RTK processing strategy. The satellite orbit and 
clock errors are corrected by the precise products of the 
GeoForschungZentrum (GFZ). To enable the ambiguity 
resolution as well as the precise atmospheric correction 
retrieval, the satellite UPDs are computed by an open-
source software called GREAT-UPD (https://​geode​sy.​
noaa.​gov/​gps-​toolb​ox/) in advance. Table 3 shows the 
vision parameters and models applied in the experiment. 
For visual data processing, the maximum number of fea-
tures in tracking is set as 200 to reduce the computational 
complexity and memory requirements. In addition, a 

two-point RANSAC and spatiotemporal loop matching 
mechanism are employed to reject the outliers in the ste-
reo and temporal feature matching (Sun et al. 2018), and 
the Chi-square test is applied for conducting the outlier 
detection before constructing the visual residual vectors 
(Zuo et al. 2019).

Results

To verify the effectiveness of the tightly coupled PPP-
RTK/MEMS/vision method, four different schemes, 
including PPP-RTK, PPP-RTK/MEMS, PPP-RTK/Tactical 
grade INS (PPP-RTK/TINS) and PPP-RTK/MEMS/vision, 
are used to processing the experimental observations. The 
performance of four solutions was analyzed and compared 
in terms of positioning accuracy, fixing percentage and 
refixing time. In our study, the fixing percentage is defined 
as the percentage of the correctly fixed epochs over the 
total epochs. A correctly fixed solution is identified when: 
(1) the requirement of the ratio test and the success rate 
has been satisfied; and (2) the ambiguity fixed position 
agrees well with the reference coordinate (positioning 
errors below 0.1 m), and its accuracy is better than that of 
ambiguity-float solutions (Zhang and Li 2013).

Table 1   Technical specifications 
of the IMU sensors used in the 
experiment

IMU sensors Grade Sampling 
rates (Hz)

Bias Random walk

Gyro. (°/h) Acc. (mGal) Angular (°/
√
h) Velocity 

(m/s/
√
h)

XW-GI7660 Tactical 200 0.3 100 0.01 –
ADIS-16470 MEMS 100 8 1300 0.34 0.18

Table 2   Processing strategies of 
multi-GNSS PPP-RTK

Item Model

GNSS systems GPS, Galileo and BDS
Signal selection GPS: L1/L2; Galileo: E1/E5a; BDS: B1I/B3I
Sampling rate 1 s
Elevation cutoff angle 7°
Weight for observations Elevation-dependent weight
Ionospheric delay Corrected by atmospheric corrections
Tropospheric delay Dry component corrected by Saastamoinen model; 

wet component corrected by atmospheric correc-
tions

Satellite antenna phase center igs14.atx
Receiver antenna phase center igs14.atx
Receiver clock Epoch-wise estimated
Phase ambiguities Partial fixing

Table 3   Vision parameters and models applied in the experiment

Item Model

Sliding window size 20
Feature observation noise 0.01 m
Resolutions 1024*768 pixels
Sampling rate 20 Hz
Feature detection FAST corner
Feature tracking KLT optical flow
Maximum tracking features 200

https://geodesy.noaa.gov/gps-toolbox/
https://geodesy.noaa.gov/gps-toolbox/
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Performance of PPP‑RTK/MEMS/vision tight 
integration

Figure 7 shows the positioning errors series of four process-
ing schemes during the experimental period, respectively. 
The number of visible satellites (NSAT) and the position 
dilution of precision (PDOP) are also given in the figure. 
It can be clearly seen that the total number of satellites of 
multi-GNSS reaches 10–15 in most epochs and the PDOP 
is generally less than 2. With the augmentation of precise 
atmospheric corrections, PPP-RTK can achieve centimeter-
level positioning when the available satellite observations 
are sufficient. The inclusion of other sensors (either INS or 
vision) further improves the positioning performance, with 
a positioning series showing fewer outliers. Outliers gener-
ally result from the failure of ambiguity resolution when 
GNSS signals are degraded. Fortunately, the high-frequency 
IMU data and the abundant visual observation information 
will both contribute to more reliable ambiguity estimates 
for ambiguity resolution when tight integration is employed. 
Two shaded areas in Fig. 7 indicate two typical situations 
in the urban area where the NSAT decreases sharply. The 
positioning error of PPP-RTK diverges obviously and 
reaches several meters. With the aid of a tactical IMU, the 
positioning solutions can still maintain decimeter-level and 
even centimeter-level accuracy. However, the improvement 
is limited with a MEMS-IMU, which could be attributed to 
its high noise level and the significant bias instability. After 
applying visual information to PPP-RTK/MEMS, a compa-
rable performance is achieved with respect to the PPP-RTK/
TINS in terms of accuracy and reliability.

The statistical results of positioning accuracy and fixing 
percentage in four processing schemes are given in Table 4 
and Fig. 8. Because of the filter divergence in the signal-
blocked area, the overall positioning accuracy of PPP-RTK 
is degraded to the meter level. Significant improvement 
can be achieved with INS/vision aiding. The positioning 
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Fig. 7   Positioning series of PPP-RTK, PPP-RTK/MEMS, PPP-RTK/
TINS and PPP-RTK/MEMS/vision

Table 4   Positioning accuracy and fixing percentage of PPP-RTK, 
PPP-RTK/MEMS, PPP-RTK/TINS and PPP-RTK/MEMS/vision

Modes Positioning accuracy (m) 
under 95% confidence level

Fixing 
percentage 
(%)

E N U

PPP-RTK 6.16 2.31 15.73 89.7
PPP-RTK/MEMS 0.08 0.12 0.15 91.9
PPP-RTK/TINS 0.04 0.02 0.07 95.6
PPP-RTK/MEMS/VIS 0.04 0.02 0.07 96.8
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Fig. 8   Positioning accuracy of PPP-RTK/MEMS, PPP-RTK/TINS 
and PPP-RTK/MEMS/vision
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accuracy of 0.08, 0.12 and 0.15 m in the east, north and up 
components, respectively, can be achieved for PPP-RTK/
MEMS and is further improved to centimeter level of 0.04, 
0.02 and 0.07 m for PPP-RTK/MEMS/vision integration. 
Moreover, we also found that PPP-RTK/MEMS/vision 
solutions exhibit the same level of accuracy as the PPP-
RTK/TINS. In addition, PPP-RTK/MEMS/vision inte-
gration has the highest fixing percentage of 96.8%, while 
that of PPP-RTK, PPP-RTK/MEMS and PPP-RTK/TINS 
is 89.7%, 91.9% and 95.6%, respectively. Note that the 
PPP-RTK can obtain a relatively high fixing percentage 
with the augmentation of precise atmospheric corrections; 
however, the positioning accuracy is still at the meter level 
due to the rapid divergence and significant deviation of 
the filter solution with the frequent signal interruptions in 
the urban canyon area (Shadow area in Fig. 7). By con-
trast, the tight integration of PPP-RTK, MEMS and vision 
exhibits a slightly better fixing percentage, but gives a 
much higher positioning accuracy at the centimeter level, 
which demonstrates that PPP-RTK/MEMS/vision tight 
integration can obtain continuous and accurate positions in 
an urban environment and is expected to be widely applied 
in massive market applications because of its significant 
advantages of low expense and portability.

Results validations in typical urban environments

To fully investigate the positioning performance of PPP-
RTK/MEMS/vision tight integration in GNSS-challenged 
environments and analyze the benefits of the inclusion of 
INS and vision sensors, two typical urban situations (denoted 
by the shaded area in Fig. 7) are selected for detailed analy-
sis. The vehicle trajectory of Scene 1 overlaid on a Google 
Maps and its observational environments are presented in 
Fig. 9. This situation is a typical urban canyon with high-
rise buildings along the road, where GNSS signals are badly 
deteriorated and blocked.

Figure 10 shows the series of NSAT, PDOP, SNR and 
multi-path in Scene I. We can find that both NSAT and 
PDOP series change rapidly between 8:27:00 and 8:30:00. 
At the same time, SNR values of most satellites are 
decreased to the range of 20–30 dB Hz, while those gather 
between 30 and 50 dB Hz under an open-sky environment. 
Meanwhile, a few outliers up to several meters can be found 
in the third subgraph from the multi-path series. All these 
factors, including the lack of satellites, the deterioration 
of signal and severe multi-path, may lead to the failure of 
ambiguity fixing that impacts the accuracy and reliability 
of PPP-RTK.

In Fig. 11, the positioning series of PPP-RTK, PPP-RTK/
MEMS and PPP-RTK/MEMS/vision in Scene 1 are shown 
from top to bottom, respectively. The blue, green and red 
lines represent the east, north and vertical components, 

Fig. 9   Scene 1: vehicle trajectory overlaid on Google Maps (top 
panel) and the typical environment (bottom panel)
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respectively. We can find that the PPP-RTK series diverges 
rapidly, with positioning accuracy falling to several meters 
(sometimes larger than 10 m). It indicates that the PPP-RTK 
method could hardly provide continuous and accurate posi-
tions in such complex urban environments, which cannot 
satisfy the accuracy requirement of vehicle navigation. The 
tight integration of PPP-RTK and INS (MEMS) can improve 
the positioning performance with an average accuracy of 
0.16, 0.47 and 0.41 m. However, the solutions of PPP-RTK/
MEMS are limited by the high noise level and significant 
instability of MEMS-IMU and thereby cannot enable the 
ambiguity resolution for a centimeter-level positioning. 
By contrast, the PPP-RTK/MEMS/vision tight integration 
exhibits a more stable and accurate positioning series since 

Fig. 11   Positioning series of 
PPP-RTK, PPP-RTK/MEMS 
and PPP-RTK/MEMS/VIS in 
Scene 1. The left and right pan-
els present positioning solutions 
in different scales
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Fig. 13   Scene 2: vehicle trajectory overlaid on Google Maps (top) 
and the observational environment (bottom)
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visual measurement updates contribute to the estimation of 
the IMU biases and restraining INS divergence. The posi-
tioning accuracy of PPP-RTK/MEMS/vision in this urban 
canyon environment is 0.07, 0.08 and 0.14 m in the east, 
north and vertical components, respectively.

The ratio values in ambiguity resolution in three pro-
cessing modes are presented in Fig. 12. The ratio is gener-
ally defined as the ratio of the second minimum quadratic 
form of the residuals to the minimum quadratic form of 
the residuals (Han et al. 1997). In principle, the ambiguity 
set corresponding to the minimum quadratic form of the 

residuals should be the correct one. Therefore, the ratio 
value can be considered an index to denote the reliability 
of ambiguity resolution, and larger ratio values generally 
refer to more reliable ambiguity resolution. As shown in 
this figure, the PPP-RTK/MEMS exhibits higher ratio values 
than PPP-RTK solutions. The average ratio values of PPP-
RTK and PPP-RTK/MEMS are 15.0 and 20.9, respectively. 
It also can be seen that the PPP-RTK/MEMS/vision inte-
gration brings significant improvements in terms of fixing 
numbers and ratio values in the complex signal conditions 
(8:27:00–8:29:30). The average ratio value for PPP-RTK/
MEMS/vision is improved to 27.7. It is reasonable since the 
tightly integrated PPP-RTK/MEMS/vision solution could 
enhance the float ambiguity estimation, reducing the search 
space of integer ambiguity and making it easier to identify 
the correct ambiguity.

The second scene includes three overpasses 
(8:53:17–8:55:17). Shown in the top panel of Fig. 13 pre-
sents the vehicle trajectory overlaid on Google Maps in 
which ①–③ represent three different overpasses that the 
vehicle crosses consecutively. The specific observational 
environment can be seen in the right panel. This scene can 
be regarded as a situation where GNSS is frequently dis-
turbed by obstacles.

The positioning series and the NSAT, PDOP, SNR and 
multi-path series are shown in Fig. 14. The NSAT during the 
period of Scene 2 is approximately 10. The corresponding 
SNR values are in the range of 20–50 dB Hz, and the multi-
path errors are within 1 m mostly. As the vehicle crosses 
the overpass, the number of available GNSS satellites will 
decrease to zero immediately. The obvious deterioration can 
be observed for both the SNR and multi-path when crossing 
overpasses. At the same time, PPP-RTK solutions exhibit 
low availability, with positioning errors increasing rapidly to 
meter level. Ambiguity resolution cannot be implemented in 
the circumstance and still fails even if the GNSS signals are 
available after the outage because of unfavorable tracking 
geometry and poor signal quality. PPP-RTK/MEMS inte-
gration also faces restrictions because of the frequent signal 
interruptions and the corresponding positioning accuracy is 
decreased to decimeter level. Nevertheless, the positioning 
performance of PPP-RTK/MEMS tight integration is still 
much better than GNSS-only solutions in terms of accuracy, 
reliability and reconvergence. Note that the best performance 
can be obtained for PPP-RTK/MEMS/vision tight integra-
tion, which shows a continuous centimeter-level positioning 
series over time even in a GNSS-challenged environment.

The frequent interference of GNSS will lead to the reini-
tialization of ambiguities. Rapid reinitialization attaches 
great importance to the continuous and accurate positioning 
for vehicle navigation. Table 5 provides the required time 
of ambiguity refixing in three processing modes after each 
interruption. The marks ①, ② and ③ denote three interruption 
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Table 5   Refixing time of PPP-RTK, PPP-RTK/MEMS and PPP-
RTK/MEMS/VIS in Scene 2

Modes Refixing time (s)

① ② ③

PPP-RTK Failed Failed 17
PPP-RTK/MEMS Failed Failed 3
PPP-RTK/MEMS/VIS < 1 < 1 < 1
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processes when the vehicle crossed three overpasses con-
secutively. The first and second interruptions last one second 
and occur in 5 s. After that, continuous tracking of 8–10 
available satellites for a period of 12 s is achieved until the 
third outage occurs. Results indicate that both PPP-RTK 
and PPP-RTK/MEMS fail to achieve ambiguity refixing 
during two consecutive interruptions. In addition, it takes 
17 s for PPP-RTK to reobtain ambiguity resolution when the 
GNSS signals can be continuously tracked, whereas PPP-
RTK/MEMS could achieve ambiguity recovery within 3 s. 
For a PPP-RTK/MEMS/vision tight integration system, an 
instantaneous ambiguity refixing can always be obtained for 
these three interruptions. The results are reasonable once we 
acknowledge that MEMS and vision sensors are immune to 
such signal interruptions and maintain high-accuracy posi-
tioning for a certain period of time. Such accurate location 
information will facilitate the rapid convergence of ambigu-
ity parameters for rapid ambiguity refixing.

Conclusions

This study developed a tightly integrated PPP-RTK/MEMS/
vision model aiming to achieve centimeter-level vehicle 
navigation in urban environments. The raw GNSS measure-
ments (i.e., pseudorange and carrier phase measurements), 
MEMS-IMU data and raw stereo camera data are tightly 
integrated with a centralized EKF framework. The naviga-
tion performance of the proposed system is investigated in 
urban environments with different observation conditions 
and carefully compared with the PPP-RTK and PPP-RTK/
INS integration modes, respectively.

The vehicular experiments indicate that PPP-RTK can 
achieve stable centimeter-level positioning for more than 
visible satellites, but faces restrictions in case of GNSS sig-
nal blockage, where the positioning errors increase to several 
meters. The tight integration of PPP-RTK and MEMS could 
improve the positioning performance in terms of accuracy 
and availability. However, the accuracy is still at the level 
of meters or decimeters, which hardly meets the accuracy 
requirement of vehicle navigation. By contrast, the proposed 
PPP-RTK/MEMS/vision tight integration system can obtain 
continuous and accurate positions in an urban environment 
with an accuracy of 4.1, 2.2 and 7.3 cm in the east, north 

and up components, respectively, and fixing percentage of 
96.8%, showing comparable performance respect to the tight 
integration of PPP-RTK and a tactical IMU. It demonstrates 
that using this multi-sensor system allows for high-precision 
positioning with a relatively low expense.

The detailed analysis in GNSS-challenged scenes val-
idates the contribution of the inclusion the raw data of 
MEMS-IMU and cameras for continuous and accurate 
positioning. In an urban canyon environment where GNSS 
signals are deteriorated and blocked, the tight integration 
of PPP-RTK, MEMS and vision exploits the complemen-
tariness of each sensor and avoids information loss in the 
loosely coupled mode, which enables a horizontal accu-
racy of 7–8 cm with high fixing percentage. Moreover, the 
inclusion of the INS and vision plays an important role 
in ambiguity refixing after an outage. An instantaneous 
ambiguity refixing can be obtained when crossing three 
consecutive overpasses during a period of 25 s while the 
PPP-RTK solution requires 17 s.

Appendix 1: Jacobians of the estimated 
camera states

This section introduces the specific expression of Jaco-
bians of estimated camera states. The linearized visual 
observation equations for a single feature fj observed at 
the time step i  can be written as:
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Considering that the same feature will be tracked by 
multiple consecutive camera poses, therefore the lin-
earized visual observation vector for this feature can be 
obtained by stacking all the individual equations together:

where k denotes the k-th camera pose in the sliding window.
Since the feature positions are computed with the cam-

era poses, the uncertainty of feature position is thereby 
correlated with the camera pose in the estimator. To elimi-
nate the correlation between the feature position and cam-
era poses, the linearized observation vector is reformulated 
by projecting it on the left null space ( �T

j
 ) of the matrix 

�
j

f
 , which can be rewritten as:

In this way, the visual observation equation is independ-
ent of the errors of the estimated feature position; therefore, 
the EKF update can be performed.
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